

MARCH 11, 2015 V2.0

DA14582

DA14582 Low Power Bluetooth Smart SoC with Audio Codec

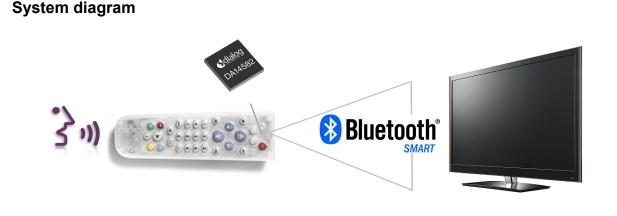
General description

The DA14582 integrated circuit has a fully integrated radio transceiver, baseband processor for $Bluetooth^{\circledast}$ *Smart* with Audio Codec.

The DA14582 is optimized for remote control units (RCU) requiring support for voice commands and motion/gesture recognition. Its integrated analog wide band audio codec provides native support for analog microphones thereby reducing the total number of components of the system while its optimized package enables designs using single-layer FR1 PCBs furthermore contributing to the reduction of the cost of the system.

The DA14582 supports a flexible memory architecture for storing Bluetooth profiles and custom application code, which can be updated over the air (OTA). The qualified Bluetooth Smart protocol stack is stored in a dedicated ROM. All software runs on the ARM® Cortex®-M0 processor via a simple scheduler.

The Bluetooth Smart firmware includes the L2CAP service layer protocols, Security Manager (SM), Attribute Protocol (ATT), the Generic Attribute Profile (GATT) and the Generic Access Profile (GAP). All profiles published by the Bluetooth SIG as well as custom profiles are supported.


The transceiver interfaces directly to the antenna and is fully compliant with the *Bluetooth 4.1* standard.

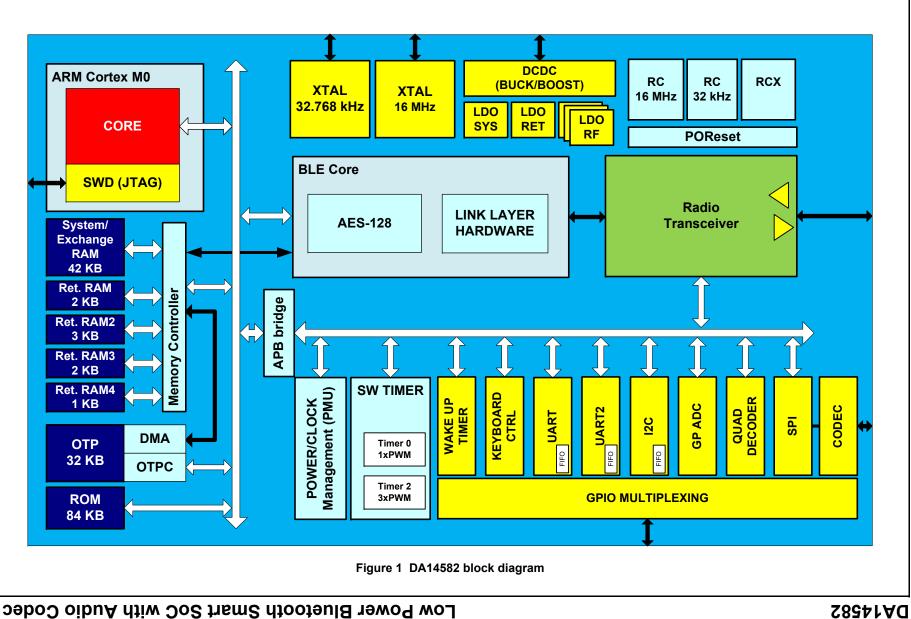
The DA14582 has dedicated hardware for the Link Layer implementation of *Bluetooth[®]Smart* and interface controllers for enhanced connectivity capabilities.

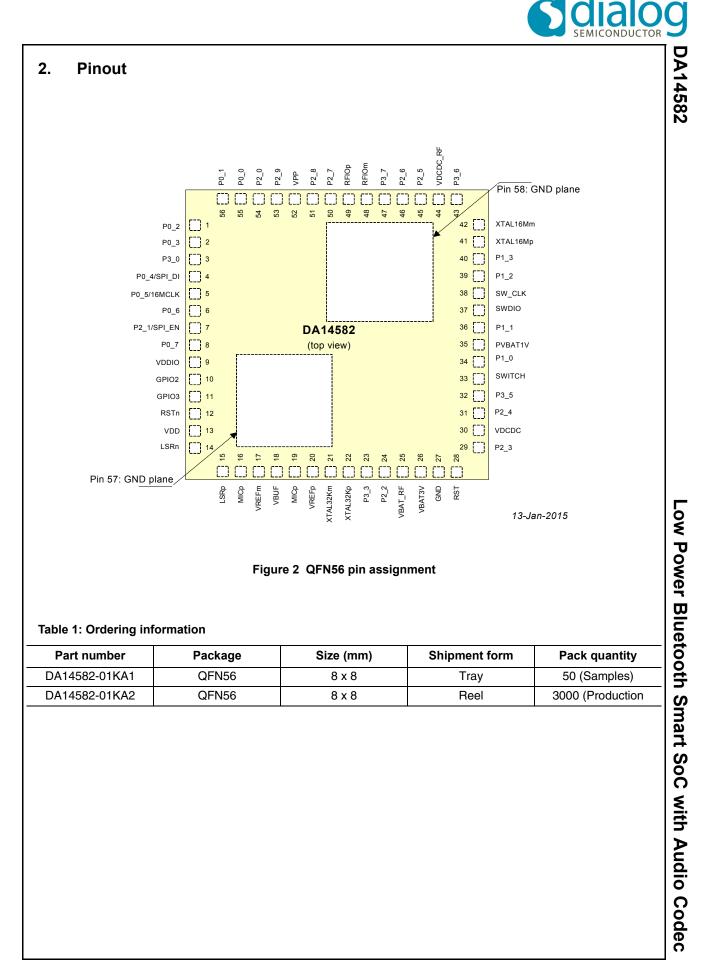
Features

- Complies with *Bluetooth* V4.1, ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan)
- Processing power

- 16 MHz 32 bit ARM Cortex-M0 with SWD I/F
- Dedicated Link Layer Processor
- AES-128 bit encryption Processor
- Memories
 - 32 kB One-Time-Programmable (OTP) memory
 - 42 kB System SRAM
 - 84 kB ROM
 - 8 kB Retention SRAM
- Power management
 - Integrated Buck DC-DC converter
 - P0, P1, P2 and P3 ports with 3.3 V tolerance
 - Easy decoupling of only 4 supply pins
 - Supports coin (typ. 3.0 V) and alkaline (typ. 1.5 V) battery cells
 - 10-bit ADC for battery voltage measurement
- Digital controlled oscillators
 - 16 MHz crystal (±20 ppm max) and RC oscillator
 32 kHz crystal (±50 ppm, ±500 ppm max) and RCX oscillator
- General purpose, Capture and Sleep timers
- Digital interfaces
 - 29 General purpose I/Os
 - 2 UARTs with hardware flow control up to 1 MBd
 - SPI+[™] interface
 - I2C bus at 100 kHz, 400 kHz
 - 3-axis capable Quadrature Decoder
- Analog interfaces
 - 4-channel 10-bit ADC
 - 14 bits wide band Codec with microphone and 28 Ω loudspeaker analog front-end
- Radio transceiver
 - Fully integrated 2.4 GHz CMOS transceiver
 Single wire antenna: no RF matching or RX/TX switching required
 - Supply current at VBAT3V:
 - TX: 3.4 mA, RX: 3.7 mA (with ideal DC-DC)
 - 0 dBm transmit output power
 - -20 dBm output power in "Near Field Mode"
 - -93 dBm receiver sensitivity

1


2. Pinout 3
3. System overview 7
3.1 ARM CORTEX-M0 CPU
3.2 BLUETOOTH SMART
3.2.1 BLE Core
3.2.2 Radio Transceiver
3.2.3 SmartSnippets™8
3.3 MEMORIES
3.4 FUNCTIONAL MODES 9
3.5 POWER MODES 10
3.6 INTERFACES 10
3.6.1 UARTs 10
3.6.2 SPI+ 10
3.6.3 I2C interface 10
3.6.4 General purpose ADC 11
3.6.5 Quadrature decoder 11
3.6.6 Keyboard controller 11
3.6.7 Input/output ports 11
3.7 TIMERS 11
3.7.1 General purpose timers
3.7.2 Wake-Up timer 12
3.7.3 Watchdog timer 12
3.8 CLOCK/RESET 12
3.8.1 Clocks 12
3.8.2 Reset 12
3.9 POWER MANAGEMENT 13
3.10 AUDIO CODEC WITH ANALOG FRONTEND15
4. Specifications 16
5. Codec specifications 27
5.1 CODEC ELECTRICAL CHARACTERISTICS . 28
5.2 ANALOG FRONTEND SPECIFICATIONS 30
5.3 CODEC SPECIFICATIONS
5.4 CODEC TIMING CHARACTERISTICS 38
6. Registers
6.1 CODEC REGISTER FILE 164
7. Package information 174
7.1 MOISTURE SENSITIVITY LEVEL (MSL) 174
7.2 SOLDERING INFORMATION 174
7.3 PACKAGE OUTLINES 175


Block diagram 1.

© 2015 Dialog Semiconductor

N

Preliminary - March 11, 2015 v2.0

Table 2: Pin Description

PIN NAME	TYPE	Drive (mA)	Reset state (Note)	DESCRIPTION
General Purpose	e I/Os			
P0_0 P0_1 P0_2 P0_3/ P0_4/SPI_DI P0_5/16MCLK P0_6 P0_7	DIO DIO DIO DIO DIO DIO DIO	4.8	I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD	INPUT/OUTPUT with selectable pull up/down resistor. Pull- down enabled during and after reset. General purpose I/O port bit or alternate function nodes. Contains state retention mecha- nism during power down.
P1_0 P1_1 P1_2 P1_3 P1_4/SWCLK P1_5/SW_DIO	DIO DIO DIO DIO DIO DIO	4.8	I-PD I-PD I-PD I-PD I-PD I-PU	INPUT/OUTPUT with selectable pull up/down resistor. Pull- down enabled during and after reset. General purpose I/O port bit or alternate function nodes. Contains state retention mecha- nism during power down. This signal is the JTAG clock by default This signal is the JTAG data I/O by default
P2_0 P2_1/SPI_EN P2_2 P2_3 P2_4 P2_5 P2_6 P2_7 P2_8 P2_9	DIO DIO DIO DIO DIO DIO DIO DIO DIO	4.8	I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD	INPUT/OUTPUT with selectable pull up/down resistor. Pull- down enabled during and after reset. General purpose I/O port bit or alternate function nodes. Contains state retention mecha- nism during power down.
P3_0 P3_1 (Table 3) P3_2 (Table 3) P3_3 P3_5 P3_6 P3_7	DIO DIO DIO DIO DIO DIO DIO	4.8	I-PD I-PD I-PD I-PD I-PD I-PD I-PD	INPUT/OUTPUT with selectable pull up/down resistor. Pull- down enabled during and after reset. General purpose I/O port bit or alternate function nodes. Contains state retention mecha- nism during power down.
Debug interface				
SW_DIO/P1_5	DIO	4.8	I-PU	INPUT/OUTPUT. JTAG Data input/output. Bidirectional data and control communication. Can also be used as a GPIO
SW_CLK/P1_4	DIO	4.8	I-PD	INPUT JTAG clock signal. Can also be used as a GPIO
Clocks				
XTAL16Mp	Al			INPUT. Crystal input for the 16 MHz XTAL
XTAL16Mm	AO			OUTPUT. Crystal output for the 16 MHz XTAL
XTAL32kp	AI			INPUT. Crystal input for the 32.768 kHz XTAL
XTAL32km	AO			OUTPUT. Crystal output for the 32.768 kHz XTAL

Table 2: Pin Description

PIN NAME	TYPE	Drive (mA)	Reset state (Note)	DESCRIPTION
16MCLK/P0_5	DIO	4.8		OUTPUT. Buffered 16MHz output This clock is used as reference clock for the on-chip Codec which is enabled via a test register bit 0x500030F0[0]=1. How- ever, when enabled the following pins also output certain clock signals. In this case these port pins can only be used as general purpose inputs by setting Pxy_MODE_REG[PID]=0 and Pxy_MODE_REG[PUPD] unequal to 3: P0_6: XTAL32K P0_7: RC16M P1_0: RC32K P1_1: RC32K_low_jitter
SPI bus interfac	e (Refer to	Table 3 fo	r the fixed S	PI pin assignment during codec operation)
SPI_CLK	DO			INPUT/OUTPUT. SPI Clock. Mapped on Px ports.
SPI_DI	DI			INPUT. SPI Data input. Mapped on Px ports.
SPI_DO	DO			OUTPUT. SPI Data output. Mapped on Px ports
SPI_EN	DI/DO			INPUT/OUTPUT. SPI Clock enable. Mapped on Px ports
I2C bus interface	9			
SDA	DIO/ DIOD			INPUT/OUTPUT. I2C bus Data with open drain port. Mapped on Px ports
SCL	DIO/ DIOD			INPUT/OUTPUT. I2C bus Clock with open drain port. In open drain mode, SCL is monitored to support bit stretching by a slave. Mapped on Px ports.
UART interface				
UTX	DO			OUTPUT. UART transmit data. Mapped on Px ports
URX	DI			INPUT. UART receive data. Mapped on Px ports
URTS	DO			OUTPUT. UART Request to Send. Mapped on Px ports
UCTS	DI			INPUT. UART Clear to Send. Mapped on Px ports
UTX2	DO			OUTPUT. UART 2 transmit data. Mapped on Px ports
URX2	DI			INPUT. UART 2 receive data. Mapped on Px ports
URTS2	DO			OUTPUT. UART 2 Request to Send. Mapped on Px ports
UCTS2	DI			INPUT. UART 2 Clear to Send. Mapped on Px ports
Analog interface)	•		
ADC[0]	AI			INPUT. Analog to Digital Converter input 0. Mapped on P0[0]
ADC[1]	AI			INPUT. Analog to Digital Converter input 1. Mapped on P0[1]
ADC[2]	AI			INPUT. Analog to Digital Converter input 2. Mapped on P0[2]
ADC[3]	AI			INPUT. Analog to Digital Converter input 3. Mapped on P0[3]
Codec interface				
GPIO2, GPIO3	DIO	8	I-PU	INPUT/OUTPUT. Codec General Purpose I/O ports with selectable pull up/down resistor. Supplied from VDDIO
RSTn	DI			INPUT. Codec reset signal (active low). After startup this pin must be kept LOW for at least 1 us (while the clock is active) to guarantee synchronous release of the reset.
VREFp	A1	-	Hi-Z	OUTPUT. Positive microphone reference voltage.
VREFm	A1	-	-	Ground for Codec AFE reference voltages and microphone. Must be connected to star-point of common ground.
LSRp, LSRn	A1	-	Hi-Z	OUTPUT. Loudspeaker earpiece outputs positive and negative.

Table 2: Pin Description

PIN NAME	TYPE	Drive (mA)	Reset state (Note)	DESCRIPTION
MICp, MICn	A2	-	I	INPUT. Microphone inputs positive and negative.
VBUF	A1	-	Hi-Z	AFE Voltage reference 1.5 V output. Must be decoupled with a 100 nF capacitor
VDD	A1	-	-	INPUT. Digital core supply voltage (1.8 V).
VDDIO	A1	-	-	INPUT. Supply voltage for all digital I/Os (up to 3.45 V).
VSS	A1	-	-	Digital core ground and digital I/O ground.
AVS	A1	-	-	Ground for Codec AFE main blocks.
Radio transceiv	ver	1		
RFIOp	AIO			RF input/output. Impedance 50 Ω.
RFIOm	AIO			RF ground
Miscellaneous		11		
RST	DI			INPUT. BLE reset signal (active HIGH). Must be connected to GND if not used.
VBAT_RF	AIO			Connect to VBAT3V on the PCB
VDCDC_RF	AIO			Connect to VDCDC on the PCB
VPP	AI			INPUT. This pin is used while OTP programming and testing. OTP programming: VPP = $6.8 \text{ V} \pm 0.25 \text{ V}$ OTP Normal operation: leave VPP floating
Power supply	•	•		
VBAT3V	AIO			INPUT/OUTPUT. Battery connection. Used for a single coin bat- tery (3 V). If an alkaline or a NiMH battery (1.5 V) is attached to pin VBAT1V, this is the second output of the DC-DC converter.
VBAT1V	AI			INPUT. Battery connection. Used for an alkaline or a NiMh bat- tery (1.5 V). If a single coin battery (3 V) is attached to pin VBAT3V, this pin must be connected to GND.
SWITCH	AIO			INPUT/OUTPUT. Connection for the external DC-DC converter inductor.
VDCDC	AO			Output of the DC-DC converter
GND	AIO	-	-	Ground

Table 3: SPI Pin assignment during Codec operation

DA14482 pin	Codec port	BLE Core port	
P2_1/SPI_EN	SPI_EN (I)	P2_1/SPI_EN (O)	
Not available	SPI_CLK (I)	P3_1/SPI_CLK (O)	
P0_4/SPI_DI	SPI_DI (I)	P0_4/SPI_DO (O)	
Not available	SPI_DO (O)	P3_2/SPI_DI (I)	
P0_5/16MCLK	CLK/16MHz (I)	P0_5/16MCLK (O)	

3. System overview

The DA14582 contains the following internal blocks:

3.1 ARM CORTEX-M0 CPU

The Cortex-M0 processor is a 32-bit Reduced Instruction Set Computing (RISC) processor with a von Neumann architecture (single bus interface). It uses an instruction set called Thumb, which was first supported in the ARM7TDMI processor; however, several newer instructions from the ARMv6 architecture and a few instructions from the Thumb-2 technology are also included. Thumb-2 technology extended the previous Thumb instruction set to allow all operations to be carried out in one CPU state. The instruction set in Thumb-2 includes both 16-bit and 32-bit instructions; most instructions generated by the C compiler use the 16-bit instructions, and the 32-bit instructions are used when the 16-bit version cannot carry out the required operations. This results in high code density and avoids the overhead of switching between two instruction sets.

In total, the Cortex-M0 processor supports only 56 base instructions, although some instructions can have more than one form. Although the instruction set is small, the Cortex-M0 processor is highly capable because the Thumb instruction set is highly optimized.

Academically, the Cortex-M0 processor is classified as load-store architecture, as it has separate instructions for reading and writing to memory, and instructions for arithmetic or logical operations that use registers.

Features

- Thumb instruction set. Highly efficient, high code density and able to execute all Thumb instructions from the ARM7TDMI processor.
- High performance. Up to 0.9 DMIPS/MHz (Dhrystone 2.1) with fast multiplier.
- Built-in Nested Vectored Interrupt Controller (NVIC). This makes interrupt configuration and coding of exception handlers easy. When an interrupt request is taken, the corresponding interrupt handler is executed automatically without the need to determine the exception vector in software.
- Interrupts can have four different programmable priority levels. The NVIC automatically handles nested interrupts.
- The design is configured to respond to exceptions (e.g. interrupts) as soon as possible (minimum 16 clock cycles).
- Non maskable interrupt (NMI) input for safety critical systems.
- Easy to use and C friendly. There are only two modes (Thread mode and Handler mode). The whole application, including exception handlers, can be written in C without any assembler.
- Built-in System Tick timer for OS support. A 24-bit timer with a dedicated exception type is included in

the architecture, which the OS can use as a tick timer or as a general timer in other applications without an OS.

- SuperVisor Call (SVC) instruction with a dedicated SVC exception and PendSV (Pendable SuperVisor service) to support various operations in an embedded OS.
- Architecturally defined sleep modes and instructions to enter sleep. The sleep features allow power consumption to be reduced dramatically. Defining sleep modes as an architectural feature makes porting of software easier because sleep is entered by a specific instruction rather than implementation defined control registers.
- Fault handling exception to catch various sources of errors in the system.
- Support for 24 interrupts.
- Little endian memory support.
- Wake up Interrupt Controller (WIC) to allow the processor to be powered down during sleep, while still allowing interrupt sources to wake up the system.
- Halt mode debug. Allows the processor activity to stop completely so that register values can be accessed and modified. No overhead in code size and stack memory size.
- CoreSight technology. Allows memories and peripherals to be accessed from the debugger without halting the processor.
- Supports Serial Wire Debug (SWD) connections. The serial wire debug protocol can handle the same debug features as the JTAG, but it only requires two wires and is already supported by a number of debug solutions from various tools vendors.
- Four (4) hardware breakpoints and two (2) watch points.
- Breakpoint instruction support for an unlimited number of software breakpoints.
- Programmer's model similar to the ARM7TDMI processor. Most existing Thumb code for the ARM7TDMI processor can be reused. This also makes it easy for ARM7TDMI users, as there is no need to learn a new instruction set.

3.2 BLUETOOTH SMART

3.2.1 BLE Core

The BLE (Bluetooth Low Energy) core is a qualified Bluetooth baseband controller compatible with the Bluetooth Smart specification and it is in charge of packet encoding/decoding and frame scheduling.

Features

• All device classes support (Broadcaster, Central, Observer, Peripheral)

DA14580

- All packet types (Advertising / Data / Control)
- Encryption (AES / CCM)
- Bit stream processing (CRC, Whitening)
- FDMA/TDMA/events formatting and synchronization
- Frequency hopping calculation
- Operating clock 16 MHz or 8 MHz
- Low power modes supporting 32.0 kHz or 32.768 kHz
- Supports power down of the baseband during the protocol's idle periods
- AHB Slave interface for register file access
- AHB Slave interface for Exchange Memory access
 of CPU via BLE core
- AHB Master interface for direct access of BLE core to Exchange Memory space

3.2.2 Radio Transceiver

The Radio Transceiver implements the RF part of the Bluetooth Smart protocol. Together with the Bluetooth 4.0 PHY layer, this provides a 93 dB RF link budget for reliable wireless communication.

All RF blocks are supplied by on-chip low-drop out-regulators (LDOs). The bias scheme is programmable per block and optimized for minimum power consumption.

The Bluetooth LE radio comprises the Receiver, Transmitter, Synthesizer, Rx/Tx combiner block, and Biasing LDOs.

Features

- Single ended RFIO interface, 50 Ω matched
- Alignment free operation
- -93 dBm receiver sensitivity
- 0 dBm transmit output power
- Ultra low power consumption
- Fast frequency tuning minimises overhead

3.2.3 SmartSnippets™

The DA14582 comes complete with Dialog's Smart-Snippets™ Bluetooth Software platform which includes a qualified Bluetooth Smart single-mode stack on chip. Numerous Bluetooth Smart profiles for consumer wellness, sport, fitness, security and proximity applications are supplied as standard, while additional customer profiles can be developed and added as needed.

The SmartSnippets[™] software development environment is based on Keil[™]'s uVision mature tools and contains example application code for both embedded and hosted modes.

smart{snippets}

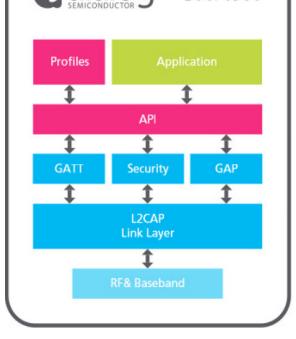


Figure 3 SmartSnippets stack

Apart from the protocol stack, the Software platform supports a Hardware Abstraction Layer (HAL) which enables easy access to peripheral's features from a programmer's point of view, as presented in the following figure.

