

Audio Hub CODEC with Master Hi-Fi DSP

DESCRIPTION

The WM5102S^[1] is a highly-integrated low-power audio system for smartphones, tablets and other portable audio devices. It supports audiophile quality DAC playback on a flexible, high-performance audio hub.

The WM5102S digital core provides a powerful combination of fixed-function signal processing blocks with a programmable DSP. These are supported by a fully-flexible, all-digital audio mixing and routing engine with sample rate converters, for wide use-case flexibility. The programmable DSP supports a range of audio processing software packages, including user-programmed solutions. A suite of signal processing software packages is licensed as part of the WM5102S product, though different audio algorithms can also be implemented. Fixed-function signal processing blocks include filters, EQ, dynamics processors and sample rate converters.

A SLIMbus interface supports multi-channel audio paths and host control register access. Multiple sample rates are supported concurrently via the SLIMbus interface. Three further digital audio interfaces are provided, each supporting a wide range of standard audio sample rates and serial interface formats. Automatic sample rate detection enables seamless wideband/narrowband voice call handover.

Two stereo headphone drivers each provide stereo ground-referenced or mono BTL outputs, with noise levels as low as $1\mu V_{\text{RMS}}$ (HPOUT1) for hi-fi quality line or headphone output. The CODEC also features stereo 2W Class-D speaker outputs, a dedicated BTL earpiece output and PDM for external speaker amplifiers. A signal generator for controlling haptics devices is included; vibe actuators can connect directly to the Class-D speaker output, or via an external driver on the PDM output interface. All inputs, outputs and system interfaces can function concurrently.

The WM5102S supports up to six microphone inputs, each either analogue or PDM digital. Microphone activity detection with interrupt is available. A smart accessory interface supports most standard 3.5mm accessories. Impedance sensing and measurement is provided for external accessory and push-button detection.

The WM5102S power, clocking and output driver architectures are all designed to maximise battery life in voice, music and standby modes. Low-power 'Sleep' is supported, with configurable wake-up events. The WM5102S is powered from a 1.8V external supply. A separate supply is required for the Class D speaker drivers (typically direct connection to 4.2V battery).

Two integrated FLLs provide support for a wide range of system clock frequencies. The WM5102S is configured using the I2C, SPI or SLIMbus interfaces. The fully-differential internal analogue architecture, minimal analogue signal paths and on-chip RF noise filters ensure a very high degree of noise immunity.

FEATURES

- Audio hub CODEC with integrated DSP
- Master Hi-Fi filters for audiophile quality DAC playback
- Enhanced DRE processing (eDRE) for 120dB SNR
- Fixed function signal processing functions
 - Wind noise, sidetone and other high/low pass filters
 - Dynamic Range Control, Fully parametric EQs
 - Tone, Noise, PWM, Haptic control signal generators
- Multi-channel asynchronous sample rate conversion
- Integrated 6/7 channel 24-bit hi-fi audio hub CODEC
 - 6 ADCs, 96dB SNR microphone input (48kHz)
 - 7 DACs, 120dB SNR headphone playback (48kHz)
- Audio inputs
 - Up to 6 analogue or digital microphone inputs
 - Single-ended or differential mic/line inputs
- Multi-purpose headphone / earpiece / line output drivers
 - 2 stereo output paths
 - 29mW into 32Ω load at 0.1% THD+N
 - 100mW into 32Ω BTL load at 5% THD+N
 - 6.5mW typical headphone playback power consumption
- Pop suppression functions
- 1µV_{RMS} noise floor (A-weighted, HPOUT1)
- Mono BTL earpiece output driver
- 2 x 2W stereo Class D speaker output drivers
 - Direct drive of external haptics vibe actuators
- Two-channel digital speaker (PDM) interface
- SLIMbus® audio and control interface
- 3 full digital audio interfaces
 - Standard sample rates from 4kHz up to 192kHz
 - Ultrasonic accessory function support
 - TDM support on all AIFs
 - 8 channel input and output on AIF1
- Flexible clocking, derived from MCLKn, BCLKn or SLIMbus
- 2 low-power FLLs support reference clocks down to 32kHz
- Advanced accessory detection functions
- Low-power standby mode and configurable wake-up
- Configurable functions on 5 GPIO pins
- Integrated LDO regulators and charge pumps
- Support for single 1.8V supply operation
- Small W-CSP package, 0.4mm pitch

