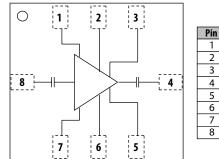
AMMP-6331 18 – 31 GHz 0.2 W Driver Amplifier in SMT Package

Data Sheet



Description

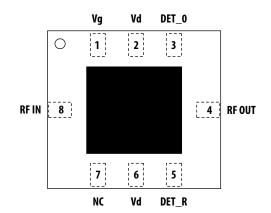
The AMMP-6331 is a broadband 0.2 W driver amplifier designed for use in transmitters operating in various frequency bands from 18 GHz to 31 GHz. This small, easy to use device provides over 23 dBm of output power (P_{-1dB}) and more than 20 dB of gain at 25 GHz. It was optimized for linear operation with an output power at the third order intercept point (OIP3) of 30dBm. The AMMP-6331 features a temperature compensated RF power detection circuit that enables power detection sensitivity of 0.3 V/W at 25GHz. It is fabricated using Avago Technologies unique 0.25 μ m E-mode PHEMT technology which eliminates the need for negative gate biasing voltage.

Functional Block Diagram

Function 1 Vg 2 Vd DET_O 3 RF_out 4 5 DET_R 6 Vd 7 NC 8 RF_in

RoHS-Exemption

Please refer to hazardous substances table on page 8.


Features

- Frequency range: 18 to 31 GHz
- Small signal gain: 20 dB
- P_{-1dB}: 23dBm
- Return Loss (In/Out): -10 dB

Applications

- Microwave Radio systems
- VSAT

Package Diagram

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) = 90 V ESD Human Body Model (Class 1A) = 300 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control.

Note: MSL Rating = Level 2A

Electrical Specification

- 1. All data measured on a 2.4mm connector based evaluation board (Rogers 4350B) at Vd = 5V, Idq = 230mA, Tc = 25 °C, and 50 Ω at all ports.
- 2. All tested parameters guaranteed with measurement accuracy ±2dB for P-1dB of 17,25 and 31GHz , ±0.5dB for Gain of 17GHz, ±1dB for Gain of 25 and 31GHz.

Table 1. RF Electrical Characteristics

	Performance									
	17 – 20GHz		20 – 30GHz		30 – 31GHz		Unit			
Parameter	Min.	Тур	Max.	Min.	Тур	Max.	Min.	Тур	Max.	
Small Signal Gain, G	14	16		19	22		18	20.5		dB
Output power at 1dB Gain compression, P-1dB	18	20.5		22	24.5		21	24		dBm
Output power at 3dB Gain Compression, P-3dB		21.5			24.5			23.5		dBm
Third Order Intercept, OIP3		30			30			30		dBm
Input Return Loss, RLin		10			10			8		dB
Output Return Loss, RLout		10			14			10		dB
Reverse Isolation		45			45			45		dB

Table 2. Recommended Operating Range

			Specifications			
Description	Pin	Min.	Typical	Max.	Unit	Comments
Drain Supply Voltage	Vd		5		V	
Gate Supply Voltage	Vg		1.67		V	
Gate Supply Current, Ig			7		mA	
Drain Supply Current, Id			230		mA	(Vd = 5 V, Vg set for typical ldq – quiescent current)
Frequency Range		18		31	GHz	

Table 3. Thermal Properties

Parameter	Test Conditions	Value	
Thermal Resistance, θ_{ch-b}		$\theta_{ch-b} = 27 \text{ °C/W}$	
Channel Temperature (T _{channel})	Vd = 5V, Id = 230mA, Pd = 1.15W Tbaseplate = 85°C	T _{channel} = 116°C	
Channel Temperature (T _{channel}) Under RF drive	Vd = 5V, Id = 400mA, Pout = 24dBm Pd = 2W, Tbaseplate = 85°C	T _{channel} = 139°C	

Absolute Minimum and Maximum Ratings

Table 4. Minimum and Maximum Ratings

		Specifications			
Description	Pin	Min.	Max.	Unit	Comments
Drain Supply Voltage	Vd		5.5	V	
Gate Supply Voltage	Vg	0	2.5	V	
RF Input Power (Pin)	RFIN		20	dBm	CW
Power Dissipation (Pd)			2.5	W	Pd=Vd x Id + Pin - Pout
Channel Temperature			+150	°C	
Storage Temperature		-65	+150	°C	

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to this device. Functional operation at or near these limitations will significantly reduce the lifetime of the device.