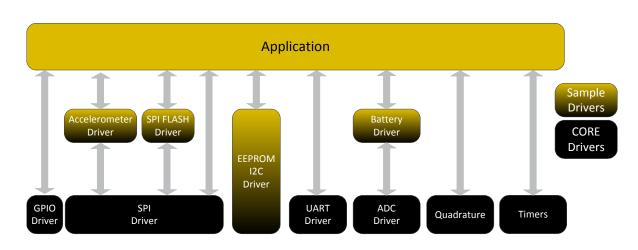


Figure 4 Hardware abstraction layer

Core drivers are provided for each interface of the DA14582 enabling optimized usage of the hardware's capabilities. These drivers provide an easy-to-use interface towards the hardware engines without having to interfere with the register programming directly.

On top of the core drivers, a number of sample drivers is also provided enabling communication with basic Bluetooth Smart application components: accelerometers, FLASH/EEPROM non-volatile memories, etc.

3.3 MEMORIES

The following memories are part of the DA14582's internal blocks:

ROM. This is a 84 kB ROM containing the Bluetooth Smart protocol stack as well as the boot code sequence.

OTP. This is a 32 kB One-Time Programmable memory array, used to store the application code as well as Bluetooth Smart profiles. It also contains the system configuration and calibration data.

System SRAM. This is a 42 kB system SRAM (Sys-RAM) which is primarily used for mirroring the program code from the OTP when the system wakes/powers up. It also serves as Data RAM for intermediate variables and various data that the protocol requires. Optionally, it can be used as extra memory space for the BLE TX and RX data structures.

Retention RAMs. These are 4 special low leakage SRAM cells (2 kB + 2 kB + 3 kB + 1 kB) used to store various data of the Bluetooth Smart protocol as well as the system's global variables and processor stack when the system goes into Deep Sleep mode. Storage of this data ensures secure and quick configuration of the BLE Core after the system wakes up. Every cell can be powered on or off according to the application needs for retention area when in Deep Sleep mode.

Codec. A bidirectional 14 bits Sigma-delta codec with full differential analog front-end for microphones and loudspeakers down-to 28 ohm is connected internally via SPI to the BLE core.

3.4 FUNCTIONAL MODES

The DA14582 is optimized for deeply embedded applications such as health monitoring, sports measuring, human interaction devices etc. Customers are able to develop and test their own applications. Upon completion of the development, the application code can be programmed into the OTP. In general, the system has three functional modes of operation:

A. Development mode: During this phase application code is developed using the ARM Cortex-M0 SW environment. The compiled code is then downloaded into the System RAM or any Retention RAMs by means of SWD (JTAG) or any serial interface (e.g. UART). Address 0x00 is remapped to the physical memory that contains the code and the CPU is configured to reset and execute code from the remapped device. This mode is enabling application development, debugging and on-the-fly testing.

B. Normal mode: After the application is ready and verified, the code can be burned into the OTP. When the system boots/wakes up, the DMA of the OTP controller will automatically copy the program code from the OTP into the system RAM. Next, a SW reset or a jump to the System RAM occurs and code execution is started. Hence, in this mode, the system is autonomous, contains the required SW in OTP and is ready for integration into the final product.

C. Calibration mode: Between Development and Normal mode, there is an intermediate stage where the chip needs to be calibrated with respect to two important features:

- · Programming of the Bluetooth device address
- Programming of the trimming value for the external 16 MHz crystal.

This mode of operation applies to the final product and is performed by the customer. During this phase, certain fields in the OTP should be programmed

3.5 POWER MODES

There are four different power modes in the DA14582:

- Active mode: System is active and operates at full speed.
- *Sleep mode*: No power gating has been programmed, the ARM CPU is idle, waiting for an interrupt. PD_SYS is on. PD_PER and PED_RAD depending on the programmed enabled value.
- Extended Sleep mode: All power domains are off except for the PD_AON, the programmed PD_RRx and the PD_SR. Since the SysRAM retains its data, no OTP mirroring is required upon waking up the system.
- Deep Sleep mode: All power domains are off except for the PD_AON and the programmed PD_RRx. This mode dissipates the minimum leakage power. However, since the SysRAM has not retained its data, an OTP mirror action is required upon waking up the system.

3.6 INTERFACES

3.6.1 UARTs

The UART is compliant to the industry-standard 16550 and is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

There is no DMA support on the UART block since its contains internal FIFOs. Both UARTs support hardware flow control signals (RTS, CTS, DTR, DSR).

Features

- 16 bytes Transmit and receive FIFOs
- Hardware flow control support (CTS/RTS)
- Shadow registers to reduce software overhead and also include a software programmable reset
- Transmitter Holding Register Empty (THRE) interrupt mode
- IrDA 1.0 SIR mode supporting low power mode.
- Functionality based on the 16550 industry standard:
- Programmable character properties, such as number of data bits per character (5-8), optional

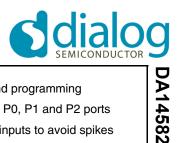
- parity bit (with odd or even select) and number of stop bits (1, 1.5 or 2)
- Line break generation and detection
- · Prioritized interrupt identification
- Programmable serial data baud rate as calculated by the following: baud rate = (serial clock frequency)/ (divisor).

3.6.2 SPI+

This interface supports a subset of the Serial Peripheral Interface SPITM. The serial interface can transmit and receive 8, 16 or 32 bits in master/slave mode and transmit 9 bits in master mode. The SPI + interface has enhanced functionality with bidirectional 2x16-bit word FIFOs.

SPI[™] is a trademark of Motorola, Inc.

Features


- Slave and Master mode
- 8 bit, 9 bit, 16 bit or 32 bit operation
- Clock speeds upto 16 MHz for the SPI controller. Programmable output frequencies of SPI source clock divided by 1, 2, 4, 8
- · SPI clock line speed up to 8 MHz
- SPI mode 0, 1, 2, 3 support (clock edge and phase)
- Programmable SPI_DO idle level
- Maskable Interrupt generation
- Bus load reduction by unidirectional writes-only and reads-only modes.
- Built-in RX/TX FIFOs for continuous SPI bursts.

3.6.3 I2C interface

The I2C interface is a programmable control bus that provides support for the communications link between Integrated Circuits in a system. It is a simple two-wire bus with a software-defined protocol for system control, which is used in temperature sensors and voltage level translators to EEPROMs, general-purpose I/O, A/D and D/A converters.

Features

- Two-wire I2C serial interface consists of a serial data line (SDA) and a serial clock (SCL)
- Two speeds are supported:
- Standard mode (0 to 100 kbit/s)
- Fast mode (<= 400 kbit/s)
- Clock synchronization
- 32 deep transmit/receive FIFOs
- · Master transmit, Master receive operation
- 7 or 10-bit addressing

- 7 or 10-bit combined format transfers
- Bulk transmit mode
- Default slave address of 0x055
- Interrupt or polled-mode operation
- · Handles Bit and Byte waiting at both bus speeds
- Programmable SDA hold time

3.6.4 General purpose ADC

The DA14582 is equipped with a high-speed ultra low power 10-bit general purpose Analog-to-Digital Converter (GPADC). It can operate in unipolar (single ended) mode as well as in bipolar (differential) mode. The ADC has its own voltage regulator (LDO) of 1.2 V, which represents the full scale reference voltage.

Features

- 10-bit dynamic ADC with 65 ns conversion time
- · Maximum sampling rate 3.3 Msample/s
- Ultra low power (5 µA typical supply current at 100 ksample/s)
- Single-ended as well as differential input with two input scales
- Four single-ended or two differential external input channels
- Battery monitoring function
- Chopper function
- · Offset and zero scale adjust
- · Common-mode input level adjust

3.6.5 Quadrature decoder

This block decodes the pulse trains from a rotary encoder to provide the step and the direction of the movement of an external device. Three axes (X, Y, Z) are supported.

The integrated quadrature decoder can automatically decode the signals for the X, Y and Z axes of a HID input device, reporting step count and direction: the channels are expected to provide a pulse train with 90 degrees phase difference; depending on whether the reference channel is leading or lagging, the direction can be determined.

This block can be used for waking up the chip as soon as there is any kind of movement from the external device connected to it.

Features

- Three 16-bit signed counters that provide the step count and direction on each of the axes (X, Y and Z)
- Programmable system clock sampling at maximum 16 MHz.

- · APB interface for control and programming
- Programmable source from P0, P1 and P2 ports
- Digital filter on the channel inputs to avoid spikes

3.6.6 Keyboard controller

The Keyboard controller can be used for debouncing the incoming GPIO signals when implementing a keyboard scanning engine. It generates an interrupt to the CPU (KEYBR_IRQ).

In parallel, five extra interrupt lines can be triggered by a state change on 32 selectable GPIOs (GPIOx_IRQ).

Features

- Monitors any of the available GPIOs (Px_y) excluding GPIO2 and GPIO3.
- Generates a keyboard interrupt on key press or key release
- Implements debouncing time from 0 upto 63 ms
- Supports five separate interrupt generation lines from GPIO toggling

3.6.7 Input/output ports

The DA14582 has software-configurable I/O pin assignment, organized into ports Port 0, Port1 and Port2.

Features

- Port 0: 8 pins, Port 1: 6 pins (including SW_CLK and SWDIO), Port 2: 10 pins, Port 3: 5 pins
- Fully programmable pin assignment
- Selectable 25 kΩ pull-up, pull-down resistors per pin
- Pull-up voltage either VBAT3V (BUCK mode) or VBAT1V (BOOST mode) configurable per pin
- Fixed assignment for analog pin ADC[3:0]
- Pins retain their last state when system enters the Extended or Deep Sleep mode.

3.7 TIMERS

3.7.1 General purpose timers

The Timer block contains 2 timer modules that are software controlled, programmable and can be used for various tasks.

Timer 0

- 16-bit general purpose timer
- Ability to generate 2 Pulse Width Modulated signals (PWM0 and PWM1, with common programming)
- Programmable output frequency:

$$f = \frac{(16, 8, 4, 2 \text{ MHz or } 32 \text{ kHz})}{(M+1) + (N+1)}$$

with N = 0 to (2¹⁶-1), M = 0 to (2¹⁶-1)

- Programmable duty cycle: $\delta = \frac{M+1}{(M+1)+(N+1)} \times 100 \%$
- Separately programmable interrupt timer: $T = \frac{(16, 8, 4, 2 \text{ MHz or } 32 \text{ kHz})}{(ON + 1)}$

Timer 2

- 14-bit general purpose timer
- Ability to generate 3 Pulse Width Modulated signals (PWM2, PWM3 and PWM4)
- Input clock frequency:

$$f_{IN} = \frac{sys_clk}{N}$$
 with N = 1, 2, 4 or 8

and sys_clk = 16 MHz or 32 kHz

• Programmable output frequency:

$$f_{OUT} = \left(\frac{f_{IN}}{2}\right) to\left(\frac{f_{IN}}{2^{14}-1}\right)$$

- Three outputs with Programmable duty cycle from 0 % to 100 %
- Used for white LED intensity (on/off) control

3.7.2 Wake-Up timer

The Wake-up timer can be programmed to wake up the DA14582 from power down mode after a preprogrammed number of GPIO events.

Features

- Monitors any GPIO state change
- Implements debouncing time from 0 upto 63 ms
- Accumulates external events and compares the number to a programmed value
- · Generates an interrupt to the CPU

3.7.3 Watchdog timer

The Watchdog timer is an 8-bit timer with sign bit that can be used to detect an unexpected execution sequence caused by a software run-away and can generate a full system reset or a Non-Maskable Interrupt (NMI).

Features

- 8 bits down counter with sign bit, clocked with a 10.24 ms clock for a maximum 2.6 s time-out.
- Non-Maskable Interrupt (NMI) or WDOG reset.
- Optional automatic WDOG reset if NMI handler fails to update the Watchdog register.

• Non-maskable Watchdog freeze of the Cortex-M0 Debug module when the Cortex-M0 is halted in Debug state.

Maskable Watchdog freeze by user program. Note that if the system is not remapped, i.e. SysRAM is at address 0x20000000, then a watchdog fire will trigger the BootROM code to be executed again.

3.8 CLOCK/RESET

3.8.1 Clocks

The Digital Controlled Xtal Oscillator (DXCO) is a Pierce configured type of oscillator designed for low power consumption and high stability. There are two such crystal oscillators in the system, one at 16 MHz(XTAL16M) and a second at 32.768 kHz (XTAL32K). The 32.768 kHz oscillator has no trimming capabilities and is used as the clock of the Extended/ Deep Sleep modes. The 16 MHz oscillator can be trimmed.

The principle schematic of the two oscillators is shown in Figure 5 below. No external components to the DA14582 are required other than the crystal itself. If the crystal has a case connection, it is advised to connect the case to ground.

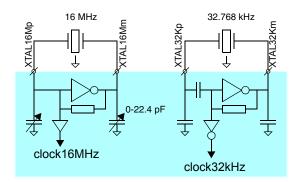


Figure 5 Crystal oscillator circuits

There are 3 RC oscillators in the DA14582: one providing 16 MHz (RC16M), one providing 32 kHz (RC32K) and one providing a frequency in the range of 10.5 kHz (RCX).

3.8.2 Reset

The DA14582 comprises an RST pad which is active high. It contains an RC filter for spikes suppression with 400 k Ω and 2.8 pF for the resistor and the capacitor respectively. It also contains a 25 k Ω pull-down resistor. This pad should be connected to ground if not needed by the application. The typical latency of the

RST pad is in the range of 2 $\mu s.$

3.9 POWER MANAGEMENT

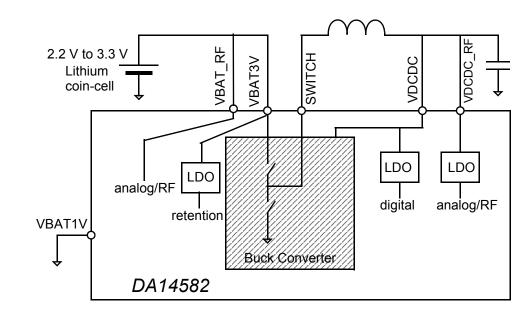
The DA14582 has a complete power management function integrated with Buck or Boost DC-DC converter and separate LDOs for the different power domains of the system.

Features

- On-chip LDOs, without external capacitors
- Synchronous DC-DC converter which can be configured as either:
 - Boost (step-up) converter, starting from 0.9 V, when running from an Alkaline/NiMH cell.
 - Buck (step-down) converter for increased efficiency when running from a Lithium coin-cell or 2 Alkaline batteries down to 2.2 V.
- On/Off control
- Battery voltage measurement ADC (multiplexed input from general purpose ADC)
- Use of small external components (2.2 μH inductor and 1 μF capacitor)

The Power Block contains a DC-DC converter which can be configured to operate as a Step-Up or a Step-

Down converter. The converter provides power to four LDO groups in the system:


1. LDO RET: This is the LDO providing power to the Retention domain (PD_AON). It powers the Retention RAMs and the digital part which is always on.

2. LDO OTP: This is the LDO powering the OTP macro cell. This is the reason for using the step-up DC-DC converter when running from an Alkaline battery.

3. LDO SYS: This is the LDO providing the system with the actual VDD power required for the digital part to operate. Note that the Power Block implements seamless switching from the LDO SYS to the LDO RET when the system enters Deep Sleep mode. In the latter case, a low voltage is applied to the PD_AON power domain to further reduce leakage.

4. LDO (various): This a group of LDOs used for the elaborate control of the powering up/down of the Radio, the GP ADC and the XTAL16M oscillator.

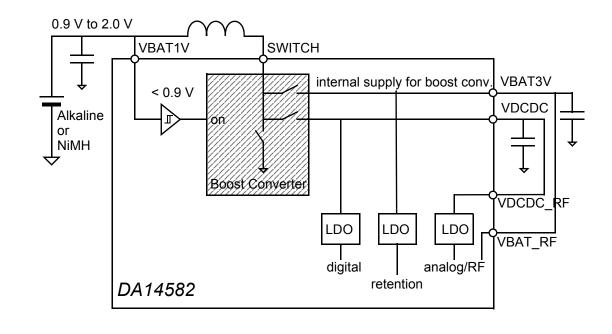

There are two ways of connecting external batteries to the Power Block of the DA14582. They depend on the specific battery cell used and its voltage range. Battery cells are distinguished into Lithium coin cells (2.2 V to 3.3 V) and Alkaline cells (1.0 V to 1.8 V). The connection diagrams are presented in Figure 7 and Figure 6 respectively:

Figure 6 Supply overview, Coin-cell application

The usage of Boost or Buck mode with respect to the provided voltage ranges is illustrated in the following figure which also illustrates the efficiency of the engine assuming a 10 mA constant load.

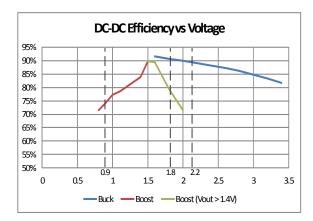


Figure 8 DC-DC efficiency in Buck/Boost mode on various voltage levels

The X axis represents the supply voltage. BOOST mode should be used when voltage ranges from 0.9 V to 2.0 V to sustain a decent efficiency over 70 %. From that point on, the power dissipation becomes quite large.

BUCK mode can operate correctly with voltages in the

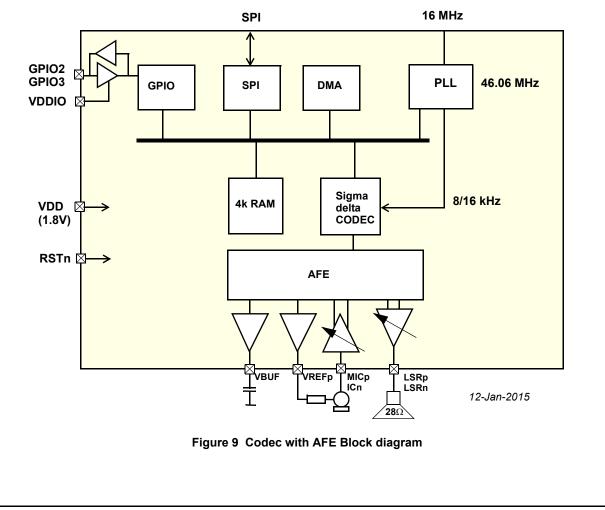
range of 1.5 V to 3.3 V.

There are two voltage areas in Figure 8 designated by dashed lines. The first one (0 V to 0.9 V) indicates that the DA14582 is not operational when the voltage is below 0.9 V. This is the absolute threshold for the DC-DC converter Boost mode.

The second area (1.8 V to 2.2 V) indicates that Deep Sleep mode is not allowed when the DC-DC converter is configured in BUCK mode and the voltage is within this range, because the OTP will not be readable any more. However, this part of the voltage range can be covered by the BOOST mode. Furthermore, when BUCK mode is mandatory, Extended Sleep mode can be activated instead of Deep Sleep mode, thus not using the OTP for the code mirroring but retain the code in SysRAM.

Note: The system should never be cold booted when the supply voltage is less than 2.5 V. A manual power up with a power supply less than 2.5 V in buck mode might create instability.

3.10 AUDIO CODEC WITH ANALOG FRONTEND

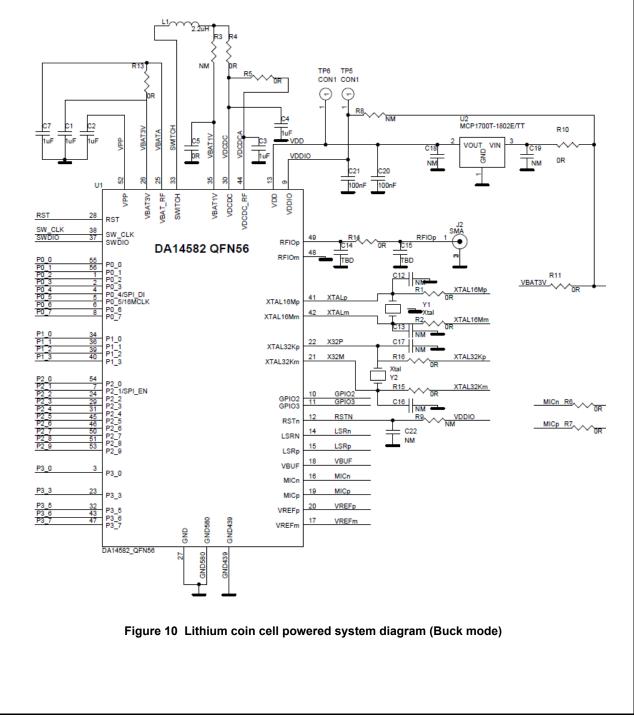

A bidirectional 14 bits Sigma-delta codec with fully differential analog front-end for microphones and loudspeakers down-to 28 ohm is connected internally via SPI to the BLE core.

The codec sample frequency up-to 16 kHz is derived from an internal 46.08 MHz PLL which uses the 16 MHz BLE clock. The codec block is internally connect to the SPI interface of the BLE core. Both require dedicated pin assignment at the BLE core while the Codec is operational.

Two general purpose I/O pins provide control of external circuits.

Features

- 14 bits bidirection Sigma delta codec
- Sample rate up-to 16 kHz
- Fully differential Analog front-end
 - Programmable microphone gain from 0 dB up-to plus 30 dB in steps of 2dB
 - Digital Offset compensation
 - Programmable loudspeaker attentualtion +5 to minus -9 dB in 8 steps of ~2dB/step.
 - Loudspeaker impedance down-to 28 ohm
 - Programmable sidetone between microphone and loudspeaker for speech applications
 - · Low noise microphone supply voltage
- SPI interface for control and data
- DMA controller for low overhead sample copying from SPI to Sigma-Delta codec
- Two general purpose GPIO pins
- Dedicated 1.8V supply pin to support deep powerdown with external LDO



4. Specifications

All MIN/MAX specification limits are guaranteed by design, production testing and/or statistical characterisation. Typical values are based on characterisation results at default measurement conditions and are informative only.

Default measurement conditions (unless otherwise specified): $V_{BAT}(VBAT3V) = 3.0 V$ (buck mode), $V_{BAT}(VBAT1V) = 1.2 V$ (boost mode), $T_A = 25 \text{ °C}$. All radio measurements are performed with standard RF measurement equipment providing a source/load impedance of 50 Ω .

The specifications in the following tables are valid for the reference circuits shown in Figure 10 (Buck mode).