APPLICATIONS

- Smartphones and Multimedia handsets
- Tablets and Mobile Internet Devices (MID)
- Portable Music Players (PMP)

[1] This product is protected by Patents US 7,622,984, US 7,626,445, US 7,765,019 and GB 2,432,765

BLOCK DIAGRAM

TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	2
TABLE OF CONTENTS	3
PIN CONFIGURATION	4
ORDERING INFORMATION	4
PIN DESCRIPTION	5
ABSOLUTE MAXIMUM RATINGS	8
RECOMMENDED OPERATING CONDITIONS	9
DEVICE DESCRIPTION	10
INTRODUCTION	10
HI-FI AUDIO CODEC	10
DIGITAL AUDIO CORE	11
DIGITAL INTERFACES	11
OTHER FEATURES	12
RECOMMENDED EXTERNAL COMPONENTS	13
PACKAGE DIMENSIONS	14
	15
ADDRESS:	15
REVISION HISTORY	16

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM5102SECS/R	-40°C to +85°C	W-CSP (Pb-free, Tape and reel)	MSL1	260°C

Note:

Reel quantity = 5000

PIN DESCRIPTION

A description of each pin on the WM5102S is provided below.

Note that, where multiple pins share a common name, these pins should be tied together on the PCB. All Digital Output pins are CMOS outputs, unless otherwise stated.

PIN NO	NAME	TYPE	DESCRIPTION	
B3, B4, B7, C3, C4, C5, C6, C7, C8, F2, F3, G3, H3, J3, L3	AGND	Supply	Analogue ground (Return path for AVDD)	
J13	AIF1BCLK	Digital Input / Output	Audio interface 1 bit clock	
J11	AIF1RXDAT	Digital Input	Audio interface 1 RX digital audio data	
J12	AIF1LRCLK	Digital Input / Output	Audio interface 1 left / right clock	
J8	AIF1TXDAT	Digital Output	Audio interface 1 TX digital audio data	
K5	AIF2BCLK	Digital Input / Output	Audio interface 2 bit clock	
M9	AIF2RXDAT	Digital Input	Audio interface 2 RX digital audio data	
L8	AIF2LRCLK	Digital Input / Output	Audio interface 2 left / right clock	
L6	AIF2TXDAT	Digital Output	Audio interface 2 TX digital audio data	
L5	AIF3BCLK	Digital Input / Output	Audio interface 3 bit clock	
K4	AIF3RXDAT	Digital Input	Audio interface 3 RXdigital audio data	
M5	AIF3LRCLK	Digital Input / Output	Audio interface 3 left / right clock	
L4	AIF3TXDAT	Digital Output	Audio interface 3 TX digital audio data	
A3, A7, M3	AVDD	Supply	Analogue supply	
L13	CIF1ADDR	Digital Input	Control interface 1 (I2C) address select	
K12	CIF1SCLK	Digital Input	Control interface 1 clock input	
K11	CIF1SDA	Digital Input / Output	Control interface 1 data input and output / acknowledge output. The output function is implemented as an Open Drain circuit.	
M13	CIF2MOSI	Digital Input	Control interface 2 Master Out / Slave In data	
K9	CIF2MISO	Digital Output	Control interface 2 Master In / Slave Out data	
L12	CIF2SCLK	Digital Input	Control interface 2 clock input	
L11	CIF2SS	Digital Input	Control interface 2 Slave Select (SS)	
B9	CP1CA	Analogue Output	Charge pump 1 fly-back capacitor pin	
B10	CP1CB	Analogue Output	Charge pump 1 fly-back capacitor pin	
A10	CP1VOUTN	Analogue Output	Charge pump 1 negative output decoupling pin	
A9	CP1VOUTP	Analogue Output	Charge pump 1 positive output decoupling pin	
C11	CP2CA	Analogue Output	Charge pump 2 fly-back capacitor pin	
B11	CP2CB	Analogue Output	Charge pump 2 fly-back capacitor pin	
A11	CP2VOUT	Analogue Output	Charge pump 2 output decoupling pin / Supply for LDO2	
C10	CPGND	Supply	Charge pump 1 & 2 ground (Return path for CPVDD)	
C9	CPVDD	Supply	Supply for Charge Pump 1 & 2	
G13, M10	DBVDD1	Supply	Digital buffer (I/O) supply (core functions and Audio Interface 1)	
M6	DBVDD2	Supply	Digital buffer (I/O) supply (for Audio Interface 2)	
M4	DBVDD3	Supply	Digital buffer (I/O) supply (for Audio Interface 3)	
G11, M8	DCVDD	Supply	Digital core supply	
E5, E6, E7, E8, E9, F5, F6, F7, F8, F9, G5, G6, G7, G8, G9, G12, H5, H6, H7, H8, H9, M7	DGND	Supply	Digital ground (Return path for DCVDD, DBVDD1, DBVDD2 and DBVDD3)	
A4	EPOUTP	Analogue Output	Earpiece positive output	
A5	EPOUTN	Analogue Output	Earpiece negative output	

