

Description

The AVE350B-48S28 converter is a new DC/DC converter with aluminum baseplate for optimum efficiency and power density. The converter provides up to 12.5A output current, which makes it an ideal choice for small space and high power applications. The converter uses an industry standard half brick 61.0mm×57.9mm×12.7mm (2.4"×2.28"×0.5") and standard pin configuration. The converter provides CNT, Trim and remote sense functions.

Operational Features

- Delivering up to 12.5A output current
- Ultra-high efficiency 93.5% type at full load and 93.2% type at half load
- Wide input range: 36V ~ 75V
- Excellent thermal performance
- No minimum load requirement
- RoHS compliant (R5 or R6 optional)

Control Features

- Remote control function (negative or positive logic optional)
- Remote output sense
- Trim function: 60% ~ 118%

Protection Features

- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- Over temperature protection

Mechanical Features

- Industry standard half-brick pin-out outline
- With baseplate
- Pin length: 3.8mm

Safety & EMC

- Meets safety standards UL 60950-1, CSA-C22.2 NO. 60950-1, IEC/EN 60950-1 and GB4943
- Approved by UL and TUV
- Meets 2006/95/EEC and 93/68/EEC directives which facilitates CE marking in user's end product
- Meets conducted emission's requirements of EN55022 Class B with external filter

Electrical Characteristics

Full operating ambient temperature range is -40°C to +85°C. Specifications are subject to change without notice.

Pa	Parameter			Max.	Unit	Notes & Conditions		
Absolute max. ratings								
Input voltage	Non-operating			100	V	100ms		
Input voltage	Operating			80	V	Continuous		
Operating temp	erature	-40		85	°C	Refer to Thermal Considerations		
Storage temper	ature	-55		125	°C			
Output power				350	W	Refer to Thermal Considerations		
Voltage at remo	ote ON/OFF pin	-0.3		15	V			
		In	put chara	cteristics				
Operating input	voltage range	36	48	75	V			
	Turn-on voltage threshold	33	35	36	v			
Input under-voltage lockout	Turn-off voltage threshold	31	33	35	v			
	Lockout voltage hysteresis	1	2	3	v			
Max. input current			10.5	11.5	А	36V _{in} , full load		
No-load input c	urrent		0.035		А			
Standby Input of	current		0.001		А	Remote OFF		
Input reflected	ipple current		35		mA _{pp}	Through 12µH inductor; Figure 15		
Recommended	input fuse			15	А	Fast blow external fuse recommended; Figure 10		
Input filter com	oonent values (C\L)		7\0.68		μF∖μH	Internal values		
Recommended capacitance	external input		220		μF	Low ESR capacitor recommended; Figure 10		
		Ou	tput chara	acteristics				
Output voltage set point (standard option)		27.72	28	28.28	v	48V _{in} , Half load,Ta=25°C		
Output voltage line regulation			0.05	1	%			
			14	140	mV	Rating output, Vin=36~75V		
Output voltage	load regulation		0.1	1	%			
			28	280	mV	Rating input, Io=0~12.5A		