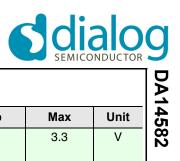

Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{PIN(LIM)} (defaul t)	limiting voltage on a pin	Voltage between pin and GND (Note 1)	-0.1		min{3.6, VBAT_RF +0.2}	V
T _{STG}	storage temperature		-50		150	°C
t _{R(SUP)}	supply rise time	Power supply rise time			100	ms
V _{BAT(LIM)} (VBA T1V)	limiting battery supply voltage	Supply voltage on VBAT1V in a boost con- verter application (VBAT3V is second out- put of boost-converter in this case) (Note 1)	-0.1		3.6	V
V _{BAT(LIM)} (VBA T3V)	limiting battery supply voltage	Supply voltage on VBAT3V and VBAT_RF in a buck-converter application, pin VBAT1V is connected to ground (Note 1)	-0.1		3.6	V
V _{PIN(LIM)} (1V2)	limiting voltage on a pin	XTAL32Km, XTAL16Mp, XTAL16Mm (Note 1)	-0.2		min(1.2,V BAT_RF+ 0.2)	V
V _{PIN(LIM)} (VDC DC_RF)	limiting voltage on the VDCDC_RF pin	Supply voltage on VDCDC_RF (Note 1)	-0.2		min(2,VBA T_RF+0.2)	V
V _{PIN(LIM)} (XTAL 32Kp)	limiting voltage on a pin	XTAL32Kp	-0.2		min(1.5,V BAT_RF+ 0.2)	V
V _{ESD(HBM)} (WL CSP34)	electrostatic discharge voltage (Human Body Model)				2000	V
V _{ESD(HBM)}	electrostatic discharge voltage (Human Body Model)				4000	V
V _{ESD(MM)}	electrostatic discharge voltage (Machine Model)				200	V
V _{ESD(CDM)}	electrostatic discharge voltage (Charged Device Model)				1000	V

Table 4: Absolute maximum ratings

Note 1: The device should not be exposed for prolonged periods of time to voltages between the Recommended Operating Conditions and the Absolute Maximum Ratings range.

Table 5: Recommended operating conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{PP}	programming voltage	Supply voltage on pin VPP during OTP programming; $T_J \le 50 \text{ °C}$	6.6	6.7	6.8	V

Parameter	Description	Conditions	Min	Тур	Мах	Unit
V _{BAT} (VBAT1V)	battery supply voltage	Supply voltage on VBAT1V in a boost con- verter application (VBAT3V is second out- put of boost-converter in this case)	0.9		3.3	V
V _{BAT} (VBAT3V)	battery supply voltage	Supply voltage on VBAT3V and VBAT_RF in a buck-converter application, pin VBAT1V is connected to ground	2.35 (Note 2)		3.3	V
V _{BAT} (VBAT3V) NO_OTP	battery supply voltage	Supply voltage on VBAT3V and VBAT_RF in a buck-converter application, pin VBAT1V is connected to ground; OTP not programmed	1.8 (Note 2)		3.3	V
V _{PIN} (default)	voltage on a pin	Voltage between pin and GND	0		min(3.3,V BAT_RF+ 0.2)	V
V _{PIN} (1V2)	voltage on a pin	XTAL32Km, XTAL16Mp, XTAL16Mm	0		1.2	V
V _{PIN} (VDCDC_ RF)	voltage on a pin	Supply voltage on VDCDC_RF	0		2	V
T _A	ambient temperature		-20		60	°C

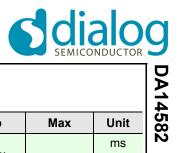

Note 2: Cold boot should not be performed if voltage is less than 2.5 V because of possible corruption during OTP data mirroring. Trim values programmed in the OTP as well as the application image, should be copied into RAM while VBAT3V >= 2.5 V.

Table 6: DC characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
I _{BAT} (DP_SLP)_ BOOST_1kB	battery supply current	Boost configuration in deep-sleep with 1 kB retention RAM active, running from RC32K oscillator at lowest fre- quency		0.48		μΑ
I _{BAT} (DP_SLP)_ BOOST_2kB	battery supply current	Boost configuration in deep-sleep with 2 kB retention RAM active, running from XTAL32K oscillator		0.55		μΑ
I _{BAT} (DP_SLP)_ BOOST_8kB	battery supply current	Typical boost-applica- tion in deep-sleep with 8 kB retention RAM active, running from XTAL32K oscillator		0.7		μΑ
I _{BAT} (EXT_SLP) _BOOST_43K B	battery supply current	Typical boost-applica- tion in extended-sleep mode with 42 kB (Sys- RAM) and 1 kB (RetRAM) retained		1.37		μΑ

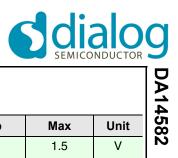
Table 6: DC ch	aracteristics					
Parameter	Description	Conditions	Min	Тур	Max	Unit
I _{BAT} (EXT_SLP) _BOOST_50kB	battery supply current	Typical boost-applica- tion in extended-sleep mode with 42 kB (Sys- RAM) and 8 kB (RetRAM) retained		1.5		μA
I _{BAT} (DP_SLP)_ BUCK_1kB	battery supply current	Buck configuration in deep-sleep with 1 kB retention RAM active, running from RC32K oscillator at lowest fre- quency, VBAT3V = 3 V		0.4		μΑ
I _{BAT} (DP_SLP)_ BUCK_2kB	battery supply current	Buck configuration in deep-sleep with 2 kB retention RAM active, running from XTAL32K oscillator, VBAT3V = 3 V		0.45		μA
I _{BAT} (DP_SLP)_ BUCK_8kB	battery supply current	Typical buck-application in deep-sleep with 8 kB retention RAM active, running from XTAL32K oscillator, VBAT3V = 3 V		0.6		μA
I _{BAT} (EXT_SLP) _BUCK_43KB	battery supply current	Typical buck-application in extended-sleep mode with 42 kB (SysRAM) and 1 kB (RetRAM) retained		1.2		μA
I _{BAT} (EXT_SLP) _BUCK_50kB	battery supply current	Typical buck-application in extended-sleep mode with 42 kB (SysRAM) and 8 kB (RetRAM) retained		1.4		μA
I _{BAT} (ACT_RX) _BOOST	battery supply current	Typical application with boost converter and receiver active, VBAT1V = 1.2 V		13.4		mA
I _{BAT} (ACT_TX)_ BOOST	battery supply current	Typical application with boost converter and transmitter active, VBAT1V = 1.2 V		12.4		mA
I _{BAT} (ACT_RX) _BUCK	battery supply current	Typical application with buck converter and receiver active, VBAT3V = 3.0 V		5.1		mA
I _{BAT} (ACT_TX)_ BUCK	battery supply current	Typical application with buck converter and transmitter active, VBAT3V = 3.0 V		4.8		mA

Parameter	Description	Conditions	Min	Тур	Мах	Unit
t _{STA} (BOOST)	startup time	Boost-mode; time from deep-sleep to software start. Typical application, run- ning from retention RAM on 16 MHz RC oscillator		1.2 (Note 3)		ms
t _{STA} (BUCK)	startup time	Buck-mode; time from deep-sleep to software start. Typical application, run- ning from retention RAM on 16 MHz RC oscillator		1 (Note 3)		ms

Note 3: Worst-case value under Normal Operating Conditions.

Table 8: 16 MHz Crystal Oscillator: Recommended operating conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
f _{XTAL} (16M)	crystal oscillator fre- quency			16		MHz
ESR(16M)	equivalent series resist- ance				100	Ω
C _L (16M)	load capacitance	No external capacitors are required	10		12	pF
C ₀ (16M)	shunt capacitance				5	pF
$\Delta f_{XTAL}(16M)$	crystal frequency toler- ance	After optional trimming; including aging and tem- perature drift (Note 4)	-20		20	ppm
∆f _{X-} _{TAL} (16M)UNT	crystal frequency toler- ance	Untrimmed; including aging and temperature drift (Note 5)	-40		40	ppm
P _{DRV(MAX)} (16M)	maximum drive power	(Note 6)	100			μW
V _{CLK(EXT)} (16M)	external clock voltage	Only in case of an exter- nal reference clock on XTAL16Mp (XTAL16Mm floating or connected to mid-level 0.6 V)	1	1.2		V
φ _N (EXTER- NAL)16M	phase noise	f _C = 50 kHz in case of an external reference clock			-130	dBc/ Hz


Note 4: Using the internal varicaps a wide range of crystals can be trimmed to the required tolerance.

Note 5: Maximum allowed frequency tolerance for compensation by the internal varicap trimming mechanism.

Note 6: Select a crystal which can handle a drive-level equal or more than this specification

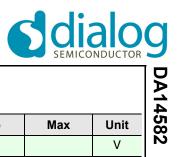
Table 9: 16 MHz Crystal Oscillator: Timing characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
t _{STA(XTAL)} (16M)	crystal oscillator startup time		0.5	2	3	ms
						L

Parameter	Description	Conditions	Min	Тур	Мах	Unit
V _{CLK(EXT)} (32K)	external clock voltage	peak-peak voltage of external clock at XTAL32Kp, pin XTAL32Km floating. note: XTAL32Kp is inter- nally AC coupled	0.1	0.2	1.5	V
f _{XTAL} (32k)	crystal oscillator fre- quency	frequency range for an external clock (for a crystal, use either 32.000 kHz or 32.768 kHz)	10	32.768	100	kHz
ESR(32k)	equivalent series resist- ance				100	kΩ
C _L (32k)	load capacitance	no external capacitors are required for a 6 pF or 7 pF crystal	6	7	9	pF
C ₀ (32k)	shunt capacitance			1	2	pF
∆f _{XTAL} (32k)	crystal frequency toler- ance (including aging)	Timing accuracy is domi- nated by crystal accu- racy. A much smaller value is preferred	-250		250	ppm
P _{DRV(MAX)} (32k)	maximum drive power	(Note 7)	0.1			μW

Note 7: Select a crystal that can handle a drive-level of at least this specification.

Table 11: 32 kHz Crystal Oscillator: Timing characteristics


Ι.							
	Parameter	Description	Conditions	Min	Тур	Max	Unit
	t _{STA(XTAL)} (32k)	crystal oscillator startup time	Typical application, time until 1000 clocks are detected (Note 8)		0.4		S

Note 8: This parameter is very much dependent on crystal parameters

Table 12: DC-DC converter: Recommended operating conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
L	effective inductance		1.5	2.2	3	μH
C _{OUT} (VDCDC)	effective load capaci- tance	VDCDC and VDDCRF combined (Note 9)	0.5	1	10	μF
C _{OUT} (VBAT3V)	effective load capaci- tance	VBATRF and VBAT3V combined are the sec- ond output of the boost- converter (Note 9)	0.5	1	10	μF

Note 9: A low value will result in lowest power consumption, keep this value at 1 uF or 2 uF.

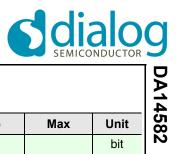


Table 13: DC-D	C converter: DC charact	eristics				
Parameter	Description	Conditions	Min	Тур	Max	Unit
V _O (BUCK)	output voltage	default settings		1.41		V
V _O (BOOST)	output voltage	default settings, VDCDC		1.41		V
η _{CONV_MAX} (BU CK)	maximum conversion efficiency			86		%
η _{CONV_MAX} (BO OST)	maximum conversion efficiency			80		%
ΔV _O / ΔV _I (BUCK)	line regulation	$\begin{array}{l} 2.35 \text{ V} \leq \text{VBAT3V} \leq 3.3 \\ \text{V} \end{array}$	-2	0.7	2	%/V
ΔV _O / ΔV _I (BOOST)	line regulation	0.9 V ≤ VBAT1V ≤ 1.2 V (Note 10)	-2	1	4	%/V
$\Delta V_{O} / \Delta I_{L}(BUCK)$	load regulation	VBAT3V = 2.5 V	-0.2	-0.02	0.2	%/mA
ΔV _O / ΔI _L (BOOST)	load regulation	VBAT1V = 1.2 V	-0.2	-0.07	0.2	%/mA
V _{RPL} (BUCK)	ripple voltage	buck mode; RMS ripple voltage		5		mV
V _{RPL} (BOOST)	ripple voltage	$\label{eq:VBAT1V} \begin{array}{l} \forall \text{BAT1V} \leq 1.2 \text{ V, boost} \\ \text{mode; RMS ripple voltage} \\ \text{age} \\ \text{(Note 10)} \end{array}$		8		mV

Note 10: When VBAT1V > VDCDC_nominal, VDCDC will follow VBAT1V.

Table 14: Digital Input/Output: DC characteristics

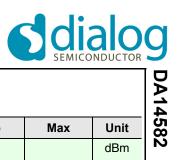
Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH level input voltage		0.84			V
V _{IL}	LOW level input voltage				0.36	V
V _{IH} (RST)	HIGH level input voltage	RST pin	0.84			V
V _{IL} (RST)	LOW level input voltage	RST pin			0.36	V
V _{OH} (VBAT1V)	HIGH level output volt- age	lout = -250 μA, VBAT3V = 2.35 V, VBAT1V = 0.9 V	0.72			V
V _{OH} (VBAT3V)	HIGH level output volt- age	lout = -4.8 mA, VBAT3V = 2.35 V, VBAT1V = 0 V	1.88			V
V _{OL} (VBAT1V)	LOW level output voltage	lout = 250 μA, VBAT3V = 2.35 V, VBAT1V = 0.9 V			0.18	V
V _{OL} (VBAT3V)	LOW level output voltage	lout = 4.8 mA, VBAT3V = 2.35 V, VBAT1V = 0 V			0.47	V
I _{IH}	HIGH level input current	Vin = VBAT3V = 2.5 V	-1		1	μA
IIL	LOW level input current	Vin = VSS = 0 V	-1		1	μA
I _{IH} (PD)	HIGH level input current	Vin = VBAT3V = 2.5 V	50		150	μA
I _{IL} (PU)	LOW level input current	Vin = VSS = 0 V	-150		-50	μA
I _{IH} (RST)	HIGH level input current	RST pin, V(RST) = 1.2 V	25		75	μA

Table 15: General purpose ADC: Recommended operating conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
N _{BIT} (ADC)	number of bits (resolu- tion)			10		bit

Table 16: General purpose ADC: DC characteristics

Parameter	Description	Conditions	Min	Тур	Мах	Unit
V _{I(ZS)}	zero-scale input voltage	single-ended, calibrated at zero input	-2.5	0	2.5	mV
V _{I(FS)}	full-scale input voltage	single-ended, calibrated at zero input	1150	1180	1250	mV
V _{I(FSN)}	negative full-scale input voltage	differential, calibrated at zero input		-1180		mV
V _{I(FSP)}	positive full-scale input voltage	differential, calibrated at zero input		1180		mV
INL	integral non-linearity		-2		2	LSB
DNL	differential non-linearity		-2		2	LSB

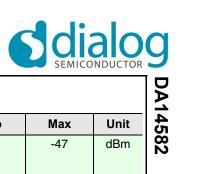

Table 17: General purpose ADC: Timing characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
t _{CONV} (ADC)	conversion time	Excluding initial settling time of the LDO and the 3x-attenuation (if used): LDO settling time is 20 μ s (max), 3x-attenuation settling time = 1 μ s (max) Using internal ADC-clock (~200 MHz)		0.25	0.4	μs

Table 18: Radio: DC characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
I _{BAT} (RF)RX	battery supply current	receive mode; radio receiver and synthesizer active; DCDC converter assumed ideal; $T_A = 25$ °C (Note 11)		3.7	4.3	mA
I _{BAT} (RF)TX	battery supply current	transmit mode; radio transmitter and synthe- sizer active; DCDC con- verter assumed ideal; T_A = 25 °C (Note 11)		3.4	4	mA

Note 11: The DCDC-converter efficiency is assumed to be 100 % to enable benchmarking of the radio currents at battery supply domain (VBAT3V = 3 V).


Table 19: Radio: AC characte

Parameter	Description	Conditions	Min	Тур	Max	Unit
P _{SENS} (CLEAN)	sensitivity level	DC-DC converter ena- bled; Dirty Transmitter disabled; $T_A = 25 \degree$ C; PER = 30.8 % (Note 12) (Note 13)		-93		dBm
P _{SENS}	sensitivity level	Normal Operating Condi- tions; DC-DC converter enabled; $T_A = 25 \degree$ C; PER = 30.8 % (Note 12) (Note 13)		-92.5		dBm
P _I (max)	input power level	DC-DC converter disa- bled; T _A = 25 °C; PER ≤ 30.8 % (Note 12)	10			dBm
P _{INT(IMD)}	intermodulation distor- tion interferer power level	worst case interferer level @ f_1 , f_2 with $2f_1-f_2 = f_0$, $ f_1-f_2 = n$ MHz and $n = 3,4,5$; $P_{WANTED} = -64$ dBm @ f_0 ; PER = 30.8 %; $T_A = 25 \text{ °C}$ (Note 15)	-35	-31		dBm
CIR(0)	carrier to interferer ratio	n = 0; interferer @ f ₁ = f ₀ + n*1 MHz; T _A = 25 °C (Note 16)		7	21	dB
CIR(1)	carrier to interferer ratio	$n = \pm 1$; interferer @ $f_1 = f_0 + n^*1$ MHz; $T_A = 25$ °C (Note 16)		-3	15	dB
CIR(P2)	carrier to interferer ratio	n = +2 (image fre- quency); interferer @ f1 = f0 + n*1 MHz; $T_A = 25$ °C (Note 16)		-20	-9	dB
CIR(M2)	carrier to interferer ratio	n = -2; interferer @ f1 = f0 + n*1 MHz; T _A = 25 °C (Note 16)		-30	-17	dB
CIR(P3)	carrier to interferer ratio	n = +3 (image frequency + 1 MHz); interferer @ f1 = f0 + n*1 MHz; T _A = 25 °C (Note 16)		-30	-15	dB
CIR(M3)	carrier to interferer ratio	n = -3; interferer @ f1 = f0 + n*1 MHz; T _A = 25 °C (Note 16)		-35	-27	dB
CIR(4)	carrier to interferer ratio	Inl >= 4 (any other BLE channel); interferer @ f_1 = $f_0 + n^*1$ MHz; $T_A = 25$ °C (Note 16)		-37	-27	dB

Table 19: Radi	o: AC characteristics					
Parameter	Description	Conditions	Min	Тур	Max	Unit
P _{BL} (I)	blocker power level	30 MHz $\leq f_{BL} \leq$ 2000 MHz; P _{WANTED} = -67 dBm; T _A = 25 °C (Note 17)	-5			dBm
P _{BL} (II)	blocker power level	2003 MHz $\leq f_{BL} \leq$ 2399 MHz; P _{WANTED} = -67 dBm; T _A = 25 °C (Note 17)	-15			dBm
P _{BL} (III)	blocker power level	2484 MHz $\le f_{BL} \le$ 2997 MHz; P _{WANTED} = -67 dBm; T _A = 25 °C (Note 17)	-15			dBm
P _{BL} (IV)	blocker power level	$\begin{array}{l} 3000 \text{ MHz} \leq f_{BL} \leq 12.75 \\ \text{GHz}; \text{ P}_{\text{WANTED}} = -67 \\ \text{dBm}; \text{ T}_{\text{A}} = 25 \ ^{\circ}\text{C} \\ \textbf{(Note 17)} \end{array}$	-5			dBm
P _{RSSI} (min)	RSSI power level	absolute power level for RXRSSI[7:0] = 0; $T_A =$ 25 °C (Note 18)	-115	-112	-109	dBm
P _{RSSI} (max)	RSSI power level	upper limit of monoto- nous range; $T_A = 25 \text{ °C}$	-26	-19		dBm
L _{ACC} (RSSI)BU CK	level accuracy	tolerance of 5 % to 95 % confidence interval of P_{RF} : when RXRSSI[7:0] = X, 50 < X < 175; burst mode 1500 packets; T _A = 25 °C; DC-DC con- verter in BUCK mode		0	2	dB
L _{ACC} (RSSI)BO OST	level accuracy	tolerance of 5 % to 95 % confidence interval of P_{RF} : when RXRSSI[7:0] = X, 50 < X < 175; burst mode 1500 packets; T _A = 25 °C; DC-DC con- verter in BOOST mode		0	3	dB
L _{RES} (RSSI)	level resolution	gradient of monotonous range for RXRSSI[7:0] = X, 50 < X < 175; burst mode 1500 packets; T_A = 25 °C	0.46	0.474	0.485	dB/ LSB
ACP(2M)	adjacent channel power level	f _{OFFSET} = 2 MHz; T _A = 25 °C (Note 19)		-53	-50	dBm
ACP(2M)(EOC)	adjacent channel power level	f _{OFFSET} = 2 MHz; -40 °C ≤ T _A ≤ +85 °C (Note 19)		-53	-47	dBm
ACP(3M)	adjacent channel power level	f _{OFFSET} ≥ 3 MHz; T _A = 25 °C (Note 19)		-57	-55	dBm

© 2015 Dialog Semiconductor

Table 19: Radio: AC characteristics							
Parameter	Description	Conditions	Min	Тур	Max	Unit	
ACP(3M)(EOC)	adjacent channel power level	f _{OFFSET} ≥ 3 MHz; -40 °C ≤ T _A ≤ +85 °C (Note 19)		-57	-47	dBm	
P _O	output power level	$V_{DD} = 3 V$; maximum gain; $T_A = 25 °C$	-2	-1	0	dBm	
P _O (HD2)	output power level (sec- ond harmonic)	VDD = 3 V; maximum gain; T _A = 25 °C		-54	-40	dBm	
P _O (HD3)	output power level (third harmonic)	VDD = 3 V; maximum gain; $T_A = 25 \text{ °C}$		-56	-40	dBm	
P _O (HD4)	output power level (fourth harmonic)	VDD = 3 V; maximum gain; $T_A = 25 \text{ °C}$		-70	-40	dBm	
P _O (HD5)	output power level (fifth harmonic)	VDD = 3 V; maximum gain; $T_A = 25 \text{ °C}$		-70	-40	dBm	
P _O (NFM)	output power level in 'Near Field Mode'	$V_{DD} = 3 V$; maximum gain; $T_A = 25 °C$ (Note 20)	-25	-20	-15	dBm	

Note 12: Measured according to Bluetooth® Low Energy Test Specification RF-PHY.TS/4.0.1, section 6.4.1.

Note 13: Measurement details are explained in AN-B-017.

Note 14: Measured according to Bluetooth® Low Energy Test Specification RF-PHY.TS/4.0.1, section 6.4.2.

Note 15: Measured according to Bluetooth® Core Technical Specification document, version 4.0, volume 6, section 4.4. Published value is for n = IXIT = 4 . IXIT = 5 gives the same results, IXIT = 3 gives results that are 5 dB lower.

Note 16: Measured according to Bluetooth® Core Technical Specification document, version 4.0, volume 6, section 4.2.

Note 17: Measured according to Bluetooth® Core Technical Specification document, version 4.0, volume 6, section 4.3. Due to limitations of the measurement equipment, levels of -5 dBm should be interpreted as > -5 dBm.

Note 18: PRF = PRSSI(min) + LRES(RSSI) x RXRSSI[7:0] ± LACC(RSSI). Thanks to constant gain biasing of RF part in the receiver, the RSSI can be used to estimate absolute power levels, rather than mere level changes. Even across the full temperature range the variation is limited.

Note 19: Measured according to Bluetooth® Low Energy Test Specification RF-PHY.TS/4.0.1, section 6.2.3.

Note 20: To activate the "Near Field Mode", program address 0x50002418 with the value 0x0030.

Table 20: Stable low frequency RCX Oscillator: Timing characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
f _{RC} (RCX)	RCX oscillator frequency	default setting, buck mode only	5	10	40	kHz
∆f _{RC} (RCX)	RCX oscillator fre- quency drift	buck mode only (Note 21)	-500		500	ppm

Note 21: Maximum recommended connection interval (including slave latency) for the RCX usage is 2 s.

5. Codec specifications

All MIN/MAX specification limits are guaranteed by design, or production test, or statistical methods unless note 22 is added to the parameter description. Typical values are informative.

Note 22: This parameter(s) will not be tested in production. The MIN/MAX values are guaranteed by design and verified by characterization.