Product Preview

PIN NO	NAME	TYPE	DESCRIPTION	
K13	GPIO1	Digital Input / Output	General Purpose pin GPIO1.	
			The output configuration is selectable CMOS or Open Drain.	
L7	GPIO2	Digital Input / Output	General Purpose pin GPIO2.	
			The output configuration is selectable CMOS or Open Drain.	
K3	GPIO3	Digital Input / Output	General Purpose pin GPIO3.	
			The output configuration is selectable CMOS or Open Drain.	
K10	GPIO4	Digital Input / Output	General Purpose pin GPIO4.	
			The output configuration is selectable CMOS or Open Drain.	
G10	GPIO5	Digital Input / Output	General Purpose pin GPIO5.	
			The output configuration is selectable CMOS or Open Drain.	
B12	HPDETL	Analogue Input	Headphone left (HPOUT1L) sense input	
A12	HPDETR	Analogue Input	Headphone right (HPOUT1R) sense input	
A13	HPOUT1FB1/	Analogue Input	HPOUT1L and HPOUT1R ground feedback pin 1/	
	MICDET2		Microphone & accessory sense input 2	
B8	HPOUT1L	Analogue Output	Left headphone 1 output	
A8	HPOUT1R	Analogue Output	Right headphone 1 output	
B6	HPOUT2FB	Analogue Input	HPOUT2L and HPOUT2R ground loop noise rejection feedback	
A6	HPOUT2L	Analogue Output	Left headphone 2 output	
B5	HPOUT2R	Analogue Output	Right headphone 2 output	
E3	IN1LN/	Analogue Input /	Left channel negative differential MIC input /	
	DMICCLK1	Digital Output	Digital MIC clock output 1	
D3	IN1LP	Analogue Input	Left channel single-ended MIC input /	
			Left channel line input /	
			Left channel positive differential MIC input	
E1	IN1RN/	Analogue input /	Right channel negative differential MIC input /	
	DMICDAT1	Digital Input	Digital MIC data input 1	
E2	IN1RP	Analogue Input	Right channel single-ended MIC input /	
			Right channel line input /	
			Right channel positive differential MIC input	
C1	IN2LN/	Analogue Input /	Left channel negative differential MIC input /	
	DMICCLK2	Digital Output	Digital MIC clock output 2	
C2	IN2LP	Analogue Input	Left channel single-ended MIC input /	
			Left channel line input /	
			Left channel positive differential MIC input	
D1	IN2RN/	Analogue input /	Right channel negative differential MIC input /	
	DMICDAT2	Digital Input	Digital MIC data input 2	
D2	IN2RP	Analogue Input	Right channel single-ended MIC input /	
			Right channel line input /	
			Right channel positive differential MIC input	
A1	IN3LN/	Analogue Input /	Left channel negative differential MIC input /	
	DMICCLK3		Digital MIC clock output 3	
A2	IN3LP	Analogue Input	Lett channel single-ended MIC input /	
			Left channel line input /	
			Left channel positive differential MIC input	
В1	IN3RN/	Analogue Input /	Right channel negative differential MIC input /	
	DMICDA13		Digital MIC data Input 3	
В2	IN3RP	Analogue Input	Right channel single-ended MIC input /	
			Right channel line input /	
		Distal Outruit	Right channel positive differential MIC input	
F13	IRQ		The pip configuration is colociable CMOS or Cross Desire	
E40			Ine pin configuration is selectable CiviCS of Open Drain.	
			Finable nin for LDO1	
F11				
D13	LDOVDD	Supply	Supply lot LDO1	