AVE350B-48S28 DC-DC Converter

rature ange and noise ent range it inception 75% ~ 50%	27.16 0 13.125 680 Dyn	0.01 28 120 750	0.02 28.84 200 12.5 17.5 4000	%/°C V mVpp A A A µF	Over sample, line, load, temperature & life Figure 2;External capacitor of 750µF at 25°C. Additional capacitor is needed at low temperature 20MHz bandwidth; Figure 15 Hiccup: auto-restart when over-current condition is removed see Figure 9 High frequency and low ESR are recommended
and noise ent range it inception	0 13.125 680	120	200 12.5 17.5 4000	mVpp A A µF	temperature & life Figure 2;External capacitor of 750µF at 25°C. Additional capacitor is needed at low temperature 20MHz bandwidth; Figure 15 Hiccup: auto-restart when over-current condition is removed see Figure 9 High frequency and low ESR are
ent range it inception	13.125 680	750	12.5 17.5 4000	A A µF	750µF at 25°C. Additional capacitor is needed at low temperature 20MHz bandwidth; Figure 15 Hiccup: auto-restart when over-current condition is removed see Figure 9 High frequency and low ESR are
it inception	13.125 680		17.5 4000	A µF	over-current condition is removed see Figure 9 High frequency and low ESR are
	680		4000	μF	over-current condition is removed see Figure 9 High frequency and low ESR are
75% ~ 50%					
75% ~ 50%	Dyn	namic cha	racteristic	s	
75% ~ 50%		1			
.1A/µs		210	840	mV	Figure 4 Test condition: 25°C, nominal input voltage, 25% I _{o,nom} step from 50% I _{o,nom} , 0.1A/µs, see Figure 10
time		0	500	μs	
ne		16	100	ms	Full load, Figure 5
n delay time		17	50	ms	Whole range
voltage pot		0	-	%V _o	lo=lo,max; Ta=25∘C
		Effici	ency		
100% load		93.5		%	Ta=25°C, Tc ^[2] <40°C ,Vin=48V, Vo=28V, see Figure 1
50% load		93.2		%	Ta=25°C, Tc<40°C ,Vin=48V, Vo=28V, see Figure 1
	delay time voltage oot	delay time voltage vot apacitor is used, double of the second	delay time 17 voltage bot 0 Efficient 93.5 gazzitor is used, double capacitance vill decrease under low temperature	delay time 17 50 voltage bot 0 - Efficiency 93.5 93.2	delay time 17 50 ms voltage oot 0 - %Vo Efficiency 93.5 % apacitor is used, double capacitance is necessary when vill decrease under low temperature.

Electrical Characteristics (Continued)

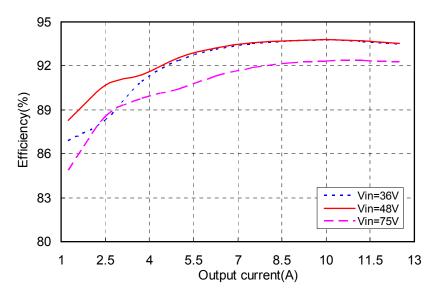
Param	Min.	Тур.	Max.	Unit	Notes & Conditions	
			Isolatio	on charac	cteristics	
Isolation voltage (conditions: 1mA for 60s, slew rate of 1500V/10s)		1500			V	Functional insulation, pollution degree 2, input to output
		1500			v	Functional insulation, pollution degree 2, input to baseplate
		500			v	Functional insulation, pollution degree 2, output to baseplate
			Featur	re charac	teristics	
Switching freque	ency		285	0	kHz	
Remote ON/OFF	Off-state voltage	-0.3		0.8	v	
control (positive logic)	On-state voltage	2.4		15	V	
Remote ON/OFF	Off-state voltage	2.4		15	V	See Figure 11
control (negative logic)	On-State Voltage	-0.3		0.8	V	
Output voltage t	rim range	60		118	%V _{o,nom}	See Trim Characteristics of Application Note
Output voltage r range	emote sense			0.5	v	
Output over-voltage protection		115		140	%V _{o,nom}	Latch: remain latched after OVP shutdown untill power on or remote ON
Over-temperature shutdown on baseplate		105	115	125	°C	Auto recovery; Test points: see Figure 18
Over-temperatur	re hysteresis	5			°C	
			Reliabil	lity chara	cteristics	•
Calculated MTB	F (telcordia)		2		10 ⁶ h	25℃ Ta。 Normal Input/output Rated, Telcordia SR-332-2006

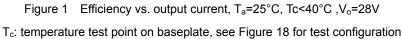
Test Item	Regulations	Criteria	Notes & Conditions
Conducted Emission	EN 55022 DC input port, Class B Limits	1	
Immunity to Electrostatic Discharge	IEC/EN61000-4-2 Enclosure Port, Level 3	В	
Immunity to Electrical Fast Transient	IEC/EN61000-4-4 DC input port, Level 3	В	
Immunity to Surges	IEC/EN61000-4-5 DC input port Line to Ground(earth): 500V Line to Line: 500V	В	See EMC test conditions, see Figure 16
Immunity to Continuous Conducted Interference	IEC/EN61000-4-6 DC input port, Level 2	A	
Immunity To Voltage Dips and short interruptions and voltage variations	EN 61000-4-29 DC input port	В	

Electromagnetic compatibility requirements

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.