Table 21: ABSOLUTE MAXIMUM RATINGS (Note 23)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	MAX	UNITS
Vddio_max	Max Digital I/O supply voltage (VDDIO-VSS)			3.6	V
Vdd_max	Max Core supply voltage (VDD-VSS / AVD-AVS)			2.0	v

Note 23: Absolute maximum ratings are those values that may be applied for maximum 50 hours. Beyond these values, damage to the device may occur.

Table 22: OPERATING CONDITIONS (Note 24)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Vddio	Digital I/O supply voltage VDDIO-VSS		1.75	2.5	3.45	V
Vdd	Supply voltages VDD-VSS, AVD-AVS.	(Note 26)	1.75	1.8	1.98	V
Vdig	Voltage on digital pins.				VDDIO +0.3	v
Vana	Voltage on analog pins				2.0	V
Vpin_neg	Minimum voltage on any pin		VSSIO- 0.3			v
Vprot_mic	Voltage on pins MIC (with protection)		0.4		1.4	V
lprot_mic	Current through protection diode MICp to AGND				2.4	mA

Note 24: Within the specified limits, a life time of 10 years is guaranteed.

Note 25: Within this temperature range full operation is guaranteed.

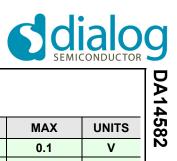
Note 26: Full operating mode; the differences between AVD, VDD may never be more than 300mV; during a short period of time e.g. during power up more than 300mV difference is allowed. Analog performance is only guaranteed from 1.75-1.98V

5.1 CODEC ELECTRICAL CHARACTERISTICS

VDD, AVD = 1.8 Volt all signals are related to VSS, TA = -20°C - +60 °C.

Table 23: Supply currents

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
lvddio_static	Static supply current at VDDIO.	RSTn = 0, CLK = 0, VDDIO = 3.45V.		20		uA
lvdd_static	Static supply current at VDD	RSTn = 0, CLK = 0.		150		uA
lavd_static	Static supply current at AVD	Any analog block which needs the band- gap reference voltage or current, causes this static current to flow. With BANDGAP_REG = 0x0208 and CODEC_VREF_REG = 0x00D1 and all PD bits set to '1' reduces this current to 15 uA.		100		uA
lvdd_voice	Digital supply current at VDD	SPI 16bits Rx Tx, Codec on, CLK = 16 MHz, PLL off. (Including Ivdd_static)		0.75		mA
lvdd_pll	Digital PLL supply current	CLK =16 MHz Fpll = 46.06 MHz		0.15		mA
lavd_pll	Analog PLL supply current			0.6		mA
lavd_voice	Analog supply cur- rent at AVD	Reference amplifiers on, microphone amp on, LSRp/n on (no load), Codec on.		4.5		mA


Note 27: Total maximum chip current = lvdd_voice + lavd_pll*on + ivdd_pll*on + lavd_pa + lavd_voice + lvddio_static -lvdd_static (is already included in lvdd_voice))

Additional currents due to external components must be added to the total chip current : E.g current through Loudspeakers and microphone, curent through (external) Pull-up/pull_down resistors.


Table 24: Codec Digital inputs

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Vil_dig	Logic 0 input level all digital pads	VDDIO = 1.75-3.0V (Note 28)			0.3*VDDIO	V
Vil_dig_33	Logic 0 input level all digital pads	VDDIO = 3-3.45V (Note 28)			0.9	V
Vih_dig	Logic 1 input level all digital pads	VDDIO =1.75-3.45V (Note 28)	0.7*VDDIO			V
lleak_hi	Input current of all inputs with (programmable) pull- down resistors disabled	Vin = VDDIO			10	μΑ
lleak_lo	Input current of all inputs with (programmable) pull-up resistors disabled.	Vin = VSS			10	μ Α
lpull_up_lo	Input current with internal pull up enabled.	Vin = VSS VDDIO=1.75- 3.3V	20		100	μ Α

Note 28: To meet the specified Vil/Vih levels, BAT_CTRL_REG[PADS_A] bits must be set to the corresponding applied VDDIO voltage

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Vol_100u	Logic 0 output level	lout = 100 uA			0.1	V
Vol_175	Logic 0 output level	lout = 2 mA VDDIO = 1.75V-1.98V			0.2*VDDIO	v
Vol_25	Logic 0 output level	lout = 4 mA VDDIO = 2.25V-2.75V			0.2*VDDIO	v
Vol_33	Logic 0 output level	lout = 8 mA VDDIO = 3.0V-3.45V			0.2*VDDIO	v
Voh_100u	Logic 1 output level	lout = 100 uA. VDDIO = 3.45V	VDDIO - 0.1			v
Voh_175	Logic 1 output level	lout = 2 mA VDDIO = 1.75V-1.98V	0.8*VDDIO			v
Voh_25	Logic 1 output level	lout = 4mA VDDIO = 2.25V-2.75V	0.8*VDDIO			v
Voh_33	Logic 1 output level	lout = 8 mA VDDIO = 3.0-3.45V	0.8*VDDIO			V

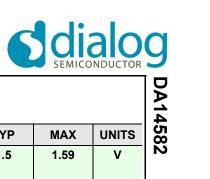

5.2 ANALOG FRONTEND SPECIFICATIONS

Table 26: Microphone amplifier

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Vmic_0dB_unt	Untrimmed differen- tial RMS input volt- age between MICp and MICn (0dBm0 ref- erence level)	0dBm0 on COUT (Note 29) MIC_GAIN[3:0] = 0, @ 1020 Hz; <u>Tolerance:</u> • 13% when untrimmed (BANDGAP_REG=8) • 6% when trimmed (Note 30)	114	131	149	mV
Vmic_cm_level	MICp and MICn com- mon mode voltage			0.9		V
Amic_gain_0	Reference level at Vmic_0dB_unt	MIC_GAIN[3:0] = 0000		0		dB
Amic_gain_1	Microphone gain rela-	MIC_GAIN[3:0] = 0001		1.8		dB
Amic_gain_2	tive to Amic_gain_0	MIC_GAIN[3:0] = 0010		4.1		dB
Amic_gain_3		MIC_GAIN[3:0] = 0011		6.0		dB
Amic_gain_4		MIC_GAIN[3:0] = 0100		7.8		dB
Amic_gain_5		MIC_GAIN[3:0] = 0101		10.1		dB
Amic_gain_6		MIC_GAIN[3:0] = 0110		12.0		dB
Amic_gain_7		MIC_GAIN[3:0] = 0111		14.5		dB
Amic_gain_8		MIC_GAIN[3:0] = 1000		16.1		dB
Amic_gain_9		MIC_GAIN[3:0] = 1001		18.1		dB
Amic_gain_A		MIC_GAIN[3:0] = 1010		20.6		dB
Amic_gain_B		MIC_GAIN[3:0] = 1011		22.0		dB
Amic_gain_C		MIC_GAIN[3:0] = 1100		24.0		dB
Amic_gain_D		MIC_GAIN[3:0] = 1101		26.4		dB
Amic_gain_E		MIC_GAIN[3:0] = 1110		27.9		dB
Amic_gain_F		MIC_GAIN[3:0] = 1111		29.8		dB
Rin_mic	Resistance of acti- vated microphone amplifier inputs (MICp, MICn and MICh) to internal buff- ered AGND		75	150		kΩ
Vmic_offset	Input referred DC-off- set	MIC_GAIN[30] = 1111 3 sigma deviation limits	-2.6		+2.6	mV

Note 29: 0 dBm0 on COUT = -3.14 dB of max PCM value. COUT is CODEC output in test mode

Note 30: Trimming possibility is foreseen. At system production the bandgap reference voltage can be controlled within 2% accuracy and data can be stored in Flash. Either AVD or VREF can be trimmed within 2% accuracy. If AVD is trimmed VREF will be within 2% accuracy related to either AVD. Or vice versa VREF can be trimmed. For Vref trimming measure Δ (VREFp VREFm) and update BANDGAP_REG[3.0]

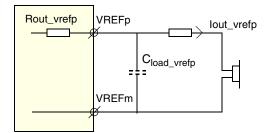


Table 27: Micro	Table 27: Microphone supply voltages						
PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS	
Vref_unt	VREFp-VREFm untrimmed	I _{LOAD} = 0 mA BANDGAP_REG = 8 (Note 30)	1.41	1.5	1.59	V	
Rout_vrefp	VREFp output resistance			10		Ohm	
Nvrefp_idle	Peak noise on VREFp/AVS	CCITT weighted			-120	dBV	
PSRRvrefp	Power supply rejec- tion Vref output	See Figure 14 AVD2 to VREFp/ m f = 100 Hz to 4 kHz BANDGAP_REG[5:4] = 3	40			dB	

Note 31: Vrefm is a clean ground input and is the 0V reference.

Table 28: VREFp load circuits

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNITS
Cload_vrefp	VREFp (parasitic) load capacitance				20	pF
lout_vrefp	VREFp output current				1	mA

Figure 11 VREFp load circuit

Table 29: LSRp/LSRn outputs

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Vlsr_0dB_unt	Untrimmed differen- tial RMS output volt- age between LSRp and LSRn in audio mode (0dBm0 refer- ence level)	0dBm0 on CIN (Note 32), LSRATT[2:0] = 001, @ 1020 Hz Load circuit A (see Figure 12, Table 30) with RL1= inf ohm, Cp1 or load circuit B (see Figure 13) with RL2, Cp2 and Cs2Tolerance: • 13% when untrimmed (BANDGAP_REG=8)• 6% when trimmed (Note 30)	621	714	807	mV
Rout_lsr	Resistance of acti- vated loudspeaker amplifier outputs LSRp and LSRn			1		Ω

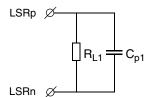


Table 29: LSRp/	LSRn outputs					
PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Alsr_df_gain_1	Reference level at VIsr_0dB_unt	LSRATT[2:0] =001		0		dB
Alsr_df_gain_0	Loudspeaker gain rel- ative to Alsr_df_gain_1	LSRATT[2:0] =000		2.3		dB
Alsr_df_gain_2		LSRATT[2:0] =010		-2.2		dB
Alsr_df_gain_3		LSRATT[2:0] =011		-4.0		dB
Alsr_df_gain_4		LSRATT[2:0] =100		-5.7		dB
Alsr_df_gain_5		LSRATT[2:0] =101		-8.0		dB
Alsr_df_gain_6		LSRATT[2:0] =110		-9.9		dB
Alsr_df_gain_7		LSRATT[2:0] =111		-12.1		dB
Vlsr_dc	DC offset between LSRp and LSRn	LSRATT[2:0] = 3 R _{L1} = 28 Ω 3 sigma deviation limits	-20		20	mV

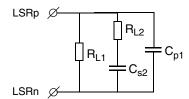
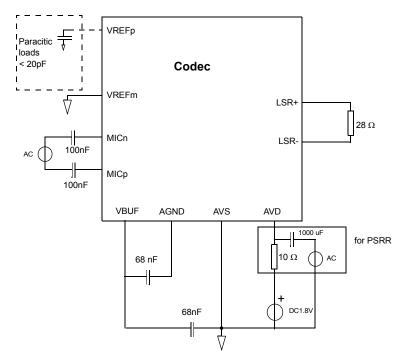
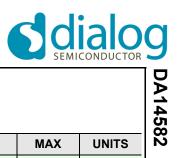

Note 32: 0 dBm0 on CIN = -3.14 dB of max PCM value

Table 30: LSR+/LSR- load circuits

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Cp1_RI1_inf	Load capacitance	see Figure 12, $R_{L1} = \infty$			30	pF
Cp1_RI1_1k	Load capacitance	see Figure 12, $R_{L1} \le 1 \ k\Omega$			100	pF
RI1	Load resistance		28			Ω
Cp2	Parallel load capacitance	see Figure 13			30	pF
Cs2	Serial load capacitance				30	μ F
RI2	Load resistance		600			Ω

Figure 12 Load circuit A Dynamic loudspeaker





© 2015 Dialog Semiconductor

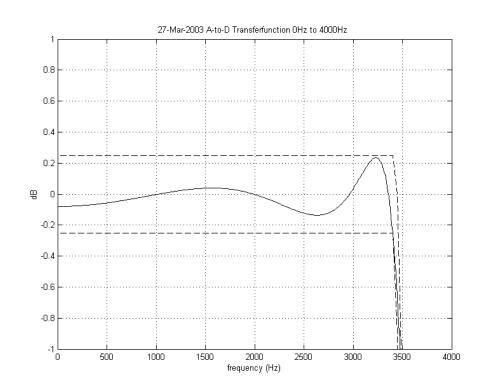
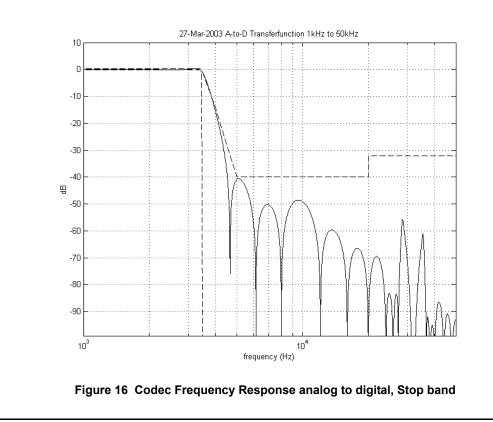
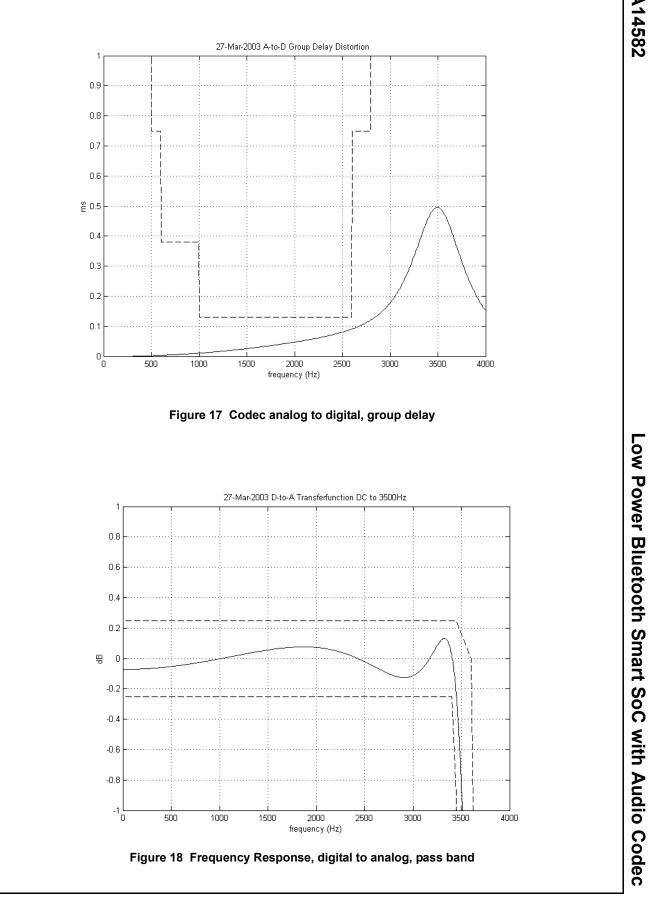
5.3 CODEC SPECIFICATIONS

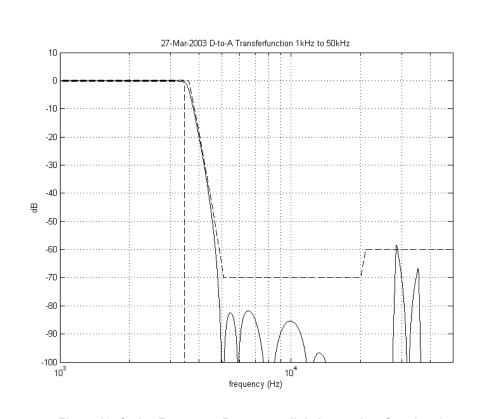
Table 31: CODEC characteristics

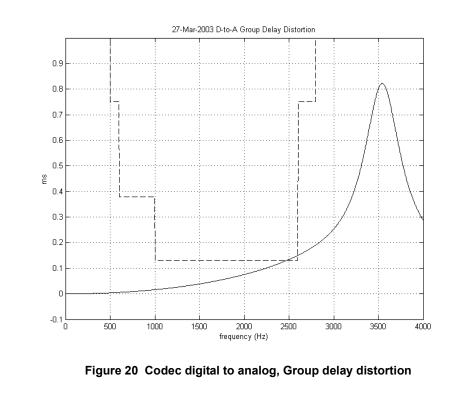
PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
SDad_0dB	Signal to total distortion ratio Analog/Digital	see Figure 14, $R_{ab} = \infty$ differential input signal between MICp and MICn with f=1020Hz ADPCM transcoder active MIC_GAIN[3:0] = 0 0 dBm0 on COUT	40	60		dB
SDad_40dB		-40 dBm0 on COUT	35			dB
SDad_45dB		-45 dBm0 on COUT	30			dB
SDda_0dB	Signal to total distortion ratio Digital/Analog	see Figure 1440differential input signal betweenMICp and MICn with f=1020HzADPCM transcoder activeLSRATT[2-0] = 30 dBm0 on CIN		65		dB
SDda_40dB		-40 dBm0 on CIN	35			dB
SDda_45dB		-40 dBm0 on CIN	30			dB
Nad_idle	Idle channel noise Analog/ Digital	see Figure 14, R _{ab} = 0 Ohm Relative to 0 dBm0 MIC_GAIN[3:0] = 0x0B		-80		dBm0p
Nda_idle	Idle channel noise Digital/ Analog	see Figure 14 Relative to 0 dBm0 LSRATT[2-0] = 3		-83	-77	dBm0p
PSRRad_0	Power supply rejection ratio Analog/Digital	See Figure 14, AVD2 to COUT, f = 100 Hz to 4 kHz MIC_GAIN[3:0] = 0	40			dB
PSRRad_F		MIC_GAIN[3:0] = 0x0F	30			dB
PSRRda	Power supply rejection ratio Digital/Analog	See Figure 14, AVD2 to LSRp/n, f = 100 Hz to 4 kHz LSRATT[2-0] = 3	40			dB

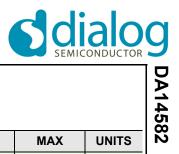
Table 32: CODEC frequency responses

PARAMETER	DESCRIPTION	CONDITIONS	RESULT
Fad_freq	Frequency response Analog/ Digital	see Figure 14, $R_{ab} = \infty$ relative to 1020 Hz	see frequency response diagrams Figure 15 on page 35, Figure 16 on page 35, Figure 17 on page 36
Fda_freq	Frequency response Digital/Analog	see Figure 14, R _{ab} = 1 kOhm relative to 1020 Hz	see frequency response diagrams Figure 18 on page 36, Figure 19 on page 37, Figure 20 on page 37

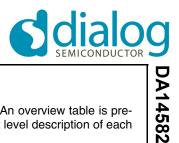





Figure 15 Codec Frequency Response, analog to digital, pass band.





5.4 CODEC TIMING CHARACTERISTICS


Table 33: PLL characteristics

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNITS
Tlock_pll_lpf0	PLL Lock time	CLK = 16 MHz Fpll = 46.08 MHz, LPF_EN = 0			0.5	ms
Fpll_vco	PLL maximum frequency			46.08		MHz

Table 34: Digital inputs and RSTn pin

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Tlow_rst	Minimum low time RSTn pin during active CLK.	(Note 33)	1			μs
Trf	Maximum rise and fall time of all digital inputs including RSTn pin.				25	ns

Note 33: spikes down to 5 ns may reset the device.

6. Registers

This section contains a detailed view of the DA14582 registers. It is organized as follows: An overview table is presented initially, which depicts all register names, addresses and descriptions. A detailed bit level description of each register follows.

The register file of the ARM Cortex-M0 can be found in the following documents, available on the ARM website:

Devices Generic User Guide:

 $DUI0497A_cortex_m0_r0p0_generic_ug.pdf$

Technical Reference Manual:

DDI0432C_cortex_m0_r0p0_trm.pdf

These documents contain the register descriptions for the Nested Vectored Interrupt Controller (NVIC), the System Control Block (SCB) and the System Timer (SysTick).