Product Preview

PIN NO	NAME	TYPE	DESCRIPTION	
E12	LDOVOUT	Analogue Output	LDO1 output	
H13	MCLK1	Digital Input	Master clock 1	
F12	MCLK2	Digital Input	Master clock 2	
C12	MICBIAS1	Analogue Output	Microphone bias 1	
D12	MICBIAS2	Analogue Output	Microphone bias 2	
C13	MICBIAS3	Analogue Output	Microphone bias 3	
B13	MICDET1/	Analogue Input	Microphone & accessory sense input 1/	
	HPOUT1FB2		HPOUT1L and HPOUT1R ground feedback pin 2	
E11, F1	MICVDD	Analogue Output	LDO2 output decoupling pin (generated internally by WM5102S).	
			(Can also be used as reference/supply for external microphones.)	
E13	RESET	Digital Input	Digital Reset input (active low)	
H12	SLIMCLK	Digital Input / Output	SLIM Bus Clock input / output	
H11	SLIMDAT	Digital Input / Output	SLIM Bus Data input / output	
L10	SPKCLK	Digital Output	Digital speaker (PDM) clock output	
K8	SPKDAT	Digital Output	Digital speaker (PDM) data output	
J1, J2	SPKGNDL	Supply	Left speaker driver ground (Return path for SPKVDDL)	
K1, K2	SPKGNDR	Supply	Right speaker driver ground (Return path for SPKVDDR)	
H2	SPKOUTLN	Analogue Output	Left speaker negative output	
H1	SPKOUTLP	Analogue Output	Left speaker positive output	
L2	SPKOUTRN	Analogue Output	Right speaker negative output	
L1	SPKOUTRP	Analogue Output	Right speaker positive output	
G1, G2	SPKVDDL	Supply	Left speaker driver supply	
M1, M2	SPKVDDR	Supply	Right speaker driver supply	
L9	TCK	Digital Input	JTAG clock input	
M11	TDI	Digital Input	JTAG data input	
K6	TDO	Digital Output	JTAG data output	
K7	TMS	Digital Input	JTAG mode select input	
M12	TRST	Digital Input	JTAG Test Access Port reset (active low, internal pull-down).	
			This input should be logic 0 for normal WM5102S operation.	
D11	VREFC	Analogue Output	Bandgap reference decoupling capacitor connection	

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020 for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Supply voltages (LDOVDD, AVDD, DCVDD, CPVDD)	-0.3V	+2.0V
Supply voltages (DBVDD1, DBVDD2, DBVDD3, MICVDD)	-0.3V	+4.0V
Supply voltages (SPKVDDL, SPKVDDR)	-0.3V	+6.0V
Voltage range digital inputs (DBVDD1 domain)	AGND - 0.3V	DBVDD1 + 0.3V
Voltage range digital inputs (DBVDD2 domain)	AGND - 0.3V	DBVDD2 + 0.3V
Voltage range digital inputs (DBVDD3 domain)	AGND - 0.3V	DBVDD3 + 0.3V
Voltage range digital inputs (DMICDATn)	AGND - 3.3V	MICVDD + 0.3V
Voltage range analogue inputs (INnLN)	AGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (INnLP, INnRN, INnRP)	AGND - 3.3V	MICVDD + 0.3V
Ground (DGND, CPGND, SPKGNDL, SPKGNDR)	AGND - 0.3V	AGND + 0.3V
Operating temperature range, T _A	-40°C	+85°C
Operating junction temperature, T _J	-40°C	+125°C
Storage temperature after soldering	-65°C	+150°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
Digital supply range (Core)	DCVDD	1.14	1.2	1.9	V
See notes 3, 5, 6	(≤24.576MHz clocking)				
	DCVDD	1.71	1.8	1.9	
	(>24.576MHz clocking)				
Digital supply range (I/O)	DBVDD1	1.7		1.9	V
Digital supply range (I/O)	DBVDD2, DBVDD3	1.7		3.47	V
LDO supply range	LDOVDD	1.7	1.8	1.9	V
Charge Pump supply range	CPVDD	1.7	1.8	1.9	V
Speaker supply range	SPKVDDL, SPKVDDR	2.4		5.5	V
Analogue supply range	AVDD	1.7	1.8	1.9	V
Microphone Bias supply	MICVDD	2.375	2.5	3.6	V
See note 7					
Ground	DGND, AGND, CPGND,		0		V
	SPKGNDL, SPKGNDR				
Power supply rise time	All supplies	1			μs
See notes 8, 9, 10					
Operating temperature range	T _A	-40		85	°C