Criterion C: Temporary loss of output, the correction of which requires operator intervention.


Criterion D: Loss of output which is not recoverable, owing to damage to hardware.

Qualification Testing

Parameter	Unit (pcs)	Test condition
Halt test	4~5	$T_{a,min}\text{-}10^\circ\text{C}$ to $T_{a,max}\text{+}10^\circ\text{C},5^\circ\text{C}$ step, V_{in} = min to max, 0 ~ 105% load
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m2/s3, -3db/oct, axes of vibration: X/Y/Z Time: 30min/axis
Mechanical shock	3	30g, 6ms, 3axes, 6directions, 3time/direction
Thermal shock	3	-40°C to 100°C, unit temperature 20cycles
Thermal cycling	3	-40°C to 85°C, temperature change rate: 1°C/min, cycles: 2cycles
Humidity	3	40°C, 95%RH, 48h
Solder ability	15	IPC J-STD-002C-2007

Characteristic Curves

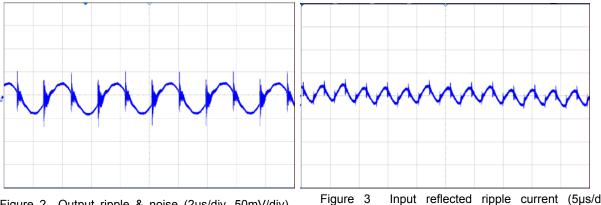


Figure 2 Output ripple & noise (2µs/div, 50mV/div), see Figure 15 for test configuration

Figure 3 Input reflected ripple current (5µs/div, 50mA/div), see Figure 15 for test configuration

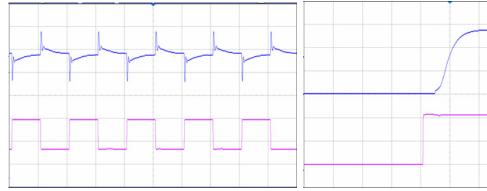


Figure 4 Dynamic response for 25% load step (25% \sim 50% \sim 25%) and 0.1A/µs slew rate, (5ms/div), see Figure 10 for test configuration; CH1-output voltage (200mV/div); CH2-output current (2.5A/div)

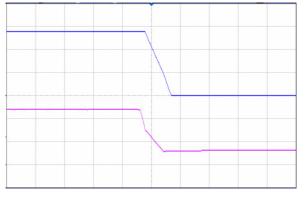


Figure 6 Output voltage shut down by power off, (2ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-input voltage (20V/div)

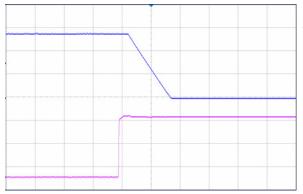
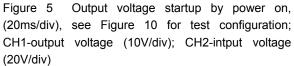



Figure 8 Output voltage shutdown by remote OFF, (1ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-remote OFF voltage (2V/div)

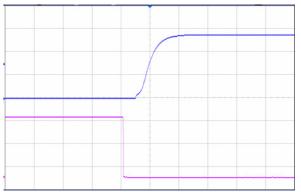
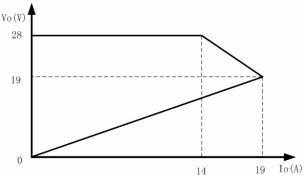
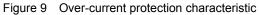




Figure 7 Output voltage startup by remote ON, (20ms/div), see Figure 10 for test configuration; CH1-output voltage (10V/div); CH2-remote ON (2V/div)

Application Note

Typical Application

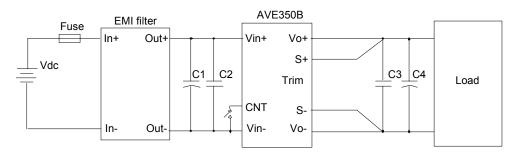


Figure 10 Typical application

C1: 220µF/100V electrolytic capacitor, P/N: UPM2A221MHD (Nichicon) or equivalent caps

C2, C3: 1 μ F/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps C4: 750 μ F/50V electrolytic capacitor (150 μ F*5pcs), P/N: UUD1H151MNL1GS (Nichicon) or equivalent caps

Note: If ambient temperature is below -5°C, double input & output capacitance is necessary for normal operation and performance.