Table 35: Register map

Address	Port	Description
0x40008000	OTPC_MODE_REG	Mode register
0x40008004	OTPC_PCTRL_REG	Bit-programming control register
0x40008008	OTPC_STAT_REG	Status register
0x4000800C	OTPC_AHBADR_REG	AHB master start address
0x40008010	OTPC_CELADR_REG	Macrocell start address
0x40008014	OTPC_NWORDS_REG	Number of words
0x40008018	OTPC_FFPRT_REG	Ports access to fifo logic
0x4000801C	OTPC_FFRD_REG	Latest read data from the OTPC_FFPRT_REG
0x40008400	PATCH_VALID_REG	Validity Control Register
0x40008404	PATCH_VALID_SET_REG	Validity Set Control Register
0x40008408	PATCH_VALID_RESET_REG	Validity Reset Control Register
0x40008410	PATCH_ADDR0_REG	Patch entry 0: Address field
0x40008414	PATCH_DATA0_REG	Patch entry 0: Data field
0x40008418	PATCH_ADDR1_REG	Patch entry 1: Address field
0x4000841C	PATCH_DATA1_REG	Patch entry 1: Data field
0x40008420	PATCH_ADDR2_REG	Patch entry 2: Address field
0x40008424	PATCH_DATA2_REG	Patch entry 2: Data field
0x40008428	PATCH_ADDR3_REG	Patch entry 3: Address field
0x4000842C	PATCH_DATA3_REG	Patch entry 3: Data field
0x40008430	PATCH_ADDR4_REG	Patch entry 4: Address field
0x40008434	PATCH_DATA4_REG	Patch entry 4: Data field
0x40008438	PATCH_ADDR5_REG	Patch entry 5: Address field
0x4000843C	PATCH_DATA5_REG	Patch entry 5: Data field
0x40008440	PATCH_ADDR6_REG	Patch entry 6: Address field
0x40008444	PATCH_DATA6_REG	Patch entry 6: Data field
0x40008448	PATCH_ADDR7_REG	Patch entry 7: Address field
0x4000844C	PATCH_DATA7_REG	Patch entry 7: Data field
0x5000000	CLK_AMBA_REG	HCLK, PCLK, divider and clock gates
0x5000002	CLK_FREQ_TRIM_REG	Xtal frequency trimming register
0x50000004	CLK_PER_REG	Peripheral divider register
0x5000008	CLK_RADIO_REG	Radio PLL control register
0x5000000A	CLK_CTRL_REG	Clock control register
0x50000010	PMU_CTRL_REG	Power Management Unit control register
0x50000012	SYS_CTRL_REG	System Control register
0x50000014	SYS_STAT_REG	System status register
0x50000016	TRIM_CTRL_REG	Control trimming of the XTAL16M
0x50000020	CLK_32K_REG	32 kHz oscillator register
0x50000022	CLK_16M_REG	16 MHz RC-oscillator register
0x50000024	CLK_RCX20K_REG	20 kHz RXC-oscillator control register
0x50000028	BANDGAP_REG	Bandgap trimming
0x5000002A	ANA_STATUS_REG	Status bit of analog (power management) circuits
0x50000100	WKUP_CTRL_REG	Control register for the wakeup counter
0x50000102	WKUP_COMPARE_REG	Number of events before wakeup interrupt

D
<u>۲</u> 14
158
Ň

Table 35: R	legister map

Address	Port	Description
0x50000104	WKUP_RESET_IRQ_REG	Reset wakeup interrupt
0x50000106	WKUP_COUNTER_REG	Actual number of events of the wakeup counter
0x50000108	WKUP_RESET_CNTR_REG	Reset the event counter
0x5000010A	WKUP_SELECT_P0_REG	Select which inputs from P0 port can trigger wkup counter
0x5000010C	WKUP_SELECT_P1_REG	Select which inputs from P1 port can trigger wkup counter
0x5000010E	WKUP_SELECT_P2_REG	Select which inputs from P2 port can trigger wkup counter
0x50000110	WKUP_SELECT_P3_REG	Select which inputs from P3 port can trigger wkup counter
0x50000112	WKUP_POL_P0_REG	Select the sensitivity polarity for each P0 input
0x50000114	WKUP_POL_P1_REG	Select the sensitivity polarity for each P1 input
0x50000116	WKUP_POL_P2_REG	Select the sensitivity polarity for each P2 input
0x50000118	WKUP_POL_P3_REG	Select the sensitivity polarity for each P3 input
0x50000200	QDEC_CTRL_REG	Quad Decoder control register
0x50000202	QDEC_XCNT_REG	Counter value of the X Axis
0x50000204	QDEC_YCNT_REG	Counter value of the Y Axis
0x50000206	QDEC_CLOCKDIV_REG	Clock divider register
0x50000208	QDEC_CTRL2_REG	Quad Decoder control register
0x5000020A	QDEC_ZCNT_REG	Z_counter
0x50001000	UART_RBR_THR_DLL_REG	Receive Buffer Register
0x50001004	UART_IER_DLH_REG	Interrupt Enable Register
0x50001008	UART_IIR_FCR_REG	Interrupt Identification Register/FIFO Control Register
0x5000100C	UART_LCR_REG	Line Control Register
0x50001010	UART_MCR_REG	Modem Control Register
0x50001014	UART_LSR_REG	Line Status Register
0x50001018	UART_MSR_REG	Modem Status Register
0x5000101C	UART_SCR_REG	Scratchpad Register
0x50001020	UART_LPDLL_REG	Low Power Divisor Latch Low
0x50001024	UART_LPDLH_REG	Low Power Divisor Latch High
0x50001030	UART_SRBR_STHR0_REG	Shadow Receive/Transmit Buffer Register
0x50001034	UART_SRBR_STHR1_REG	Shadow Receive/Transmit Buffer Register
0x50001038	UART_SRBR_STHR2_REG	Shadow Receive/Transmit Buffer Register
0x5000103C	UART_SRBR_STHR3_REG	Shadow Receive/Transmit Buffer Register
0x50001040	UART_SRBR_STHR4_REG	Shadow Receive/Transmit Buffer Register
0x50001044	UART_SRBR_STHR5_REG	Shadow Receive/Transmit Buffer Register
0x50001048	UART_SRBR_STHR6_REG	Shadow Receive/Transmit Buffer Register
0x5000104C	UART_SRBR_STHR7_REG	Shadow Receive/Transmit Buffer Register
0x50001050	UART_SRBR_STHR8_REG	Shadow Receive/Transmit Buffer Register
0x50001054	UART_SRBR_STHR9_REG	Shadow Receive/Transmit Buffer Register
0x50001058	UART_SRBR_STHR10_REG	Shadow Receive/Transmit Buffer Register
0x5000105C	UART_SRBR_STHR11_REG	Shadow Receive/Transmit Buffer Register
0x50001060	UART_SRBR_STHR12_REG	Shadow Receive/Transmit Buffer Register
0x50001064	UART_SRBR_STHR13_REG	Shadow Receive/Transmit Buffer Register

Description

UART Status register.

Transmit FIFO Level

Receive FIFO Level.

Shadow DMA Mode

Component Version

Halt TX

Shadow FIFO Enable

Shadow RCVR Trigger

Shadow TX Empty Trigger

Component Type Register Receive Buffer Register

Interrupt Enable Register

Modem Control Register

Modem Status Register

Low Power Divisor Latch Low

Low Power Divisor Latch High

Shadow Receive/Transmit Buffer Register

Shadow Receive/Transmit Buffer Register Shadow Receive/Transmit Buffer Register

UART Status register. Transmit FIFO Level

Line Control Register

Line Status Register

Scratchpad Register

Component Parameter Register

Interrupt Identification Register/FIFO Control Register

Software Reset Register.

Shadow Request to Send

Shadow Break Control Register

Shadow Receive/Transmit Buffer Register

Shadow Receive/Transmit Buffer Register

C	J
]	>
4	2
-	П
	š

Low Power Bluetooth Smart SoC with Audio Codec

0x5000117C	UART2_US
0x50001180	UART2_TF

Table 35: Register map

Port

UART SRBR STHR14 REG

UART SRBR STHR15 REG

UART_USR REG

UART TFL REG

UART RFL REG

UART SRR REG

UART SRTS REG

UART SBCR REG

UART SFE REG

UART SRT_REG

UART STET REG

UART_HTX_REG

UART CPR REG

UART UCV REG

UART_CTR_REG

UART2 RBR THR DLL REG

UART2 IER DLH REG

UART2_IIR_FCR_REG

UART2_LCR_REG

UART2 MCR REG

UART2_LSR_REG

UART2 MSR REG

UART2 SCR REG

UART2 LPDLL REG

UART2 LPDLH REG

UART2 SRBR STHR0 REG

UART2 SRBR STHR1 REG

UART2 SRBR STHR2 REG

UART2 SRBR STHR3 REG

UART2 SRBR STHR4 REG

UART2 SRBR STHR5 REG

UART2 SRBR STHR6 REG

UART2 SRBR STHR7 REG

UART2 SRBR STHR8 REG

UART2 SRBR STHR9 REG

UART2 SRBR STHR10 REG

UART2 SRBR STHR11 REG

UART2 SRBR STHR12 REG

UART2 SRBR STHR13 REG

UART2 SRBR STHR14 REG

UART2_SRBR_STHR15_REG UART2_USR_REG

REG

UART SDMAM REG

Address

0x50001068

0x5000106C

0x5000107C

0x50001080

0x50001084

0x50001088

0x5000108C

0x50001090

0x50001094

0x50001098

0x5000109C

0x500010A0

0x500010A4

0x500010F4

0x500010F8

0x500010FC

0x50001100 0x50001104

0x50001108

0x5000110C

0x50001110

0x50001114

0x50001118

0x5000111C

0x50001120

0x50001124

0x50001130

0x50001134

0x50001138

0x5000113C

0x50001140

0x50001144

0x50001148

0x5000114C

0x50001150

0x50001154

0x50001158

0x5000115C

0x50001160

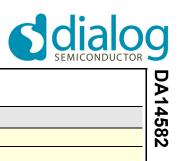
0x50001164

0x50001168

0x5000116C

Þ
14
Ϋ́
82

Address	Port	Description
0x50001184	UART2_RFL_REG	Receive FIFO Level.
0x50001188	UART2_SRR_REG	Software Reset Register.
0x5000118C	UART2_SRTS_REG	Shadow Request to Send
0x50001190	UART2_SBCR_REG	Shadow Break Control Register
0x50001194	UART2_SDMAM_REG	Shadow DMA Mode
0x50001198	UART2_SFE_REG	Shadow FIFO Enable
0x5000119C	UART2_SRT_REG	Shadow RCVR Trigger
0x500011A0	UART2_STET_REG	Shadow TX Empty Trigger
0x500011A4	UART2_HTX_REG	Halt TX
0x500011F4	UART2_CPR_REG	Component Parameter Register
0x500011F8	UART2_UCV_REG	Component Version
0x500011FC	UART2_CTR_REG	Component Type Register
0x50001200	SPI_CTRL_REG	SPI control register 0
0x50001202	SPI RX TX REG0	SPI RX/TX register0
0x50001204	SPI RX TX REG1	SPI RX/TX register1
0x50001206	SPI CLEAR INT REG	SPI clear interrupt register
0x50001208	SPI CTRL REG1	SPI control register 1
0x50001300	I2C CON REG	I2C Control Register
0x50001304	I2C TAR REG	I2C Target Address Register
0x50001308	I2C SAR REG	I2C Slave Address Register
0x50001310	I2C_DATA_CMD_REG	I2C Rx/Tx Data Buffer and Command Register
0x50001314	I2C_SS_SCL_HCNT_REG	Standard Speed I2C Clock SCL High Count Register
0x50001318	I2C SS SCL LCNT REG	Standard Speed I2C Clock SCL Low Count Register
0x5000131C	I2C_FS_SCL_HCNT_REG	Fast Speed I2C Clock SCL High Count Register
0x50001320	I2C_FS_SCL_LCNT_REG	Fast Speed I2C Clock SCL Low Count Register
0x5000132C	I2C INTR STAT REG	I2C Interrupt Status Register
0x50001330	I2C INTR MASK REG	I2C Interrupt Mask Register
0x50001334	I2C_RAW_INTR_STAT_REG	I2C Raw Interrupt Status Register
0x50001338	I2C_RX_TL_REG	I2C Receive FIFO Threshold Register
0x5000133C	I2C_TX_TL_REG	I2C Transmit FIFO Threshold Register
0x50001340	I2C_CLR_INTR_REG	Clear Combined and Individual Interrupt Register
0x50001344	I2C CLR RX UNDER REG	Clear RX UNDER Interrupt Register
0x50001348	I2C_CLR_RX_OVER_REG	Clear RX_OVER Interrupt Register
0x5000134C	I2C_CLR_TX_OVER_REG	Clear TX_OVER Interrupt Register
0x50001350	I2C CLR RD REQ REG	Clear RD_REQ Interrupt Register
0x50001350	I2C CLR TX ABRT REG	Clear TX_ABRT Interrupt Register
0x50001354	I2C_CLR_RX_DONE_REG	Clear RX_DONE Interrupt Register
0x50001358	I2C_CLR_ACTIVITY_REG	Clear ACTIVITY Interrupt Register
0x5000135C	I2C_CLR_ACTIVITY_REG	Clear STOP_DET Interrupt Register
0x50001360 0x50001364	I2C_CLR_STOP_DET_REG	Clear STOP_DET Interrupt Register
	I2C_CLR_START_DET_REG	
0x50001368		Clear GEN_CALL Interrupt Register
0x5000136C 0x50001370	I2C_ENABLE_REG I2C_STATUS_REG	I2C Enable Register I2C Status Register
		LOC STATUS REPORTED


Ņ	
14	
58	
32	

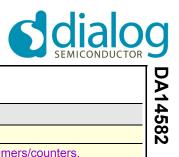
		SEMICONDUCTOR		
Table 35: Register map				
Address	Port	Description		
0x50001378	I2C_RXFLR_REG	I2C Receive FIFO Level Register		
0x5000137C	I2C_SDA_HOLD_REG	I2C SDA Hold Time Length Register		
0x50001380	I2C_TX_ABRT_SOURCE_REG	I2C Transmit Abort Source Register		
0x50001394	I2C_SDA_SETUP_REG	I2C SDA Setup Register		
0x50001398	I2C_ACK_GENERAL_CALL_REG	I2C ACK General Call Register		
0x5000139C	I2C_ENABLE_STATUS_REG	I2C Enable Status Register		
0x500013A0	I2C_IC_FS_SPKLEN_REG	I2C SS and FS spike suppression limit Size		
0x50001400	GPIO_IRQ0_IN_SEL_REG	GPIO interrupt selection for GPIO_IRQ0		
0x50001402	GPIO_IRQ1_IN_SEL_REG	GPIO interrupt selection for GPIO_IRQ1		
0x50001404	GPIO_IRQ2_IN_SEL_REG	GPIO interrupt selection for GPIO_IRQ2		
0x50001406	GPIO_IRQ3_IN_SEL_REG	GPIO interrupt selection for GPIO_IRQ3		
0x50001408	GPIO_IRQ4_IN_SEL_REG	GPIO interrupt selection for GPIO_IRQ4		
0x5000140C	GPIO_DEBOUNCE_REG	debounce counter value for GPIO inputs		
0x5000140E	GPIO_RESET_IRQ_REG	GPIO interrupt reset register		
0x50001410	GPIO_INT_LEVEL_CTRL_REG	high or low level select for GPIO interrupts		
0x50001412	KBRD_IRQ_IN_SEL0_REG	GPIO interrupt selection for KBRD_IRQ for P0		
0x50001414	KBRD_IRQ_IN_SEL1_REG	GPIO interrupt selection for KBRD_IRQ for P1 and P2		
0x50001416	KBRD_IRQ_IN_SEL2_REG	GPIO interrupt selection for KBRD_IRQ for P3		
0x50001500	GP_ADC_CTRL_REG	General Purpose ADC Control Register		
0x50001502	GP_ADC_CTRL2_REG	General Purpose ADC Second Control Register		
0x50001504	GP_ADC_OFFP_REG	General Purpose ADC Positive Offset Register		
0x50001506	GP_ADC_OFFN_REG	General Purpose ADC Negative Offset Register		
0x50001508	GP_ADC_CLEAR_INT_REG	General Purpose ADC Clear Interrupt Register		
0x5000150A	GP_ADC_RESULT_REG	General Purpose ADC Result Register		
0x5000150C	GP_ADC_DELAY_REG	General Purpose ADC Delay Register		
0x5000150E	GP_ADC_DELAY2_REG	General Purpose ADC Second Delay Register		
0x50001600	CLK_REF_SEL_REG	Select clock for oscillator calibration		
0x50001602	CLK_REF_CNT_REG	Count value for oscillator calibration		
0x50001604	CLK_REF_VAL_L_REG	XTAL16M reference cycles, lower 16 bits		
0x50001606	CLK_REF_VAL_H_REG	XTAL16M reference cycles, upper 16 bits		
0x50003000	P0_DATA_REG	P0 Data input / output register		
0x50003002	P0_SET_DATA_REG	P0 Set port pins register		
0x50003004	P0_RESET_DATA_REG	P0 Reset port pins register		
0x50003006	P00_MODE_REG	P00 Mode Register		
0x50003008	P01_MODE_REG	P01 Mode Register		
0x5000300A	P02_MODE_REG	P02 Mode Register		
0x5000300C	P03_MODE_REG	P03 Mode Register		
0x5000300E	P04_MODE_REG	P04 Mode Register		
0x50003010	P05_MODE_REG	P05 Mode Register		
0x50003012	P06_MODE_REG	P06 Mode Register		
0x50003014	P07_MODE_REG	P07 Mode Register		
0x50003020	P1_DATA_REG	P1 Data input / output register		
0x50003022	P1_SET_DATA_REG	P1 Set port pins register		

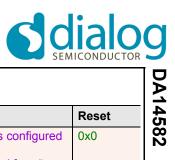
P1_RESET_DATA_REG

0x50003024

P1 Reset port pins register

Address	Port	Description
0x50003026	P10_MODE_REG	P10 Mode Register
0x50003028	P11_MODE_REG	P11 Mode Register
0x5000302A	P12_MODE_REG	P12 Mode Register
0x5000302C	P13_MODE_REG	P13 Mode Register
0x5000302E	P14_MODE_REG	P14 Mode Register
0x50003030	P15_MODE_REG	P15 Mode Register
0x50003040	P2_DATA_REG	P2 Data input / output register
0x50003042	P2_SET_DATA_REG	P2 Set port pins register
0x50003044	P2_RESET_DATA_REG	P2 Reset port pins register
0x50003046	P20_MODE_REG	P20 Mode Register
0x50003048	P21_MODE_REG	P21 Mode Register
0x5000304A	P22_MODE_REG	P22 Mode Register
0x5000304C	P23_MODE_REG	P23 Mode Register
0x5000304E	P24_MODE_REG	P24 Mode Register
0x50003050	P25_MODE_REG	P25 Mode Register
0x50003052	P26_MODE_REG	P26 Mode Register
0x50003054	P27_MODE_REG	P27 Mode Register
0x50003056	P28_MODE_REG	P28 Mode Register
0x50003058	P29_MODE_REG	P29 Mode Register
0x50003070	P01_PADPWR_CTRL_REG	Ports 0 and 1 Output Power Control Register
0x50003072	P2_PADPWR_CTRL_REG	Port 2 Output Power Control Register
0x50003074	P3_PADPWR_CTRL_REG	Port 3 Output Power Control Register
0x50003080	P3_DATA_REG	P3 Data input / output register
0x50003082	P3_SET_DATA_REG	P3 Set port pins register
0x50003084	P3_RESET_DATA_REG	P3 Reset port pins register
0x50003086	P30_MODE_REG	P30 Mode Register
0x50003088	P31_MODE_REG	P31 Mode Register
0x5000308A	P32_MODE_REG	P32 Mode Register
0x5000308C	P33_MODE_REG	P33 Mode Register
0x5000308E	P34_MODE_REG	P34 Mode Register
0x50003090	P35_MODE_REG	P35 Mode Register
0x50003092	P36_MODE_REG	P36 Mode Register
0x50003094	P37_MODE_REG	P37 Mode Register
0x50003100	WATCHDOG_REG	Watchdog timer register.
0x50003102	WATCHDOG_CTRL_REG	Watchdog control register.
0x50003200	CHIP_ID1_REG	Chip identification register 1.
0x50003201	CHIP_ID2_REG	Chip identification register 2.
0x50003202	CHIP_ID3_REG	Chip identification register 3.
0x50003203	CHIP_SWC_REG	Software compatibility register.
0x50003204	CHIP_REVISION_REG	Chip revision register.
0x50003205	CHIP_CONFIG1_REG	Chip configuration register 1.
0x50003206	CHIP_CONFIG2_REG	Chip configuration register 2.
0x50003207	CHIP_CONFIG3_REG	Chip configuration register 3.
0x5000320A	CHIP TEST1 REG	Chip test register 1.




Table 35: Register map

Address	Port	Description
0x5000320B	CHIP_TEST2_REG	Chip test register 2.
0x50003300	SET_FREEZE_REG	Controls freezing of various timers/counters.
0x50003302	RESET_FREEZE_REG	Controls unfreezing of various timers/counters.
0x50003304	DEBUG_REG	Various debug information register.
0x50003306	GP_STATUS_REG	General purpose system status register.
0x50003308	GP_CONTROL_REG	General purpose system control register.
0x50003400	TIMER0_CTRL_REG	Timer0 control register
0x50003402	TIMER0_ON_REG	Timer0 on control register
0x50003404	TIMER0_RELOAD_M_REG	16 bits reload value for Timer0
0x50003406	TIMER0_RELOAD_N_REG	16 bits reload value for Timer0
0x50003408	PWM2_DUTY_CYCLE	Duty Cycle for PWM2
0x5000340A	PWM3_DUTY_CYCLE	Duty Cycle for PWM3
0x5000340C	PWM4_DUTY_CYCLE	Duty Cycle for PWM4
0x5000340E	TRIPLE_PWM_FREQUENCY	Frequency for PWM 2,3 and 4
0x50003410	TRIPLE PWM CTRL REG	PWM 2 3 4 Control

Table 36: OTPC_MODE_REG (0x40008000)

Bit	Mode	Symbol	Description	Reset
31:30	-	-	Reserved	0x0
29:28	R/W	OTPC_MODE_PRG_ PORT_MUX	Selects the source that is connected to the prg_port port of the controller. 00 - {16'd0, BANDGAP_REG[15:0]} 01 - {RF_RSSI_COMP_CTRL_REG[15:0], 8'd0, RFIO_CTRL1_REG{7:0]} 10 - {3'd0, RF_LNA_CTRL3_REG[4:0], RF_LNA_CTRL2_REG[11:0], RF_LNA_CTRL1_REG[11:0]} 11 - {28'd0, RF_VCO_CTRL_REG[3:0]} See OTPC_MODE_PRG_PORT_SEL about the use of the prg_port	0x0
27:9	-	-	Reserved	0x0
3	R/W	OPTC_MODE_PRG_ FAST	Defines the timing that will be used for all the programming activities (APROG, MPROG and TWR) 0 - Selects the normal timing 1 - Selects the fast timing	0
7	R/W	OTPC_MODE_PRG_ PORT_SEL	Selects an alternative data source for the programming of the OTP macrocells, when the controller is configured in APROG mode. 0 - The fifo will be used as the data source. The fifo will be filled with a way defined by the register OTPC_MODE_USE_DMA. The number of words that will be programmed is defined by OTPC_NWORDS. 1 - Only one word will programmed. The value of the word is contained in the prg_port port of the controller. The values of the registers OTPC_MODE_USE_DMA, OTPC_NWORDS and the contents of the FIFO will not be used.	0x0
6	R/W	OTPC_MODE_TWO_ CC_ACC	Defines the duration of each read from the OTP macrocells. 0 - Reads 16 bits of data every one clock cycle. 1 - Reads 16 bits of data every two clock cycles.	0x0
5	R/W	OTPC_MODE_FIFO_ FLUSH	Writing 1, removes any content from the FIFO. This bit returns automatically to 0.	0x0

46

Bit	Mode	Symbol	Description	Reset
4	R/W	OTPC_MODE_USE_ DMA	Selects the use of the dma, when the controller is configured in one of the modes: AREAD or APROG. 0 - DMAis not used. The data should be transfered from/to controller through OTPC_FFPRT_REG 1 - DMA is used. Data transfers from/to controller are per- formed automatically. The AHB base address should be con- figured in OTPC_AHBADR_REG before the selection of the mode. If programming of the OTPC_MODE_REG is performed through the serial interface,the OTPC_MODE_USE_DMA will be set to 0 automatically. If the controller is in APROG mode and the OTPC_MODE_PRG_PORT_SEL is enabled, the dma will stay inactive.	0x0
3	-	-	Reserved	0x0
2:0	R/W	OTPC_MODE_MODE	Defines the mode of operation of the OTPC controller. The encoding of the modes is as follows: 000 - STBY mode 001 - MREAD mode 010 - MPROG mode 011 - AREAD mode 100 - APROG mode 101 - Test mode. Reserved 110 - Test mode. Reserved 111 - Test mode. Reserved 111 - Test mode. Reserved To manually move between modes, always return to STBY mode first.	0x0

Table 37: OTPC_PCTRL_REG (0x40008004)

Bit	Mode	Symbol	Description	Reset
31:28	-	-	Reserved	0x0
27	R/W	OTPC_PCTRL_ENU	Enables the programming in the upper bank of the OTP. 0 - Programming sequence is not applied in the upper bank. 1 - Programming sequence is applied in the upper bank.	0x0
26	R/W	OTPC_PCTRL_BITU	Defines the value of the selected bit in the upper bank, after the programming sequence.	0x0
25	R/W	OTPC_PCTRL_ENL	Enables the programming in the lower bank. 0 - The programming sequence is not applied in the lower bank. 1 -The programming sequence is applied in the lower bank.	0x0
24	R/W	OTPC_PCTRL_BITL	Defines the value of the selected bit in the lower bank, after the programming sequence.	0x0
23	R/W	OTPC_PCTRL_BSEL U	Selects between the U1 and U0 byte for the programming sequence in the upper bank. 0 - Program the U0 byte 1 - Program the U1 byte	0x0
22:20	R/W	OTPC_PCTRL_BADR U	Selects the bit inside the Ux (x=0,1) byte, which will be pro- grammed in the upper bank.	0x0
19	R/W	OTPC_PCTRL_BSEL L	Selects between the L1 and L0 byte for the programming sequence in the lower bank. 0 - Program the L0 byte 1 - Program the L1 byte	0x0
18:16	R/W	OTPC_PCTRL_BADR L	Selects the bit inside the Lx (x=0,1) byte, which will be pro- grammed in the lower bank.	0x0