Notes:

- 1. The grounds must always be within 0.3V of AGND.
- 2. AVDD must be supplied before or simultaneously to DCVDD. DCVDD must not be powered if AVDD is not present. There are no other power sequencing requirements.
- 3. An internal LDO (powered by LDOVDD) can be used to provide the DCVDD supply.
- 4. The RESET input must be asserted (logic 0) during power-up, and held asserted until after the AVDD, DBVDD1 and DCVDD supplies are within the recommended operating limits. If DCVDD is powered from the internal LDO, then the RESET pin must be held asserted until at least 1.5ms after the LDO has been enabled.
- 5. 'Sleep' mode is supported when DCVDD is below the limits noted, provided AVDD and DBVDD1 are present.
- 6. Under default conditions, digital core clocking rates above 24.576MHz are inhibited. The register-controlled clocking limit should only be raised when the applicable DCVDD voltage is present.
- 7. An internal Charge Pump and LDO (powered by CPVDD) provide the Microphone Bias supply; the MICVDD pin should not be connected to an external supply.
- 8. DCVDD and MICVDD minimum rise times do not apply when these domains are powered using the internal LDOs.
- 9. The specified minimum power supply rise times assume a minimum decoupling capacitance of 100nF per pin. However, Wolfson strongly advises that the recommended decoupling capacitors are present on the PCB and that appropriate layout guidelines are observed.
- 10. The specified minimum power supply rise times also assume a maximum PCB inductance of 10nH between decoupling capacitor and pin.

DEVICE DESCRIPTION

INTRODUCTION

The WM5102S is a highly integrated low-power audio hub CODEC for mobile telephony and portable devices. It provides flexible, high-performance audio interfacing for handheld devices in a small and cost-effective package. A powerful DSP engine is incorporated, offering audiophile quality 24-bit DAC playback at sample rates up to 192kHz. The Master Hi-Fi software, together with other integrated audio processing features, offers a superior listening experience for multimedia phones and smartphones.

The WM5102S digital core provides an extensive capability for signal processing algorithms, including Wolfson's Master Hi-Fi filters, Enhanced DRE processing (eDRE), side-tone and other programmable filters. Parametric equalisation (EQ) and dynamic range control (DRC) are also supported. Highly flexible digital mixing, including stereo full-duplex asynchronous sample rate conversion, provides use-case flexibility across a broad range of system architectures. A signal generator for controlling haptics vibe actuators is included.

The WM5102S provides multiple digital audio interfaces, including SLIMbus, in order to provide independent and fully asynchronous connections to different processors (eg. application processor, baseband processor and wireless transceiver).

A flexible clocking arrangement supports a wide variety of external clock references, including clocking derived from the digital audio interface. Two integrated Frequency Locked Loop (FLL) circuits provide additional flexibility.

Unused circuitry can be disabled under software control, in order to save power; low leakage currents enable extended standby/off time in portable battery-powered applications. Configurable 'Wake-Up' actions can be associated with the low-power standby (Sleep) mode.