2. When operated at maximum Pd with a base plate temperature of 85 °C, the median time to failure (MTTF) is significantly reduced.

Selected performance plots

All data measured on a 2.4mm connector based evaluation board at Vd = 5V, Idq = 230mA, Ta = 25°C, and 50 Ω at all ports.

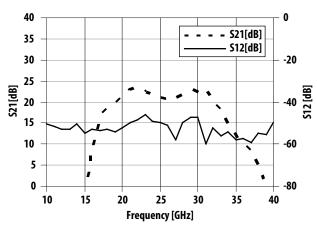


Figure 1. Gain and Reverse Isolation vs Frequency

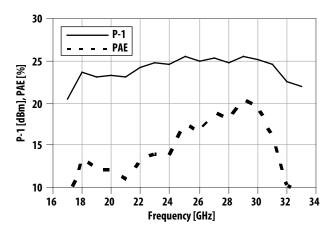


Figure 3. P_{-1dB} and PAE vs Frequency

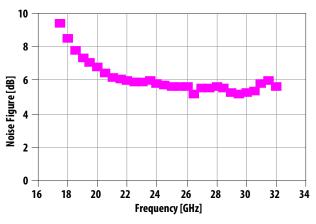


Figure 5. Typical Noise Figure vs Frequency

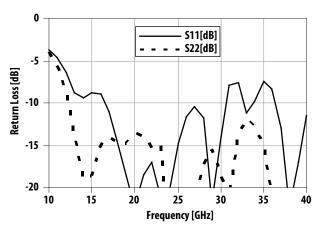


Figure 2. Return Loss vs Frequency

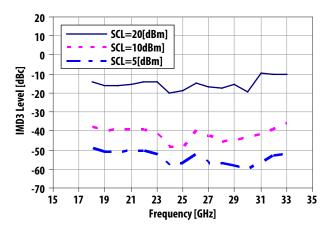


Figure 4. Typical IMD3 vs Frequency (SCL = Single Carrier level)

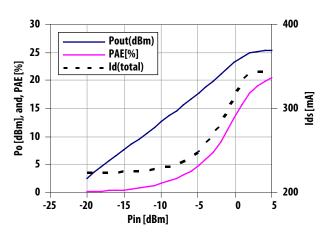


Figure 6. Output Power, PAE, and Drain Current vs Input Power at 30GHz

Over Temperature Performance Plots

All data measured on a 2.4mm connector based evaluation board at Vd = 5V, Idq = 230mA, and 50 Ω at all ports. Id has been maintained at 230mA under different temperature conditions.

0

-5

-10

-15

-20

15 17 19

S22 [dB]

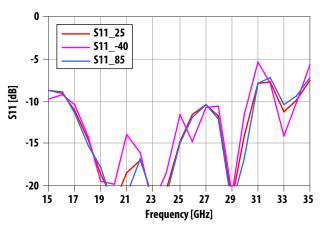


Figure 7. |S11| vs Frequency and Temperature

21

23

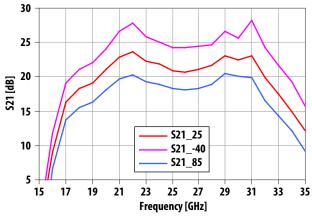
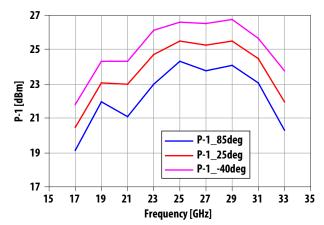



Figure 9. |S21| vs Frequency and Temperature

S22_25

S22_-40

S22_85

25

27 29

31 33 35

Figure 10. P_{-1dB} vs Frequency and Temperature

Over Voltage plots

All data measured on a 2.4mm connector based evaluation board at Ta = 25 °C, and 50 Ω at all ports.