Table	37: OTP(C_PCTRL_REG (0x4000	8004)	
Bit	Mode	Symbol	Description	Reset
15:13	-	-	Reserved	0x0
12:0	R/W	OTPC_PCTRL_WAD DR	Defines the address of a 32 bits word {U1,L1,U0,L0} in the macrocells, where one or two bits will be programmed. There are two macrocell banks, with 8 bits each. Each bank contribute with two memory positions for each 32 bits word. The Ux, Lx represent the bytes of the upper and lower bank respectively.	0x0

Table 38: OTPC_STAT	_REG (0x40008008)
---------------------	-------------------

Bit	Mode	Symbol	Description	Reset
31:29	-	-	Reserved	0x0
28:16	R	OTPC_STAT_NWOR DS	Contains the current value of the words to be processed.	0
15	R	OTPC_STAT_TERR_ U	Indicates the upper bank as the source of a test error. This value is valid when OTPC_STAT_TERROR is valid. 0 - There is no test error in the upper bank 1 - A test error has occured in the upper bank	0x0
14	R	OTPC_STAT_TERR_L	Indicates the lower bank as the source of a test error. The value is valid when OTPC_STAT_TERROR is valid. 0 - There is no test error in the lower bank 1 - A test error has occured in the lower bank	0x0
13	R	OTPC_STAT_PERR_ U	Indicates the upper bank as the source of a programming error. The value is valid when OTPC_STAT_PERROR is valid. 0 - There is no programming error in the upper bank 1 - A programming error has occured in the upper bank	0x0
12	R	OTPC_STAT_PERR_ L	Indicates the lower bank as the source of a programming error. The value is valid when OTPC_STAT_PERROR is valid. 0 - There is no programming error in the lower bank 1 - A programming error has occured in the lower bank	0x0
11:8	R	OTPC_STAT_FWORD S	Indicates the number of words which contained in the fifo of the controller.	0x0
7:5	-	-	Reserved	0x0
4	R	OTPC_STAT_ARDY	Monitors the progress of read or programming operations while in the AREAD or APROG modes. 0 - The controller is busy while reading or programming (AREAD or APROG modes). 1 - The controller is not busy in AREAD or APROG mode.	0x1
3	R	OTPC_STAT_TERRO R	Indicates the result of a test sequence. Should be checked after the end of a TBLANK, TDEC and TWR mode (OTPC_STAT_TRDY= 1). 0 - The test sequence ends with no error. 1 - The test sequence has failed.	0x0
2	R	OTPC_STAT_TRDY	Indicates the state of a test mode. Should be used to monitor the progress of the TBLANK, TDEC and TWR modes. 0 - The controller is busy. A test mode is in progress. 1 - There is no active test mode.	0x1

Table 38: OTPC_STAT_REG (0x40008008)				
Bit	Mode	Symbol	Description	Reset
1	R	OTPC_STAT_PERRO R	Indicates that an error has occurred during the bit-program- ming process. 0 - No error during the bit-programming process. 1 - The process of bit-programming failed. When the controller is in MPROG mode, this bit should be checked after the end of the programming process (OTPC_STAT_PRDY= 1). During APROG mode, the value of this field is normal to change periodically. Upon finishing the operation in the APROG mode (OTPC_STAT_ARDY= 1), this field indicates if the programming has failed or ended succesfully.	0x0
0	R	OTPC_STAT_PRDY	Indicates the state of a bit-programming process. 0 - The controller is busy. A bit-programming is in progress 1 - The logic which performs bit-programming is idle. When the controller is in MPROG mode, this bit should be used to monitor the progress of a programming request. During APROG mode, the value of this field it is normal to changing periodically.	0x1

Table 39: OTPC_AHBADR_REG (0x4000800C)

Bit	Mode	Symbol	Description	Reset
31:2	R/W	OTPC_AHBADR	Tthe AHB address used by the AHB master interface of the controller (bits [31:2]).	0x0
1:0	-	-	Reserved	0x0

Table 40: OTPC_CELADR_REG (0x40008010)

Bit	Mode	Symbol	Description	Reset
31:13	-	-	Reserved	0x0
12:0	R/W	OTPC_CELADR	Defines a word address inside the macrocell. Used in modes AREAD and APROG and is automatically updated.	0x0

Table 41: OTPC_NWORDS_REG (0x40008014)

Bit	Mode	Symbol	Description	Reset
31:13	-	-	Reserved	0x0
12:0	R/W	OTPC_NWORDS	The number of words (minus one) for reading/programming during the AREAD/APROG mode. If in APROG mode, and the OTPC_MODE_PRG_PORT_SEL is enabled (=1), this register will not be used and will stay unchanged. During mirroring, this register reflects the current amount of data that will be copied. It keeps its value until be written by the software with a new value. The number of the words that remaining to be processed by the controller is contained in the field OTPC_STAT_NWORDS.	0x0

Bit	Mode	Symbol	Description	Reset
31:0	R/W	OTPC_FFPRT	Provides access to the fifo through an access port. Write this register with the corresponding data, when the APROG mode is selected and the DMA is disabled. Read from this register the corresponding data, when the AREAD mode is selected and the DMA is disabled. Check OTPC_STAT_FWORDS register for data/space availability, before accessing the fifo.	0x0

Table 43: OTPC_FFRD_REG (0x4000801C)

Bit	Mode	Symbol	Description	
31:0	R	OTPC_FFRD	Contains the value read from the fifo, after a read of the OTPC_FFPRT_REG register.	0x0

Table 44: PATCH_VALID_REG (0x40008400)

Bit	Mode	Symbol	Description	Reset
31:8	-	-	Reserved	0x0
7:0	R/W	PATCH_VALID	Indicates which patch entry is valid. For example, when bit 0 is high it indicates that entry 0 is valid, i.e. the values of PATCH_ADDR0_REG / PATCH_DATA0_REG, are effective.	0x0

Table 45: PATCH_VALID_SET_REG (0x40008404)

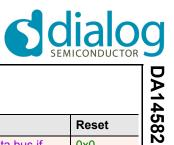

Bit	Mode	Symbol	Description	Reset
31:8	-	-	Reserved	0x0
7:0	R/W	PATCH_VALID_SET	Writing a bit with 1 will set the corresponding bit of PATCH_VALID_REG to 1. Writing a bit with 0 is ignored. Read always as 0.	0x0

Table 46: PATCH_VALID_RESET_REG (0x40008408)

Bit	Mode	Symbol	Description	Reset
31:8	-	-	Reserved	0x0
7:0	R/W	PATCH_VALID_RESE T	Writing a bit with 1 will clear the corresponding bit of PATCH_VALID_REG to 0. Writing a bit with zero is ignored. Read always as 0.	0x0

Table 47: PATCH_ADDR0_REG (0x40008410)

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	0x0

Reset 0x0

Reset

Reset

Reset

0x0

0x0

0x0

Table 4	8: PATC	H_DATA0_REG (0x4000	8414)
Bit	Mode	Symbol	Description
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG
Table 4	19: PATC	H_ADDR1_REG (0x400(08418)
Bit	Mode	Symbol	Description
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAx_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.
Table 5	50: PATC	H_DATA1_REG (0x4000	841C)
Bit	Mode	Symbol	Description
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG
Table 5	51: PATC	H_ADDR2_REG (0x400(08420)
Bit	Mode	Symbol	Description
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAx_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.

Table 52: PATCH_DATA2_REG (0x40008424)

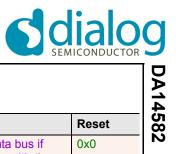

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0

Table 53: PATCH_ADDR3_REG (0x40008428)

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	0x0

Bit	Mode	Symbol	Description	Rese
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0
Table	55: PATC	CH_ADDR4_REG (0x	40008430)	
Bit	Mode	Symbol	Description	Rese
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	0x0
Table	56: PATC	H_DATA4_REG (0x4	0008434)	
Bit	Mode	Symbol	Description	Rese
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the	0x0
			respective PATCH_ADDRx_REG	
Table	57: PATC	H_ADDR5_REG (0x	respective PATCH_ADDRx_REG	
Table Bit	57: PATC	CH_ADDR5_REG (0x	respective PATCH_ADDRx_REG	Rese
	_		respective PATCH_ADDRx_REG	Rese 0x0
Bit 31:0	Mode R/W	Symbol	Image: respective PATCH_ADDRx_REG 40008438) Description This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAx_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	
Bit 31:0	Mode R/W	Symbol PATCH_ADDR	Image: respective PATCH_ADDRx_REG 40008438) Description This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAx_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	
Bit 31:0 Table	Mode R/W	Symbol PATCH_ADDR	respective PATCH_ADDRx_REG 40008438; Description This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAx_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block. HOUO843C;	0x0
Bit 31:0 Table Bit 31:0	Mode R/W 58: PATC Mode R/W	Symbol PATCH_ADDR CH_DATA5_REG (0x4 Symbol	respective PATCH_ADDRx_REG 40008438) Description This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block. Description This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0
Bit 31:0 Table Bit 31:0	Mode R/W 58: PATC Mode R/W	Symbol PATCH_ADDR CH_DATA5_REG (0x4 Symbol PATCH_DATA	respective PATCH_ADDRx_REG 40008438) Description This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block. Description This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0 Rese

Table 60: PATCH_	DATA6_REG	(0x40008444)
------------------	-----------	--------------

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0

Table 61: PATCH_ADDR7_REG (0x40008448)

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_ADDR	This is the value which will be compared to the address on the AHB. If a match occurs, the data bus will be filled with the value in the respective PATCH_DATAX_REG. Bits [1:0] are read-only and always read as "0". Never use the base address 0x0 for values in PATCH_ADDRx_REG because HW Patch block is located after the Address Remapping block.	0x0

Table 62: PATCH_DATA7_REG (0x4000844C)

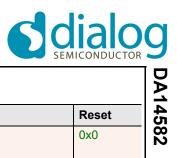
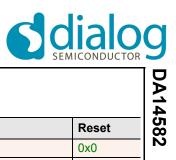

Bit	Mode	Symbol	Description	Reset
31:0	R/W	PATCH_DATA	This is the value which will be injected into the data bus if there is a match on the comparison of the address with the respective PATCH_ADDRx_REG	0x0

Table 63: CLK_AMBA_REG (0x5000000)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	OTP_ENABLE	Clock enable for OTP controller	0x0
6	-	-	Reserved	0x0
5:4	R/W	PCLK_DIV	APB interface clock (PCLK). Divider is cascaded with HCLK_DIV. PCLK is HCLK divided by: 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8	0x2
3:2	-	-	Reserved	0x0
1:0	R/W	HCLK_DIV	AHB interface and microprocessor clock (HCLK). HCLK is source clock divided by: 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8	0x2

Table 64: CLK_FREQ_TRIM_REG (0x5000002)


Bit	Mode	Symbol	Description	Reset
15:11	-	-	Reserved	0x0
10:8	R/W	COARSE_ADJ	Xtal frequency course trimming register. 0x0: lowest frequency 0x7: highest frequencyIncrement or decrement the binary value with 1. Wait approximately 200 us to allow the adjust- ment to settle.	0x0

Bit	Mode	Symbol	Description	Reset
7:0	R/W	FINE_ADJ	Xtal frequency fine trimming register. 0x00: lowest frequency 0xFF: highest frequency	0x0
Table	65: CLK_	_PER_REG (0x50000004)	
Bit	Mode	Symbol	Description	Reset
15	R/W	QUAD_ENABLE	Enable the Quadrature clock	0x0
14:13	-	-	Reserved	0x0
11	R/W	SPI_ENABLE	Enable SPI clock	0x0
10	-	-	Reserved	0x0
9:8	R/W	SPI_DIV	Division factor for SPI 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8	0x0
7	R/W	UART1_ENABLE	Enable UART1 clock	0x0
6	R/W	UART2_ENABLE	Enable UART2 clock	0x0
5	R/W	I2C_ENABLE	Enable I2C clock	0x0
4	R/W	WAKEUPCT_ENABLE	Enable Wakeup CaptureTimer clock	0x0
3	R/W	TMR_ENABLE	Enable TIMER0 and TIMER2 clock	0x0
2	-	-	Reserved	0x0
1:0	R/W	TMR_DIV	Division factor for TIMER0 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8	0x0

Table 66: CLK_RADIO_REG (0x5000008)

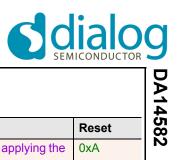
Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	BLE_ENABLE	Enable the BLE core clocks	0x0
6	R/W	BLE_LP_RESET	Reset for the BLE LP timer	0x1
5:4	R/W	BLE_DIV	Division factor for BLE core blocks 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8 The programmed frequency should not be lower than 8 MHz and not faster than the programmed CPU clock frequency. Refer also to BLE_CNTL2_REG[BLE_CLK_SEL].	0x0
3	R/W	RFCU_ENABLE	Enable the RF control Unit clock	0x0
2	-	-	Reserved	0x0
1:0	R/W	RFCU_DIV	Division factor for RF Control Unit 0x0: divide by 1 0x1: divide by 2 0x2: divide by 4 0x3: divide by 8 The programmed frequency must be exactly 8 MHz.	0x0

Table	Table 67: CLK_CTRL_REG (0x5000000A)				
Bit	Mode	Symbol	Description	Reset	
15:8	-	-	Reserved	0x0	
7	R	RUNNING_AT_XTAL1 6M	Indicates that the XTAL16M clock is used as clock, and may not be switched off	0x1	
6	R	RUNNING_AT_RC16 M	Indicates that the RC16M clock is used as clock	0x0	
5	R	RUNNING_AT_32K	Indicates that either the RC32k or XTAL32k is being used as clock	0x0	
4	-	-	Reserved	0x0	
3	R/W	XTAL16M_SPIKE_FLT _DISABLE	Disable spikefilter in digital clock	0x0	
2	R/W	XTAL16M_DISABLE	Setting this bit instantaneously disables the 16 MHz crystal oscillator. Also, after sleep/wakeup cycle, the oscillator will not be enabled. This bit may not be set to '1'when "RUNNING_AT_XTAL16M is '1' to prevent deadlock. After resetting this bit, wait for XTAL16_SETTLED or XTAL16_TRIM_READY to become '1' before switching to XTAL16 clock source.	0x0	
1:0	R/W	SYS_CLK_SEL	Selects the clock source. 0x0: XTAL16M (check the XTAL16_SETTLED and XTAL16_TRIM_READY bits!!) 0x1: RC16M 0x2/0x3: either RC32k or XTAL32k is used	0x0	

Table 68: PMU_CTRL_REG (0x50000010)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
11:8	R/W	RETENTION_MODE	Select the retainability of the 4 retention RAM macros. '1' is retainable, '0' is power gated. (3) is RETRAM4 (2) is RETRAM3 (1) is RETRAM2 (0) is RETRAM1	0x0
7	R/W	FORCE_BOOST	Force the DCDC into boost mode at next wakeup. Setting this bit reduces the deepsleep current. FORCE_BOOST has highest priority. When either FORCE_BOOST or FORCE_BUCK have been written, these bits cannot be changed.	0x0
6	R/W	FORCE_BUCK	Force the DCDC into buck mode at next wakeup. Setting this bit reduces the deepsleep current. FORCE_BOOST has highest priority. When either FORCE_BOOST or FORCE_BUCK have been written, these bits cannot be changed.	0x0
5:4	R/W	OTP_COPY_DIV	Sets the HCLK division during OTP mirroring	0x0
2	R/W	RADIO_SLEEP	Put the digital part of the radio in powerdown	0x1
1	R/W	PERIPH_SLEEP	Put all peripherals (I2C, UART, SPI, ADC) in powerdown	0x1
0	R/W	RESET_ON_WAKEU P	Perform a Hardware Reset after waking up. Booter will be started.	0x0

Low Power Bluetooth Smart SoC with Audio Codec


© 2015 Dialog Semiconductor

Bit	Mode	Symbol	Description	Reset
15	W	SW_RESET	Writing a '1' to this bit will reset the device, except for: SYS_CTRL_REG CLK_FREQ_TRIM_REG	0x0
9	R/W	TIMEOUT_DISABLE	Disables timeout in Power statemachine. By default, the statemachine continues if after 2 ms the blocks are not started up. This can be read back from ANA_STATUS_REG.	0x0
8	-	-	Reserved	0x0
7	R/W	DEBUGGER_ENABL E	Enable the debugger. This bit is set by the booter according to the OTP header. If not set, the SWDIO and SW_CLK can be used as gpio ports.	0x0
6	R/W	OTPC_RESET_REQ	Reset request for the OTP controller.	0x0
5	R/W	PAD_LATCH_EN	Latches the control signals of the pads for state retention in powerdown mode. 0: Control signals are retained 1: Latch is transparant, pad can be recontrolled	0x1
4	R/W	OTP_COPY	Enables OTP to SysRAM copy action after waking up PD_SYS	0x0
3	R/W	CLK32_SOURCE	Sets the clock source of the 32 kHz clock 0 = RC-oscillator 1 = 32 kHz crystal oscillator	0x0
2	R/W	RET_SYSRAM	Sets the development phase mode. The PD_SYS is not actually power gated (SysRAM is retained). No copy action to SysRAM is done when the system wakes up. For emulating startup time, the OTP_COPY bit still needs to be set.	0x0
1:0	R/W	REMAP_ADR0	Controls which memory is located at address 0x0000 for exe- cution. 0x0: ROM 0x1: OTP 0x2: SysRAM 0x3: RetRAM	0x0

Table 70: SYS_STAT_REG (0x50000014)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R	XTAL16_SETTLED	Indicates that XTAL16 has had > 2 ms of settle time	0x0
6	R	XTAL16_TRIM_READ Y	Indicates that XTAL trimming mechanism is ready, i.e. the trimming equals CLK_FREQ_TRIM_REG.	0x1
5	R	DBG_IS_UP	Indicates that PD_DBG is functional	0x0
4	R	DBG_IS_DOWN	Indicates that PD_DBG is in power down	0x1
3	R	PER_IS_UP	Indicates that PD_PER is functional	0x0
2	R	PER_IS_DOWN	Indicates that PD_PER is in power down	0x1
1	R	RAD_IS_UP	Indicates that PD_RAD is functional	0x0
0	R	RAD IS DOWN	Indicates that PD RAD is in power down	0x1

Bit	Mode	Symbol	Description	Reset
7:4	R/W	TRIM_TIME	Defines the delay between XTAL16M enable and applying the CLK_FREQ_TRIM_REG in steps of 250 us. 0x0: apply directly 0x1: wait between 0 and 250 us 0x2: wait between 250 us and 500 us etc. (Note 34)	0xA
3:0	R/W	SETTLE_TIME	Defines the delay between applying CLK_FREQ_TRIM_REG and XTAL16_SETTLED in steps of 250 us. 0x0: XTAL16_SETTLED is set direcly 0x1: wait between 0 and 250 us 0x2: wait between 250 us and 500 us etc.	0x2

Bit	Mode	Symbol	Description	Reset
15:13	-	-	Reserved	0x0
12	R/W	XTAL32K_DISABLE_ AMPREG	Setting this bit disables the amplitude regulation of the XTAL32kHz oscillator. Set this bit to '1' for an external clock applied at XTAL32Kp. Keep this bit '0' with a crystal between XTAL32Kp and XTAL32Km.	0x0
11:8	R/W	RC32K_TRIM	Controls the frequency of the RC32K oscillator. 0x0: lowest frequency 0x7: default 0xF: highest frequency	0x7
7	R/W	RC32K_ENABLE	Enables the 32 kHz RC oscillator	0x1
6:3	R/W	XTAL32K_CUR	Bias current for the 32kHz XTAL oscillator. 0x0: minimum 0x3: default 0xF: maximum For each application there is an optimal setting for which the startup behaviour is optimal.	0x3
2:1	R/W	XTAL32K_RBIAS	Setting for the bias resistor of the 32 kHz XTAL oscillator. 0x0: maximum 0x3: minimum Prefered setting will be provided by Dialog.	0x2
0	R/W	XTAL32K_ENABLE	Enables the 32 kHz XTAL oscillator	0x0

Table 73: CLK_16M_REG (0x50000022)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9	R/W	XTAL16_NOISE_FILT _ENABLE	Enables noise fiter in 16 MHz crystal oscillator	0x0
8	R/W	XTAL16_BIAS_SH_E NABLE	Enables Ibias sample/hold function in 16 MHz crystal oscilla- tor. This bit should be set when the system wake up and reset before entering deep or extended sleep mode.	0x0

D:4	Mada	Or mark al	Description	Deser
Bit	Mode	Symbol	Description	Reset
7:5	R/W	XTAL16_CUR_SET	Bias current for the 16 MHz XTAL oscillator. 0x0: minimum 0x7: maximum	0x5
4:1	R/W	RC16M_TRIM	Controls the frequency of the RC16M oscillator. 0x0: lowest frequency 0xF: highest frequency	0x0
0	R/W	RC16M ENABLE	Enables the 16 MHz RC oscillator	0x0

Table 74: CLK_RCX20K_REG (0x50000024)

Bit	Mode	Symbol	Description	Reset
12	R/W	RCX20K_SELECT	Selects RCX oscillator. 0 : RC32K oscillator 1: RCX oscillator	0
11	R/W	RCX20K_ENABLE	Enable the RCX oscillator	0
10	R/W	RCX20K_LOWF	Extra low frequency	0
9:8	R/W	RCX20K_BIAS	Bias control	1
7:4	R/W	RCX20K_NTC	Temperature control	7
3:0	R/W	RCX20K_TRIM	Controls the frequency of the RCX oscillator. 0x0: lowest frequency 0x7: default 0xF: highest frequency	8

Table 75: BANDGAP_REG (0x50000028)

Bit	Mode	Symbol	Description	Reset
15	-	-	Reserved	0x0
14	R/W	BGR_LOWPOWER	Test-mode, do not use. It disables the bandgap core (voltages will continue for some time, but will slowely drift away)	0x0
13:10	R/W	LDO_RET_TRIM	(Note 35)	0x0
9:5	R/W	BGR_ITRIM	Current trimming for bias	0x0
4:0	R/W	BGR_TRIM	Trim register for bandgap	0x0

Note 35: 0xF is the lowest voltage, but is too low for reliable startup at high temperature in combination with extended sleep. 0xA is 100 mV higher and considered to be the lowest value which is safe to use. 0x0 or 0x1 is again 100 mV higher and 0x0 is the reset value. 0x4 is the maximum voltage.