Versatile GPIO functionality is provided, and support for external accessory / push-button detection inputs. Comprehensive Interrupt (IRQ) logic and status readback are also provided.

HI-FI AUDIO CODEC

The WM5102S is a high-performance low-power audio CODEC which uses a simple analogue architecture. 6 ADCs and 7 DACs are incorporated, providing a dedicated ADC for each input and a dedicated DAC for each output channel.

Two stereo headphone outputs, each with 120dB SNR performance, offer an audiophile quality Hi-Fi playback experience. In total, the analogue outputs comprise two 29mW stereo headphone amplifiers with ground-referenced output, a 100mW differential (BTL) earpiece driver, and a Class D stereo speaker driver capable of delivering 2W per channel into a 4 Ω load. Six analogue inputs are provided, each supporting single-ended or differential input modes. In differential mode, the input path SNR is 96dB. The ADC input paths can be bypassed, supporting up to 6 channels of digital microphone input.

The audio CODEC is controlled directly via register access. The simple analogue architecture, combined with the integrated tone generator, enables simple device configuration and testing, minimising debug time and reducing software effort.

The WM5102S output drivers are designed to support as many different system architectures as possible. Each output has a dedicated DAC which allows mixing, equalisation, filtering, gain and other audio processing to be configured independently for each channel. This allows each signal path to be individually tailored for the load characteristics. All outputs have integrated pop and click suppression features.

The headphone output drivers are ground-referenced, powered from an integrated charge pump, enabling high quality, power efficient headphone playback without any requirement for DC blocking capacitors. Ground loop feedback is incorporated, providing rejection of noise on the ground connections. A mono mode is available on the headphone outputs; this configures the drivers as differential (BTL) outputs, suitable for an earpiece or hearing aid coil.

The Class D speaker drivers deliver excellent power efficiency. High PSRR, low leakage and optimised supply voltage ranges enable powering from switching regulators or directly from the battery. Battery current consumption is minimised across a wide variety of voice communication and multimedia playback use cases.

The WM5102S is cost-optimised for a wide range of mobile phone applications, and features two channels of Class D power amplification. For applications requiring more than two channels of power amplification (or when using the integrated Class D path to drive a haptics actuator), the PDM output channels can be used to drive two external PDM-input speaker drivers. In applications where stereo loudspeakers are physically widely separated, the PDM outputs can ease layout and EMC by avoiding the need to run the Class-D speaker outputs over long distances and interconnects.

DIGITAL AUDIO CORE

The WM5102S uses a core architecture based on all-digital signal routing, making digital audio effects available on all signal paths, regardless of whether the source data input is analogue or digital. The digital mixing desk allows different audio effects to be applied simultaneously on many independent paths, whilst also supporting a variety of sample rates concurrently. This helps support many new audio use-cases. Soft mute and un-mute control allows smooth transitions between use-cases without interrupting existing audio streams elsewhere.

The WM5102S digital core provides an extensive capability for programmable signal processing algorithms. A suite of signal processing software packages is licensed as part of the WM5102S product, though different audio algorithms (including user-programmed solutions) can also be implemented.

The WM5102S software suite comprises the following features:

- Master Hi-Fi apodizing filters for audiophile quality 24-bit DAC playback, up to 192kHz
- Enhanced DRE processing (eDRE) for natural sound and 120dB SNR performance

Highly flexible digital mixing, including mixing between audio interfaces, is possible. The WM5102S performs stereo full-duplex asynchronous sample rate conversion, providing use-case flexibility across a broad range of system architectures. Automatic sample rate detection is provided, enabling seamless wideband/narrowband voice call handover.

Dynamic Range Controller (DRC) functions are available for optimising audio signal levels. In playback modes, the DRC can be used to maximise loudness, while limiting the signal level to avoid distortion, clipping or battery droop, in particular for high-power output drivers such as speaker amplifiers. In record modes, the DRC assists in applications where the signal level is unpredictable.

The 5-band parametric equaliser (EQ) functions can be used to compensate for the frequency characteristics of the output transducers. EQ functions can be cascaded to provide additional frequency control. Programmable high-pass and low-pass filters are also available for general filtering applications such as removal of wind and other low-frequency noise.