Fuse: External fast blow fuse with a rating of 15A. The recommended fuse model is 324015P from LITTELFUSE.

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVE350B-48S28. The logic is CMOS and TTL compatible.

Some typical applications for CNT function refer to the following figure 11.

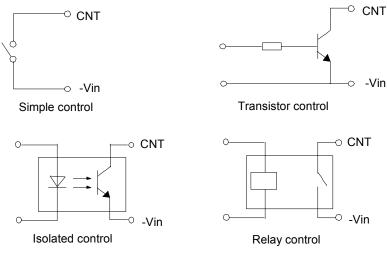
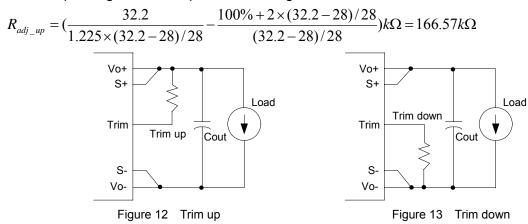


Figure 11 Remote ON/OFF internal diagram

Trim Characteristics


Connecting an external resistor between Trim pin and V_o - pin will decrease the output voltage. While connecting it between Trim and V_o + will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj_down} = (\frac{100\%}{\Delta\%} - 2)k\Omega$$
$$R_{adj_up} = (\frac{V_o(100\% + \Delta\%)}{1.225 \times \Delta\%} - \frac{100\% + 2 \times \Delta\%}{\Delta\%})k\Omega$$

 $\Delta^{0\!\!/_{\!\!0}}$: Output voltage rate against nominal output voltage.

 V_{norm} : Nominal output voltage.

For example, to get 32.2V output, the trimming resistor is

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_o = (11.43 \times V_{trim} + 14)V$$

Where V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage.

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power and the minimum input voltage should be increased as shown in Figure 14.

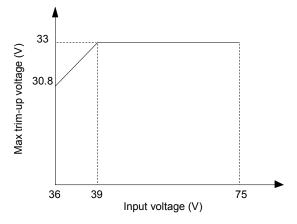


Figure 14 Max trim-up voltage vs. input voltage

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. See Figure 10.

If the sense compensate function is not necessary, connect S+ to V₀+ and S- to V₀- directly.

Input Ripple & Inrush Current And Output Ripple & Noise Test

Configuration

Figure 15 Input ripple & inrush current, ripple & noise test configuration

Vdc: DC power supply

L1: 12µH

Cin: 220µF/100V typical

C1 ~ C4: See Figure 10

Note: Using a coaxial cable with series 50Ω resistor and 0.68μ F ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

EMC Filter Configuration

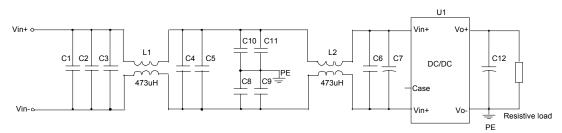
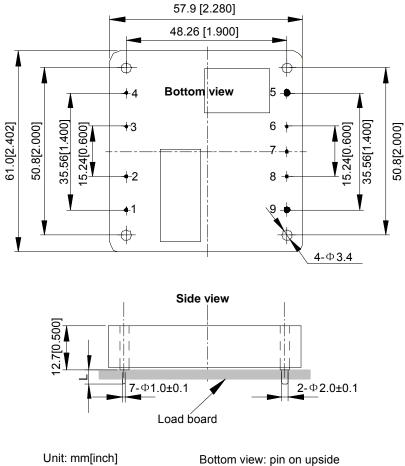


Figure 16 EMC test configuration


U1: Module to test, AVE350B-48S28

C1 ~ C5: 1uF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT (TDK) or equivalent caps C6:0.1uF/100V X7R ceramic capacitor, P/N: 12101C104JAT2A (AVX) or equivalent caps C8 ~ C11: 0.22uF/630V X7R ceramic capacitor, P/N: 2220CC224KA11A (AVX) or equivalent caps C7: 470µF/100V electrolytic capacitor, P/N: UPM2A471MHD (Nichicon) or equivalent caps C12:750uF/50V electrolytic capacitor (150uF*5pcs), P/N: UUD1H151MNL1GS (Nichicon) or equivalent caps

PE: Connect to Vo-

Case: Not connected

Mechanical Diagram

Tolerance: X.Xmm±0.5mm[X.X in.±0.02in.] X.XXmm±0.25mm[X.XX in.±0.01in.]