Table 76: ANA_STATUS_REG (0x5000002A)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9	R	BOOST_SELECTED	Indicates that DCDC is in boost mode	0x0
8	-	-	Reserved	0x0
7	R	BANDGAP_OK	Indicates that BANDGAP is OK	0x1
6	R	BOOST_VBAT_OK	Indicates that VBAT is above threshold while in BOOST converter mode.	0x0
5	R	LDO_ANA_OK	Indicates that LDO_ANA is in regulation. This LDO is used for the general-purpose ADC only	0x0
4	R	LDO_VDD_OK	Indicates that LDO_VDD is in regulation	0x1
3	R	LDO_OTP_OK	Indicates that LDO_OTP is in regulation	0x0

Table 76: ANA_STATUS_REG (0x5000002A)					
Bit	Mode	Symbol	Description	Reset	
2	R	VDCDC_OK	Indicates that VDCDC is above threshold.	0x0	
1	R	VBAT1V_OK	Indicates that VBAT1V is above threshold.	0x0	
0	R	VBAT1V_AVAILABLE	Indicates that VBAT1V is available.	0x0	

Table 77: WKUP_CTRL_REG (0x50000100)

Bit	Mode	Symbol	Description	Reset
15:14	-	-	Reserved	0x0
7	R/W	WKUP_ENABLE_IRQ	0: no interrupt will be enabled 1: if the event counter reaches the value set by WKUP_COMPARE_REG an IRQ will be generated	0x0
6	R/W	WKUP_SFT_KEYHIT	0: no effect 1: emulate key hit. The event counter will increment by 1 (after debouncing if enabled). First make this bit 0 before any new key hit can be sensed.	0x0
5:0	R/W	WKUP_DEB_VALUE	Keyboard debounce time (N*1 ms with N = 1 to 63). 0x0: no debouncing 0x1 to 0x3F: 1 ms to 63 ms debounce time	0x0

Table 78: WKUP_COMPARE_REG (0x50000102)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	COMPARE	The number of events that have to be counted before the wakeup interrupt will be given	0x0

Table 79: WKUP_RESET_IRQ_REG (0x50000104)

Bit	Mode	Symbol	Description	Reset
15:0	W		writing any value to this register will reset the interrupt. read- ing always returns 0.	0x0

Table 80: WKUP_COUNTER_REG (0x50000106)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R	EVENT_VALUE	This value represents the number of events that have been counted so far. It will be reset by resetting the interrupt.	0x0

Table 81: WKUP_RESET_CNTR_REG (0x50000108)

Bit	Mode	Symbol	Description	Reset
15:0	W	WKUP_CNTR_RST	writing any value to this register will reset the event counter	0x0

Table 82: WKUP_SELECT_P0_REG (0x5000010A)

Bit	Mode	Symbol	Description	Reset
7:0	R/W	WKUP_SELECT_P0	0: input P0x is not enabled for wakeup event counter 1: input P0x is enabled for wakeup event counter	0x0

T	D
	2
I	4
I	58
I	Ν

Table 83: WKUP_SELECT_P1_REG (0x5000010C)

Bit	Mode	Symbol	Description	Reset
5:0	R/W	WKUP_SELECT_P1	0: input P1x is not enabled for wakeup event counter1: input P1x is enabled for wakeup event counter	0x0

Table 84: WKUP_SELECT_P2_REG (0x5000010E)

Bit	Mode	Symbol	Description	Reset
9:0	R/W	WKUP_SELECT_P2	0: input P2x is not enabled for wakeup event counter 1: input P2x is enabled for wakeup event counter	0x0

Table 85: WKUP_SELECT_P3_REG (0x50000110)

Bit	Mode	Symbol	Description	Reset
7:0	R/W		0: input P3x is not enabled for wakeup event counter 1: input P3x is enabled for wakeup event counter	0x0

Table 86: WKUP_POL_P0_REG (0x50000112)

Bit	Mode	Symbol	Description	Reset
7:0	R/W	WKUP_POL_P0	0: enabled input P0x will increment the event counter if that input goes high 1: enabled input P0x will increment the event counter if that input goes low	0x0

Table 87: WKUP_POL_P1_REG (0x50000114)

Bit	Mode	Symbol	Description	Reset
5:0	R/W	WKUP_POL_P1	0: enabled input P1x will increment the event counter if that input goes high 1: enabled input P1x will increment the event counter if that input goes low	0x0

Table 88: WKUP_POL_P2_REG (0x50000116)

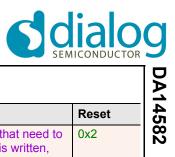

Bit	Mode	Symbol	Description	Reset
9:0	R/W	WKUP_POL_P2	0: enabled input P2x will increment the event counter if that input goes high 1: enabled input P2x will increment the event counter if that input goes low	0x0

Table 89: WKUP_POL_P3_REG (0x50000118)

Bit	Mode	Symbol	Description	Reset
7:0	R/W	WKUP_POL_P3	0: enabled input P3x will increment the event counter if that input goes high1: enabled input P3x will increment the event counter if that input goes low	0x0

Table 90: QDEC_CTRL_REG (0x50000200)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0

Table 90: QDEC_CTRL_REG (0x50000200)				
Bit	Mode	Symbol	Description	Reset
9:3	R/W	QD_IRQ_THRES	The number of events on either counter (X or Y) that need to be reached before an interrupt is generated. If 0 is written, then threshold is considered to be 1.	0x2
2	R	QD_IRQ_STATUS	Interrupt Status. If 1 an interrupt has occured.	0x0
1	R/W	QD_IRQ_CLR	Writing 1 to this bit clears the interrupt. This bit is autocleared	0x0
0	R/W	QD_IRQ_MASK	0: interrupt is masked 1: interrupt is enabled	0x0

Table 91: QDEC_XCNT_REG (0x50000202)

Bit	Mode	Symbol	Description	Reset
15:0	R	X_COUNTER	Contains a signed value of the events. Zero when channel is disabled	0x0

Table 92: QDEC_YCNT_REG (0x50000204)

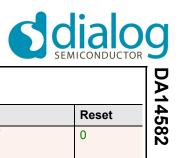

Bit	Mode	Symbol	Description	Reset
15:0	R	Y_COUNTER	Contains a signed value of the events. Zero when channel is disabled	0x0

Table 93: QDEC_CLOCKDIV_REG (0x50000206)

Bit	Mode	Symbol	Description	Reset
9:0	R/W	CLOCK_DIVIDER	Contains the number of the input clock cycles minus one, that are required to generate one logic clock cycle.	0x0

Table 94: QDEC_CTRL2_REG (0x50000208)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0
11:8	R/W	CHZ_PORT_SEL	Defines which GPIOs are mapped on Channel Z 0: none 1: P0[0] -> CHZ_A, P0[1] -> CHZ_B 2: P0[2] -> CHZ_A, P0[3] -> CHZ_B 3: P0[4] -> CHZ_A, P0[5] -> CHZ_B 4: P0[6] -> CHZ_A, P0[7] -> CHZ_B 5: P1[0] -> CHZ_A, P1[1] -> CHZ_B 6: P1[2] -> CHZ_A, P1[3] -> CHZ_B 7: P2[3] -> CHZ_A, P2[4] -> CHZ_B 8: P2[5] -> CHZ_A, P2[6] -> CHZ_B 9: P2[7] -> CHZ_A, P2[8] -> CHZ_B 10: P2[9] -> CHZ_A, P2[0] -> CHZ_B 1115: None	0

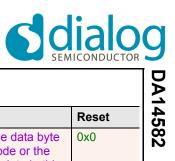

Bit	Mode	Symbol	Description	Reset
7:4	R/W	CHY_PORT_SEL	Defines which GPIOs are mapped on Channel Y 0: none 1: P0[0] -> CHY_A, P0[1] -> CHY_B 2: P0[2] -> CHY_A, P0[3] -> CHY_B 3: P0[4] -> CHY_A, P0[5] -> CHY_B 4: P0[6] -> CHY_A, P0[7] -> CHY_B 5: P1[0] -> CHY_A, P1[1] -> CHY_B 6: P1[2] -> CHY_A, P1[3] -> CHY_B 7: P2[3] -> CHY_A, P2[4] -> CHY_B 8: P2[5] -> CHY_A, P2[6] -> CHY_B 9: P2[7] -> CHY_A, P2[8] -> CHY_B 10: P2[9] -> CHY_A, P2[0] -> CHY_B 1115: None	0
3:0	R/W	CHX_PORT_SEL	Defines which GPIOs are mapped on Channel X 0: none 1: P0[0] -> CHX_A, P0[1] -> CHX_B 2: P0[2] -> CHX_A, P0[3] -> CHX_B 3: P0[4] -> CHX_A, P0[5] -> CHX_B 4: P0[6] -> CHX_A, P0[7] -> CHX_B 5: P1[0] -> CHX_A, P1[1] -> CHX_B 6: P1[2] -> CHX_A, P1[3] -> CHX_B 7: P2[3] -> CHX_A, P2[4] -> CHX_B 8: P2[5] -> CHX_A, P2[6] -> CHX_B 9: P2[7] -> CHX_A, P2[8] -> CHX_B 10: P2[9] -> CHX_A, P2[0] -> CHX_B 1115: None	0

Table 95: QDEC_ZCNT_REG (0x5000020A)

Bit	Mode	Symbol	Description	Reset
15:0	R	Z_COUNTER	Contains a signed value of the events. Zero when channel is disabled	0

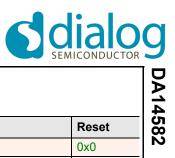
Table 96: UART_RBR_THR_DLL_REG (0x50001000)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/W	-	Receive Buffer Register: This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line sta- tus Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Transmit Holding Register: This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost. Divisor Latch (Low): This register makes up the lower 8-bits of a 16-bit, read/write, Divi- sor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set. The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock freq) / (16 * divisor) Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications will occur. Also, once the DLL is set, at least 8 clock cycles of the slowest DW_apb_uart clock should	0x0

Table 97: UART_IER_DLH_REG (0x50001004)

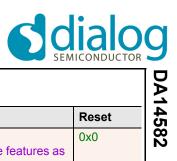
Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	PTIME_DLH7	Interrupt Enable Register: PTIME, Programmable THRE Interrupt Mode Enable. This is used to enable/disable the generation of THRE Interrupt. 0 = disabled 1 = enabled Divi- sor Latch (High): Bit[7] of the 8 bit DLH register.	0x0
6:4	-	-	Reserved	0x0
3	R/W	EDSSI_DLH3	Interrupt Enable Register: EDSSI, Enable Modem Status Interrupt. This is used to enable/disable the generation of Modem Status Interrupt. This is the fourth highest priority interrupt. 0 = disabled 1 = enabled Divisor Latch (High): Bit[3] of the 8 bit DLH register	0x0
2	R/W	ELSI_DHL2	Interrupt Enable Register: ELSI, Enable Receiver Line Status Interrupt. This is used to enable/disable the generation of Receiver Line Status Interrupt. This is the highest priority interrupt. 0 = disabled 1 = enabled Divisor Latch (High): Bit[2] of the 8 bit DLH register.	0x0



Bit	Mode	Symbol	Description	Reset
1	R/W	ETBEI_DLH1	Interrupt Enable Register: ETBEI, Enable Transmit Holding Register Empty Interrupt. This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt. This is the third highest priority interrupt. 0 = disabled 1 = ena- bled Divisor Latch (High): Bit[1] of the 8 bit DLH register.	0x0
0	R/W	ERBFI_DLH0	Interrupt Enable Register: ERBFI, Enable Received Data Available Interrupt. This is used to enable/disable the genera- tion of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFO's enabled). These are the second highest priority interrupts. 0 = disabled 1 = enabled Divisor Latch (High): Bit[0] of the 8 bit DLH regis- ter.	0x0

Table 98: UART_IIR_FCR_REG (0x50001008)

Γ


Bit	Mode	Symbol	Description	Reset
15:0	R/W	IIR_FCR	Interrupt Identification Register, reading this register; FIFO Control Register, writing to this register. Interrupt Identification Register: Bits[7:6], FIFO's Enabled (or FIFOSE): This is used to indicate whether the FIFO's are enabled or disabled. 00 = disabled. 11 = enabled. Bits[3:0], Interrupt ID (or IID): This indicates the highest priority pending interrupt which can be one of the following types: 0000 = modem status. 0001 = no interrupt pending. 0010 = THR empty. 0100 = received data available. 0110 = receiver line status. 0111 = busy detect. 1100 = character timeout. Bits[7:6], RCVR Trigger (or RT):. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt will be gener- ated. In auto flow control mode it is used to determine when the rts_n signal will be de-asserted. It also determines when the dma_rx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are sup- ported: 00 = 1 character in the FIFO 01 = FIFO 1/4 full 10 = FIFO 1/2 full 11 = FIFO 2 less than full Bits[5:4], TX Empty Trigger (or TET): This is used to select the empty threshold level at which the THRE Interrupts will be generated when the mode is active. It also determines when the dma_tx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are supported: 00 = FIFO 1/2 full Bit[3], DMA Mode (or DMAM): This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals. 0 = mode 0 1 = mode 1 Bit[2], XMIT FIFO Reset (or XFIFOR): This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing' and it is not necessary to clear this bit. Bit[1], RCVR FIFO Reset (or RFIFOR): This resets the control portion of the receive FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing' and it is not necessary to clear this bit. Bit[0], FIFO Enable (or FIFOE): This enables/ disables the transmit (XMIT) and receive (RCVR	0x0

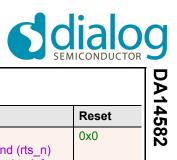
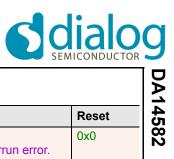

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	UART_DLAB	 Divisor Latch Access Bit. This bit is used to enable reading and writing of the Divisor Latch register (DLL and DLH) to set the baud rate of the UART. This bit must be cleared after initial baud rate setup in order to access other registers. 	0x0
6	R/W	UART_BC	Break Control Bit. This is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared. If active (MCR[6] set to one) the sir_out_n line is continuously pulsed. When in Loopback Mode, the break condition is internally looped back to the receiver and the sir_out_n line is forced low.	0x0
5	-	-	Reserved	0x0
4	R/W	UART_EPS	Even Parity Select. This is used to select between even and odd parity, when par- ity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked.	0x0
3	R/W	UART_PEN	 Parity Enable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively. 0 = parity disabled 1 = parity enabled 	0x0
2	R/W	UART_STOP	Number of stop bits.This is used to select the number of stop bits per character that the peripheral transmits and receives. If set to zero, one stop bit is transmitted in the serial data.If set to one and the data bits are set to 5 (LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise, two stop bits are transmitted. Note that regardless of the number of stop bits selected, the receiver checks only the first stop bit.0 = 1 stop bit 1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit	0x0
1:0	R/W	UART_DLS	Data Length Select. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 00 = 5 bits 01 = 6 bits 10 = 7 bits 11 = 8 bits	0x0

Table 100: UART_MCR_REG (0x50001010)

Bit	Mode	Symbol	Description	Reset
15:7	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
6	R/W	UART_SIRE	SIR Mode Enable. This is used to enable/disable the IrDA SIR Mode features as described in "IrDA 1.0 SIR Protocol" on page 53. 0 = IrDA SIR Mode disabled 1 = IrDA SIR Mode enabled	0x0
5	R/W	UART_AFCE	Auto Flow Control Enable. When FIFOs are enabled and the Auto Flow Control Enable (AFCE) bit is set, hardware Auto Flow Control is enabled via CTS and RTS. 0 = Auto Flow Control Mode disabled 1 = Auto Flow Control Mode enabled	0x0
4	R/W	UART_LB	LoopBack Bit. This is used to put the UART into a diagnostic mode for test purposes. If operating in UART mode (SIR_MODE not active, MCR[6] set to zero), data on the sout line is held high, while serial data output is looped back to the sin line, internally. In this mode all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n, out1_n, out2_n) are looped back to the inputs, inter- nally. If operating in infrared mode (SIR_MODE active, MCR[6] set to one), data on the sir_out_n line is held low, while serial data output is inverted and looped back to the sir_in line.	0x0
3	R/W	UART_OUT2	OUT2. This is used to directly control the user-designated Output2 (out2_n) output. The value written to this location is inverted and driven out on out2_n, that is: 0 = out2_n de-asserted (logic 1) 1 = out2_n asserted (logic 0) Note that in Loopback mode (MCR[4] set to one), the out2_n output is held inactive high while the value of this location is internally looped back to an input.	0x0
2	R/W	UART_OUT1	OUT1. This is used to directly control the user-designated Output1 (out1_n) output. The value written to this location is inverted and driven out on out1_n, that is: 0 = out1_n de-asserted (logic 1) 1 = out1_n asserted (logic 0) Note that in Loopback mode (MCR[4] set to one), the out1_n output is held inactive high while the value of this location is internally looped back to an input.	0x0

Bit	Mode	Symbol	Description	Reset
1	R/W	UART_RTS	Request to Send. This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data. When Auto Flow Control is disabled (MCR[5] set to zero), the rts_n signal is set low by programming MCR[1] (RTS) to a high. When Auto Flow Control is enabled (MCR[5] set to one) and FIFOs are enabled (FCR[0] set to one), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal is de-asserted when MCR[1] is set low. Note that in Loopback mode (MCR[4] set to one), the rts_n output is held inactive (high) while the value of this location is internally looped back to an input.	0x0
0	-	-	Reserved	0x0


Table 101: UART_LSR_REG	(0x50001014)
-------------------------	--------------

Γ

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R	UART_RFE	 Receiver FIFO Error bit. This bit is only relevant when FIFOs are enabled (FCR[0] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO. 0 = no error in RX FIFO 1 = error in RX FIFO This bit is cleared when the LSR is read and the character with the error is at the top of the receiver FIFO and there are no subsequent errors in the FIFO. 	0x0
6	R	UART_TEMT	Transmitter Empty bit. If FIFOs enabled (FCR[0] set to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty.	0x1
5	R	UART_THRE	Transmit Holding Register Empty bit. If THRE mode is disabled (IER[7] set to zero) and regardless of FIFO's being implemented/enabled or not, this bit indicates that the THR or TX FIFO is empty. This bit is set whenever data is transferred from the THR or TX FIFO to the transmitter shift register and no new data has been written to the THR or TX FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled. If both modes are active (IER[7] set to one and FCR[0] set to one respectively), the functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE inter- rupts, which are then controlled by the FCR[5:4] threshold setting.	0x1

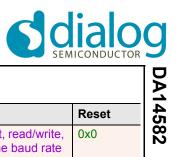
Bit	Mode	RT_LSR_REG (0x5	Description	Reset
4	R	UART_B1	Break Interrupt bit. This is used to indicate the detection of a break sequence on the serial input data. If in UART mode (SIR_MODE == Disabled), it is set whenever the serial input, sin, is held in a logic '0' state for longer than the sum of start time + data bits + parity + stop bits. If in infrared mode (SIR_MODE == Enabled), it is set whenever the serial input, sir_in, is continuously pulsed to logic '0' for longer than the sum of start time + data bits + parity + stop bits. A break condition on serial input causes one and only one character, consisting of all zeros, to be received by the UART. In the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO. Reading the LSR clears the BI bit. In the non-FIFO mode, the BI indication occurs immediately and persists until the LSR is read.	0x0
3	R	UART_FE	 Framing Error bit. This is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data. In the FIFO mode, since the framing error is associated with a character received, it is revealed when the character with the framing error is at the top of the FIFO. When a framing error occurs, the UART tries to resynchronize. It does this by assuming that the error was due to the start bit of the next character and then continues receiving the other bit i.e. data, and/or parity and stop. It should be noted that the Framing Error (FE) bit (LSR[3]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (LSR[4]). 0 = no framing error 1 = framing error Reading the LSR clears the FE bit. 	0x0
2	R	UART_PE	Parity Error bit. This is used to indicate the occurrence of a parity error in the receiver if the Parity Enable (PEN) bit (LCR[3]) is set. In the FIFO mode, since the parity error is associated with a character received, it is revealed when the character with the parity error arrives at the top of the FIFO. It should be noted that the Parity Error (PE) bit (LSR[2]) is set if a break interrupt has occurred, as indicated by Break Inter- rupt (BI) bit (LSR[4]). 0 = no parity error 1 = parity error Reading the LSR clears the PE bit.	0x0

Bit	Mode	Symbol	Description	Reset
1	R	UART_OE	Overrun error bit. This is used to indicate the occurrence of an overrun error. This occurs if a new data character was received before the previous data was read. In the non-FIFO mode, the OE bit is set when a new character arrives in the receiver before the previous character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. 0 = no overrun error 1 = overrun error Reading the LSR clears the OE bit.	0x0
0	R	UART_DR	Data Ready bit. This is used to indicate that the receiver contains at least one character in the RBR or the receiver FIFO. 0 = no data ready 1 = data ready This bit is cleared when the RBR is read in non-FIFO mode, or when the receiver FIFO is empty, in FIFO mode.	0x0

Table 102: UART_MSR_REG (0x50001018)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R	UART_DCD	Data Carrier Detect. This is used to indicate the current state of the modem control line dcd_n. This bit is the complement of dcd_n. When the Data Carrier Detect input (dcd_n) is asserted it is an indica- tion that the carrier has been detected by the modem or data set. 0 = dcd_n input is de-asserted (logic 1) 1 = dcd_n input is asserted (logic 0) In Loopback Mode (MCR[4] set to one), DCD is the same as MCR[3] (Out2).	0x0
6	R	UART_R1	Ring Indicator. This is used to indicate the current state of the modem control line ri_n. This bit is the complement of ri_n. When the Ring Indicator input (ri_n) is asserted it is an indication that a tele- phone ringing signal has been received by the modem or data set. 0 = ri_n input is de-asserted (logic 1) 1 = ri_n input is asserted (logic 0) In Loopback Mode (MCR[4] set to one), RI is the same as MCR[2] (Out1).	0x0
5	-	-	Reserved	0x0

Tabl	e 102: UAF	RT_MSR_REG (0x50	001018)	
Bit	Mode	Symbol	Description	Reset
4	R	UART_CTS	Clear to Send. This is used to indicate the current state of the modem control line cts_n. This bit is the complement of cts_n. When the Clear to Send input (cts_n) is asserted it is an indication that the modem or data set is ready to exchange data with the UART Ctrl. 0 = cts_n input is de-asserted (logic 1) 1 = cts_n input is asserted (logic 0) In Loopback Mode (MCR[4] = 1), CTS is the same as MCR[1] (RTS).	0x0
3	R	UART_DDCD	Delta Data Carrier Detect. This is used to indicate that the modem control line dcd_n has changed since the last time the MSR was read. 0 = no change on dcd_n since last read of MSR 1 = change on dcd_n since last read of MSR Reading the MSR clears the DDCD bit. In Loopback Mode (MCR[4] = 1), DDCD reflects changes on MCR[3] (Out2). Note, if the DDCD bit is not set and the dcd_n signal is asserted (low) and a reset occurs (software or otherwise), then the DDCD bit is set when the reset is removed if the dcd_n signal remains asserted.	0x0
2	R	UART_TERI	 Trailing Edge of Ring Indicator. This is used to indicate that a change on the input ri_n (from an active-low to an inactive-high state) has occurred since the last time the MSR was read. 0 = no change on ri_n since last read of MSR 1 = change on ri_n since last read of MSR Reading the MSR clears the TERI bit. In Loopback Mode (MCR[4] = 1), TERI reflects when MCR[2] (Out1) has changed state from a high to a low. 	0x0
1	-	-	Reserved	0x0
0	R	UART_DCTS	Delta Clear to Send. This is used to indicate that the modem control line cts_n has changed since the last time the MSR was read. 0 = no change on cts_n since last read of MSR 1 = change on cts_n since last read of MSR Reading the MSR clears the DCTS bit. In Loopback Mode (MCR[4] = 1), DCTS reflects changes on MCR[1] (RTS). Note, if the DCTS bit is not set and the cts_n signal is asserted (low) and a reset occurs (software or otherwise), then the DCTS bit is set when the reset is removed if the cts_n signal remains asserted.	0x0


Table 103: UART_SCR_REG (0x5000101C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	UART_SCRATCH_PA D	This register is for programmers to use as a temporary stor- age space. It has no defined purpose in the UART Ctrl.	0x0