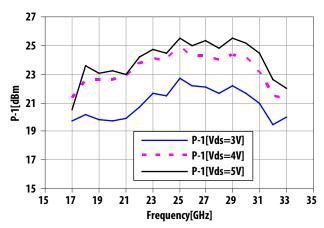


Figure 11. P_{-1dB} vs Frequency and Vds, (I_{dQ} =230mA)

Figure 12. Small signal gain vs Frequency and I_{dQ}, (Vds=5V)

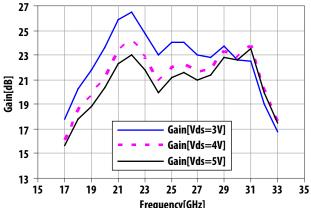


Figure 13. Small signal gain vs Frequency and Vds, (I_{dQ}=230mA)

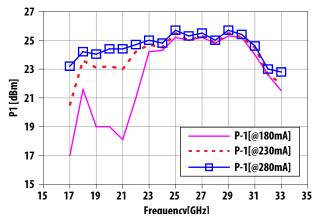
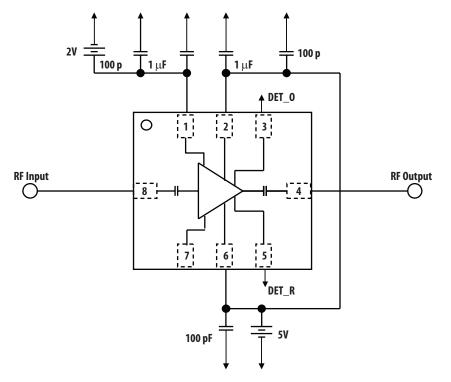
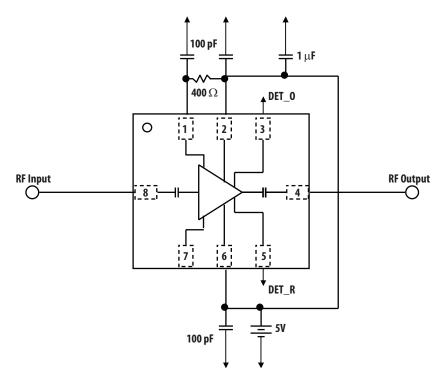



Figure 14. P._{1dB} vs Frequency and I_{dQ}, (Vds=5V)


Typical Scattering Parameters

Please refer to <http://www.avagotech.com> for typical scattering parameters data.

Application circuit

1. Dual positive DC power supply

2. Single positive DC power supply

Figure 15. AMMP-6331 biasing circuits. Both sides of the part must be biased.

Package Dimension, PCB Layout and Tape and Reel information

Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A)

Ordering Information

Part Number	Devices Per Container	Container
AMMP-6331-BLKG	10	Antistatic bag
AMMP-6331-TR1G	100	7" Reel
AMMP-6331-TR2G	500	7" Reel

Names and Contents of the Toxic and Hazardous Substances or Elements in the Products 产品中有毒有害物质或元素的名称及含量

Part Name		Toxic and Hazardous Substances or Elements 有毒有害物质或元素							
部件名称	Lead (Pb) 铅 (Pb)	(Pb) 铅 (Hg) 汞		Hexavalent (Cr(VI)) 六价 铬(Cr(VI))	Polybrominated biphenyl (PBB) 多 溴联苯(PBB)	Polybrominated diphenylether (PBDE) 多溴二苯醚 (PBDE)			
100pF capacitor	(FD) ×	O O	(Cd) 0			→ ジ 供 二 本 証 (T DDL)			
exceeds the concent (The enterprise may the actual situations.	further explain th				the table in accordance wit	h			
	「害物质至少在	该部件的某	三一均质材料中	量均在 SJ/T 11363-20 中的含量超出 SJ/T *	11363-2006 标准规定	世要求以下。 E的限量要求。			

Note: EU RoHS compliant under exemption clause of "lead in electronic ceramic parts (e.g. piezoelectronic devices)"

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. AV02-1457EN - January 9, 2013