Figure 17 Mechanical diagram

Pin length option

Device code suffix	L
-4	4.8mm±0.2mm
-6	3.8mm±0.2mm
-8	2.8mm±0.2mm
None	5.8mm±0.2mm

Pin Designations

Pin NO.	Name	Function
1	V _{in} +	Positive input voltage
2	CNT	Remote control
3	Case	Pin connected to baseplate
4	V _{in} -	Negative input voltage

Pin NO.	Name	Function
5	V _o -	Negative output voltage
6	S-	Negative sense
7	Trim	Output voltage trim
8	S+	Positive sense
9	V _o +	Positive output voltage

Soldering

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 255°C for R5 compliant product and maximum 260°C for R6 compliant product. And the duration must be less than 7s.

When soldering by hand, the iron temperature should be maintained at 300° C ~ 380° C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Thermal Considerations

The converter is designed to operate in different thermal environments and sufficient cooling must be provided.

Application without forced air convection

Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test points, shown in Figure 18. The temperature at these points should not exceed the max values in the table 1.

The converter can operate in an enclosed environment without forced air convection. Cooling of the converter is achieved mainly by conduction from the baseplate to a heatsink. The converter can deliver full output power at 85°C ambient temperature provided both temperature test points, shown in Figure 18, are kept below the max values in the Table 1.



Figure 18 Temperature test point on baseplate

 Table 1
 Temperature limit of the test points

Test Point	Temperature limit
Test point on baseplate	105°C

Application with forced air convection

The converter can also operate with a smaller heatsink and sufficient airflow. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test points, shown in Figure 19. The temperature at these points should not exceed the max values in the table 1.

For a typical application, Figure 20 shows the derating output current vs. ambient air temperature at different air velocity with a specified heatsink (Size:L:61mm,W:58mm,H:25.4mm), shown in Figure 19.

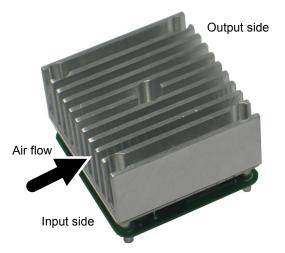


Figure 19 Typical application with a smaller heatsink and airflow

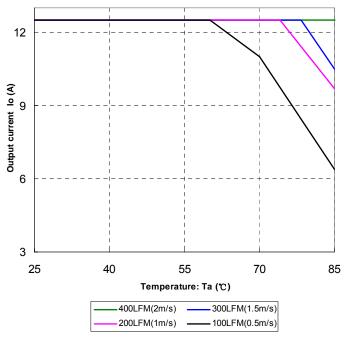


Figure 20 Output power derating, 48Vin

Ordering Information

AVE350B	-	48	S	28	Р	-	6	L	1	М
(1)		2	3	4	5		6	\overline{O}		8

1	Model series	AVE: high efficiency half brick series, 350: output power 350W, B: version
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
4	Rated output voltage	28: 28V output
5	Remote ON/OFF logic	Default: negative; P: positive logic
6	Pin length	-6: 3.8mm
7	RoHS status	L: RoHS, R6; Y: RoHS, R5
8	Structure	Default: through hole; M: screw thread

Model number	Description
AVE350B-48S28-6	3.8mm pin length; negative on/off logic; with through mounting hole; R6 compliant
AVE350B-48S28P-6	3.8mm pin length; positive on/off logic; with through mounting hole; R6 compliant
AVE350B-48S28-6Y	3.8mm pin length; negative on/off logic; with through mounting hole; R5 compliant

Hazardous Substances Announcement (RoHS Of China)

Parts	Hazardous substances					
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE
AVE350B-48S28(P)-6	0	0	0	0	0	0
AVE350B-48S28-6Y	\checkmark	0	0	0	0	0

•: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

 $\sqrt{}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Emerson Network Power Co., Ltd. has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

1. Solders (including high-temperature solder in parts) contain plumbum.

2. Glass of electric parts contains plumbum.

3. Copper alloy of pins contains plumbum