DIGITAL INTERFACES

Three serial digital audio interfaces (AIFs) each support PCM, TDM and I2S data formats for compatibility with most industry-standard chipsets. AIF1 supports eight input/output channels; AIF2 and AIF3 each support two input/output channels. Bidirectional operation at sample rates up to 192kHz is supported.

Six digital PDM input channels are available (three stereo interfaces); these are typically used for digital microphones, powered from the integrated MICBIAS power supply regulators. Two PDM output channels are also available (one stereo interface); these are typically used for external power amplifiers. Embedded mute codes provide a control mechanism for external PDM-input devices.

The WM5102S features a MIPI-compliant SLIMbus interface, providing eight channels of audio input/output. Mixed audio sample rates are supported on the SLIMbus interface. The SLIMbus interface also supports read/write access to the WM5102S control registers.

The WM5102S is equipped with an I2C slave port (at up to 1MHz), and an SPI port (at up to 26MHz). Full access to the register map is also provided via the SLIMbus port.

OTHER FEATURES

The WM5102S incorporates two 1kHz tone generators which can be used for 'beep' functions through any of the audio signal paths. The phase relationship between the two generators is configurable, providing flexibility in creating differential signals, or for test scenarios.

A white noise generator is provided, which can be routed within the digital core. The noise generator can provide 'comfort noise' in cases where silence (digital mute) is not desirable.

Two Pulse Width Modulation (PWM) signal generators are incorporated. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting. The PWM signal generators can be output directly on a GPIO pin.

The WM5102S provides 5 GPIO pins, supporting selectable input/output functions for interfacing, detection of external hardware, and to provide logic outputs to other devices. Comprehensive Interrupt (IRQ) functionality is also provided for monitoring internal and external event conditions.

A signal generator for controlling haptics devices is included, compatible with both Eccentric Rotating Mass (ERM) and Linear Resonant Actuator (LRA) haptic devices. The haptics signal generator is highly configurable, and can execute programmable drive event profiles, including reverse drive control. An external vibe actuator can be driven directly by the Class D speaker output.

The WM5102S can be powered from a 1.8V external supply. A separate supply (4.2V) is typically required for the Class D speaker driver. Integrated Charge Pump and LDO Regulators circuits are used to generate supply rails for internal functions and to support powering or biasing of external microphones.

A smart accessory interface is included, supporting most standard 3.5mm accessories. Jack detection, accessory sensing and impedance measurement is provided, for external accessory and push-button detection. Accessory detection can be used as a 'Wake-Up' trigger from low-power standby. Microphone activity detection with interrupt is also available.

System clocking can be derived from the MCLK1 or MCLK2 input pins. Alternatively, the SLIMbus interface, or the audio interfaces (configured in Slave mode), can be used to provide a clock reference. Two integrated Frequency Locked Loop (FLL) circuits provide support for a wide range of clocking configurations, including the use of a 32kHz input clock reference.

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)			
	MIN NOM		MAX	NOTE
Α	0.540	0.574	0.608	
A1	0.172	0.202	0.232	
A2	0.356	0.372	0.388	
D	5.378	5.403	5.428	
D1		4.80 BSC		
E	5.403	5.428	5.453	
E1		4.40 BSC		
е		0.400 BSC		5
f1		0.300 BSC		
f2		0.427 BSC		
f3		0.303 BSC		
f4		0.601 BSC		
g		0.022		
h	0.222	0.262	0.302	

NOTES: 1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 2. THIS DIMENSION INCLUDES STAND-OFF HEIGHT 'A'. 3. A1 CORNER IS IDENTIFIED BY INKLASER MARK NON TOP PACKAGE. 4. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY. 5. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH. 6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. 7. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001 Email :: sales@wolfsonmicro.com

REVISION HISTORY

DATE	REV	DESCRIPTION OF CHANGES	PAGE	CHANGED BY
21/01/14	1.0	First Release		
07/02/14	1.1	Noise floor spec updated	1	PH
10/04/14	1.2	Block Diagram updated	2	PH