Table 104: UART_LPDLL_REG (0x50001020)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Bit	Mode	Symbol	Description	Reset
7:0	R/W	UART_LPDLL	 This register makes up the lower 8-bits of a 16-bit, read/write, Low Power Divisor Latch register that contains the baud rate divisor for the UART, which must give a baud rate of 115.2K. This is required for SIR Low Power (minimum pulse width) detection at the receiver. This register may be accessed only when the DLAB bit (LCR[7]) is set. The output low-power baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: Low power baud rate = (serial clock frequency)/(16* divisor) Therefore, a divisor must be selected to give a baud rate of 115.2K. NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH) are set to 0, the low-power baud clock is disabled and no low-power pulse detection (or any pulse detection) occurs at the receiver. Also, once the LPDLL is set, at least eight clock cycles of the slowest UART Ctrl clock should be allowed to pass before transmitting or receiving data. 	0x0

Table 105: UART_L	PDLH_REG	(0x50001024)	

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	UART_LPDLH	 This register makes up the upper 8-bits of a 16-bit, read/write, Low Power Divisor Latch register that contains the baud rate divisor for the UART, which must give a baud rate of 115.2K. This is required for SIR Low Power (minimum pulse width) detection at the receiver. This register may be accessed only when the DLAB bit (LCR[7]) is set. The output low-power baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: Low power baud rate = (serial clock frequency)/(16* divisor) Therefore, a divisor must be selected to give a baud rate of 115.2K. NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH) are set to 0, the low-power baud clock is disabled and no low-power pulse detection (or any pulse detection) occurs at the receiver. Also, once the LPDLH is set, at least eight clock cycles of the slowest UART Ctrl clock should be allowed to pass before transmitting or receiving data. 	0x0

Table 106: UART_SRBR_STHR0_REG (0x50001030)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Mode Symbol	Description
R/W SRBR_STHF	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data carrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

Table 107: UART_SRBR_STHR1_REG (0x50001034)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mo	ode	Symbol	Description	Reset
7:0 R/V		SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 108: UART_SRBR_STHR2_REG (0x50001038)

ľ	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mo	de Symbol	Description	Reset
20 RΛ	V SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 109: UART_SRBR_STHR3_REG (0x5000103C)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

t Mode Symbol	Description Res
R/W SRBR_STHF	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data carrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

Table 110: UART_SRBR_STHR4_REG (0x50001040)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 111: UART_SRBR_STHR5_REG (0x50001044)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

it Mode	Symbol	Description	Reset
0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 112: UART_SRBR_STHR6_REG (0x50001048)

В	Bit	Mode	Symbol	Description	Reset
1	5:8	-	-	Reserved	0x0

it Mode	Symbol	Description	Reset
0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 113: UART_SRBR_STHR7_REG (0x5000104C)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Mode S	Symbol	Description	Reset
R/W S	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 114: UART_SRBR_STHR8_REG (0x50001050)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

it Mode Symbo	Description	Reset
0 R/W SRBR_	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 115: UART_SRBR_STHR9_REG (0x50001054)

I	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 116: UART_SRBR_STHR10_REG (0x50001058)

1	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full	0x0

Table 117: UART_SRBR_STHR11_REG (0x5000105C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
7:0	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full	0x0

Table 118: UART_SRBR_STHR12_REG (0x50001060)

1	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 119: UART_SRBR_STHR13_REG (0x50001064)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full	0x0

Table 120: UART_SRBR_STHR14_REG (0x50001068)

	Bit	Mode	Symbol	Description	Reset
l	15:8	-	-	Reserved	0x0

Bit Mode	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full	0x0

Table 121: UART_SRBR_STHR15_REG (0x5000106C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

it Mode	e Symbol	Description F	Reset
:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full	0x0

Bit	Mode	Symbol	Description	Reset
15:5	-	-	Reserved	0x0
4	R	UART_RFF	Receive FIFO Full. This is used to indicate that the receive FIFO is completely full. 0 = Receive FIFO not full 1 = Receive FIFO Full This bit is cleared when the RX FIFO is no longer full.	0x0
3	R	UART_RFNE	Receive FIFO Not Empty. This is used to indicate that the receive FIFO contains one or more entries. 0 = Receive FIFO is empty 1 = Receive FIFO is not empty This bit is cleared when the RX FIFO is empty.	0x0
2	R	UART_TFE	Transmit FIFO Empty. This is used to indicate that the transmit FIFO is completely empty. 0 = Transmit FIFO is not empty 1 = Transmit FIFO is empty This bit is cleared when the TX FIFO is no longer empty.	0x1

Bit	Mode	Symbol	Description	Reset
1	R	UART_TFNF	Transmit FIFO Not Full. This is used to indicate that the transmit FIFO in not full. 0 = Transmit FIFO is full 1 = Transmit FIFO is not full This bit is cleared when the TX FIFO is full.	0x1
0	-	-	Reserved	0x0

Table 123: UART_TFL_REG (0x50001080)

Bit	Mode	Symbol	Description	Reset
15:0	R	UART_TRANSMIT_FI FO_LEVEL	Transmit FIFO Level. This is indicates the number of data entries in the transmit FIFO.	0x0

Table 124: UART_RFL_REG (0x50001084)

Bit	Mode	Symbol	Description	Reset
15:0	R	UART_RECEIVE_FIF O_LEVEL	Receive FIFO Level. This is indicates the number of data entries in the receive FIFO.	0x0

Table 125: UART_SRR_REG (0x50001088)

Bit	Mode	Symbol	Description	Reset
15:3	-	-	Reserved	0x0
2	W	UART_XFR	XMIT FIFO Reset. This is a shadow register for the XMIT FIFO Reset bit (FCR[2]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the transmit FIFO. This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.	0x0
1	W	UART_RFR	RCVR FIFO Reset. This is a shadow register for the RCVR FIFO Reset bit (FCR[1]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the receive FIFO This resets the control portion of the receive FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.	0x0
0	W	UART_UR	UART Reset. This asynchronously resets the UART Ctrl and synchronously removes the reset assertion. For a two clock implementation both pclk and sclk domains are reset.	0x0

Table 126: UART_SRTS_REG (0x5000108C)

E	Bit	Mode	Symbol	Description	Reset
1	15:1	-	-	Reserved	0x0

	_	RT_SRTS_REG (0x50001	·	
Bit	Mode R/W	Symbol UART SHADOW RE	Description Shadow Request to Send.	Reset
		QUEST_TO_SEND	This is a shadow register for the RTS bit (MCR[1]), this can be used to remove the burden of having to perform a read-mod- ify-write on the MCR. This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART Ctrl is ready to exchange data. When Auto Flow Control is disabled (MCR[5] = 0), the rts_n signal is set low by programming MCR[1] (RTS) to a high. When Auto Flow Control is enabled (MCR[5] = 1) and FIFOs are enabled (FCR[0] = 1), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). Note that in Loopback mode (MCR[4] = 1), the rts_n output is held inactive-high while the value of this location is internally looped back to an input.	

Table 127: UART_SBCR_REG (0x50001090)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	UART_SHADOW_BR EAK_CONTROL	Shadow Break Control Bit. This is a shadow register for the Break bit (LCR[6]), this can be used to remove the burden of having to performing a read modify write on the LCR. This is used to cause a break condi- tion to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared. If SIR_MODE active (MCR[6] = 1) the sir_out_n line is contin- uously pulsed. When in Loopback Mode, the break condition is internally looped back to the receiver.	0x0

Table 128: UART_SDMAM_REG (0x50001094)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	UART_SHADOW_DM A_MODE	Shadow DMA Mode. This is a shadow register for the DMA mode bit (FCR[3]). This can be used to remove the burden of having to store the pre- viously written value to the FCR in memory and having to mask this value so that only the DMA Mode bit gets updated. This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals. 0 = mode 0 1 = mode 1	0x0

Table 129: UART_SFE_REG (0x50001098)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0

Table	e 129: UAF	RT_SFE_REG (0x500010	98)	
Bit	Mode	Symbol	Description	Reset
0	R/W	UART_SHADOW_FIF O_ENABLE	Shadow FIFO Enable. This is a shadow register for the FIFO enable bit (FCR[0]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the FIFO enable bit gets updated. This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. If this bit is set to zero (disabled) after being enabled then both the XMIT and RCVR controller por- tion of FIFOs are reset.	0x0

Table 130: UART_SRT_REG (0x5000109C)

Bit	Mode	Symbol	Description	Reset
15:2	-	-	Reserved	0x0
1:0	R/W	UART_SHADOW_RC VR_TRIGGER	Shadow RCVR Trigger. This is a shadow register for the RCVR trigger bits (FCR[7:6]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the RCVR trigger bit gets updated. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. It also determines when the dma_rx_req_n signal is asserted when DMA Mode (FCR[3]) = 1. The following trigger levels are supported: 00 = 1 character in the FIFO $01 = FIFO \hat{A}^{1/2}_{1/2}$ full $10 = FIFO \hat{A}^{1/2}_{1/2}$ full 11 = FIFO 2 less than full	0x0

Table 131: UART_STET_REG (0x500010A0)

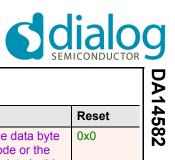

Bit	Mode	Symbol	Description	Reset
15:2	-	-	Reserved	0x0
1:0	R/W	UART_SHADOW_TX _EMPTY_TRIGGER	Shadow TX Empty Trigger. This is a shadow register for the TX empty trigger bits (FCR[5:4]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the TX empty trig- ger bit gets updated. This is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. The following trigger levels are supported: 00 = FIFO empty 01 = 2 characters in the FIFO $10 = FIFO \hat{A}^{1/4}_{1/4}$ full $11 = FIFO \hat{A}^{1/2}_{1/4}$ full	0x0

Table 132: UART_HTX_REG (0x500010A4)

	Bit	Mode	Symbol	Description	Reset
l	15:1	-	-	Reserved	0x0

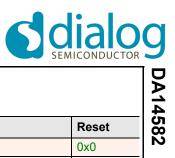
Bit	Mode	Symbol	Description	Reset
0	R/W	UART_HALT_TX	 This register is use to halt transmissions for testing, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled. 0 = Halt TX disabled 1 = Halt TX enabled Note, if FIFOs are implemented and not enabled, the setting of the halt TX register has no effect on operation. 	0x0
Table	9 133: UAF	RT_CPR_REG (0x500	0010F4)	
Bit	Mode	Symbol	Description	Reset
15:0	R	CPR	Component Parameter Register	0x0
15:0	R	Symbol UCV	Component Version	0x333038 2A
Table Bit	e 135: UAF Mode	RT_CTR_REG (0x500	0010FC) Description	Reset
15:0	R	CTR	Component Type Register	0x44570
Table Bit	a 136: UAF	RT2_RBR_THR_DLL	_REG (0x50001100) Description	Reset
15:8	-	-	Reserved	0x0

Bit	ode Symbol	Description	Reset
:0	W RBR_THR_DLI	Receive Buffer Register: This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Transmit Holding Register: This register contains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to une) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost. Divisor Latch (LOW): This register makes up the lower 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set. The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock freq) / (16 * divisor) Note that with the Divisor Latch Registers (DLL	0x0

Table 137: UART2	IER DLH	REG (0x50001104)

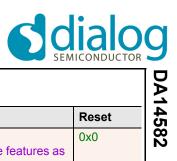
Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	PTIME_DLH7	Interrupt Enable Register: PTIME, Programmable THRE Interrupt Mode Enable. This is used to enable/disable the generation of THRE Interrupt. 0 = disabled 1 = enabled Divi- sor Latch (High): Bit[7] of the 8 bit DLH register.	0x0
6:4	-	-	Reserved	0x0
3	R/W	EDSSI_DLH3	Interrupt Enable Register: EDSSI, Enable Modem Status Interrupt. This is used to enable/disable the generation of Modem Status Interrupt. This is the fourth highest priority interrupt. 0 = disabled 1 = enabled Divisor Latch (High): Bit[3] of the 8 bit DLH register	0x0
2	R/W	ELSI_DHL2	Interrupt Enable Register: ELSI, Enable Receiver Line Status Interrupt. This is used to enable/disable the generation of Receiver Line Status Interrupt. This is the highest priority interrupt. 0 = disabled 1 = enabled Divisor Latch (High): Bit[2] of the 8 bit DLH register.	0x0

Low Power Bluetooth Smart SoC with Audio Codec


Γ

Bit	Mode	Symbol	Description	Reset
1	R/W	ETBEI_DLH1	Interrupt Enable Register: ETBEI, Enable Transmit Holding Register Empty Interrupt. This is used to enable/disable the generation of Transmitter Holding Register Empty Interrupt. This is the third highest priority interrupt. 0 = disabled 1 = ena- bled Divisor Latch (High): Bit[1] of the 8 bit DLH register.	0x0
0	R/W	ERBFI_DLH0	 Interrupt Enable Register: ERBFI, Enable Received Data Available Interrupt. This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFO's enabled). These are the second highest priority interrupts. 0 = disabled 1 = enabled Divisor Latch (High): Bit[0] of the 8 bit DLH register. 	0x0

Table 138: UART2_IIR_FCR_REG (0x50001108)


Bit	Mode	Symbol	Description	Reset
15:0	R/W	IIR_FCR	Interrupt Identification Register, reading this register; FIFO Control Register, writing to this register. Interrupt Identification Register: Bits[7:6], FIFO's Enabled (or FIFOSE): This is used to indicate whether the FIFO's are enabled or disabled. 00 = disabled. 11 = enabled. Bits[3:0], Interrupt ID (or IID): This indicates the highest priority pending interrupt which can be one of the following types: 0000 = modem status. 0001 = no interrupt pending. 0010 = THR empty. 0100 = received data available. 0110 = receiver line status. 0111 = busy detect. 1100 = character timeout. Bits[7:6], RCVR Trigger (or RT):. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt will be gener- ated. In auto flow control mode it is used to determine when the rts_n signal will be de-asserted. It also determines when the dma_rx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are sup- ported: 00 = 1 character in the FIFO 01 = FIFO 1/4 full 10 = FIFO 1/2 full 11 = FIFO 2 less than full Bits[5:4], TX Empty Trigger (or TET): This is used to select the empty threshold level at which the THRE Interrupts will be generated when the mode is active. It also determines when the dma_tx_req_n signal will be asserted when in certain modes of operation. The following trigger levels are supported: 00 = FIFO 1/2 full Bit[3], DMA Mode (or DMAM): This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals. 0 = mode 0 1 = mode 1 Bit[2], XMIT FIFO Reset (or XFIFOR): This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing' and it is not necessary to clear this bit. Bit[0], FIFO Enable (or FIFOE): This enables/ disables the transmit (XMIT) and receive (RCVR) FIFO's. Whenever the value of this bit is changed both the XMIT and RCVR controller portion of FIFO's will be reset.	0x0

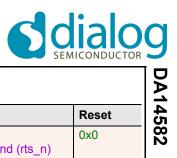

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	UART_DLAB	Divisor Latch Access Bit.This bit is used to enable reading and writing of the Divisor Latch register (DLL and DLH) to set the baud rate of the UART.This bit must be cleared after initial baud rate setup in order to access other registers.	0x0
6	R/W	UART_BC	Break Control Bit. This is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared. If active (MCR[6] set to one) the sir_out_n line is continuously pulsed. When in Loopback Mode, the break condition is internally looped back to the receiver and the sir_out_n line is forced low.	0x0
5	-	-	Reserved	0x0
4	R/W	UART_EPS	Even Parity Select. This is used to select between even and odd parity, when par- ity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked.	0x0
3	R/W	UART_PEN	 Parity Enable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively. 0 = parity disabled 1 = parity enabled 	0x0
2	R/W	UART_STOP	Number of stop bits.This is used to select the number of stop bits per characterthat the peripheral transmits and receives. If set to zero, onestop bit is transmitted in the serial data.If set to one and the data bits are set to 5 (LCR[1:0] set tozero) one and a half stop bits is transmitted. Otherwise, twostop bits are transmitted. Note that regardless of the numberof stop bits selected, the receiver checks only the first stop bit.0 = 1 stop bit1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit	0x0
1:0	R/W	UART_DLS	Data Length Select. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 00 = 5 bits 01 = 6 bits 10 = 7 bits 11 = 8 bits	0x0

Table 140: UART2_MCR_REG (0x50001110)

Bit	Mode	Symbol	Description	Reset
15:7	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
6	R/W	UART_SIRE	SIR Mode Enable. This is used to enable/disable the IrDA SIR Mode features as described in "IrDA 1.0 SIR Protocol" on page 53. 0 = IrDA SIR Mode disabled 1 = IrDA SIR Mode enabled	0x0
5	R/W	UART_AFCE	Auto Flow Control Enable. When FIFOs are enabled and the Auto Flow Control Enable (AFCE) bit is set, hardware Auto Flow Control is enabled via CTS and RTS. 0 = Auto Flow Control Mode disabled 1 = Auto Flow Control Mode enabled	0x0
4	R/W	UART_LB	LoopBack Bit. This is used to put the UART into a diagnostic mode for test purposes. If operating in UART mode (SIR_MODE not active, MCR[6] set to zero), data on the sout line is held high, while serial data output is looped back to the sin line, internally. In this mode all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n, out1_n, out2_n) are looped back to the inputs, inter- nally. If operating in infrared mode (SIR_MODE active, MCR[6] set to one), data on the sir_out_n line is held low, while serial data output is inverted and looped back to the sir_in line.	0x0
3	R/W	UART_OUT2	OUT2. This is used to directly control the user-designated Output2 (out2_n) output. The value written to this location is inverted and driven out on out2_n, that is: 0 = out2_n de-asserted (logic 1) 1 = out2_n asserted (logic 0) Note that in Loopback mode (MCR[4] set to one), the out2_n output is held inactive high while the value of this location is internally looped back to an input.	0x0
2	R/W	UART_OUT1	OUT1. This is used to directly control the user-designated Output1 (out1_n) output. The value written to this location is inverted and driven out on out1_n, that is: 0 = out1_n de-asserted (logic 1) 1 = out1_n asserted (logic 0) Note that in Loopback mode (MCR[4] set to one), the out1_n output is held inactive high while the value of this location is internally looped back to an input.	0x0

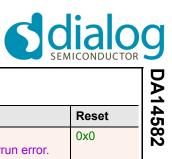

Bit	Mode	Symbol	Description	Reset
1	R/W	UART_RTS	Request to Send. This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data. When Auto Flow Control is disabled (MCR[5] set to zero), the rts_n signal is set low by programming MCR[1] (RTS) to a high. When Auto Flow Control is enabled (MCR[5] set to one) and FIFOs are enabled (FCR[0] set to one), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal is de-asserted when MCR[1] is set low. Note that in Loopback mode (MCR[4] set to one), the rts_n output is held inactive (high) while the value of this location is internally looped back to an input.	0x0
0	_	-	Reserved	0x0

Table 141: UART2_LSR_REG (0x50001114)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R	UART_RFE	 Receiver FIFO Error bit. This bit is only relevant when FIFOs are enabled (FCR[0] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO. 0 = no error in RX FIFO 1 = error in RX FIFO This bit is cleared when the LSR is read and the character with the error is at the top of the receiver FIFO and there are no subsequent errors in the FIFO. 	0x0
6	R	UART_TEMT	Transmitter Empty bit. If FIFOs enabled (FCR[0] set to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty.	0x1
5	R	UART_THRE	Transmit Holding Register Empty bit. If THRE mode is disabled (IER[7] set to zero) and regardless of FIFO's being implemented/enabled or not, this bit indicates that the THR or TX FIFO is empty. This bit is set whenever data is transferred from the THR or TX FIFO to the transmitter shift register and no new data has been written to the THR or TX FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled. If both modes are active (IER[7] set to one and FCR[0] set to one respectively), the functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE inter- rupts, which are then controlled by the FCR[5:4] threshold setting.	0x1

Bit	Mode	RT2_LSR_REG (0x	Description	Reset
4	R	UART_B1	Break Interrupt bit. This is used to indicate the detection of a break sequence on the serial input data. If in UART mode (SIR_MODE == Disabled), it is set whenever the serial input, sin, is held in a logic '0' state for longer than the sum of start time + data bits + parity + stop bits. If in infrared mode (SIR_MODE == Enabled), it is set whenever the serial input, sir_in, is continuously pulsed to logic '0' for longer than the sum of start time + data bits + parity + stop bits. A break condition on serial input causes one and only one character, consisting of all zeros, to be received by the UART. In the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO. Reading the LSR clears the BI bit. In the non-FIFO mode, the BI indication occurs immediately and persists until the LSR is read.	0x0
3	R	UART_FE	 Framing Error bit. This is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data. In the FIFO mode, since the framing error is associated with a character received, it is revealed when the character with the framing error is at the top of the FIFO. When a framing error occurs, the UART tries to resynchronize. It does this by assuming that the error was due to the start bit of the next character and then continues receiving the other bit i.e. data, and/or parity and stop. It should be noted that the Framing Error (FE) bit (LSR[3]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (LSR[4]). 0 = no framing error 1 = framing error Reading the LSR clears the FE bit. 	0x0
2	R	UART_PE	Parity Error bit. Parity Error bit. This is used to indicate the occurrence of a parity error in the receiver if the Parity Enable (PEN) bit (LCR[3]) is set. In the FIFO mode, since the parity error is associated with a character received, it is revealed when the character with the parity error arrives at the top of the FIFO. It should be noted that the Parity Error (PE) bit (LSR[2]) is set if a break interrupt has occurred, as indicated by Break Inter- rupt (BI) bit (LSR[4]). 0 = no parity error 1 = parity error Reading the LSR clears the PE bit.	0x0

Bit	Mode	Symbol	Description	Reset
1	R	UART_OE	Overrun error bit. This is used to indicate the occurrence of an overrun error. This occurs if a new data character was received before the previous data was read. In the non-FIFO mode, the OE bit is set when a new character arrives in the receiver before the previous character was read from the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. 0 = no overrun error 1 = overrun error Reading the LSR clears the OE bit.	0x0
0	R	UART_DR	Data Ready bit. This is used to indicate that the receiver contains at least one character in the RBR or the receiver FIFO. 0 = no data ready 1 = data ready This bit is cleared when the RBR is read in non-FIFO mode, or when the receiver FIFO is empty, in FIFO mode.	0x0

Table 142: UART2_MSR_REG (0x50001118)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R	UART_DCD	 Data Carrier Detect. This is used to indicate the current state of the modem control line dcd_n. This bit is the complement of dcd_n. When the Data Carrier Detect input (dcd_n) is asserted it is an indication that the carrier has been detected by the modem or data set. 0 = dcd_n input is de-asserted (logic 1) 1 = dcd_n input is asserted (logic 0) In Loopback Mode (MCR[4] set to one), DCD is the same as MCR[3] (Out2). 	0x0
6	R	UART_R1	 Ring Indicator. This is used to indicate the current state of the modem control line ri_n. This bit is the complement of ri_n. When the Ring Indicator input (ri_n) is asserted it is an indication that a telephone ringing signal has been received by the modem or data set. 0 = ri_n input is de-asserted (logic 1) 1 = ri_n input is asserted (logic 0) In Loopback Mode (MCR[4] set to one), RI is the same as MCR[2] (Out1). 	0x0
5	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
4	R	UART_CTS	Clear to Send. This is used to indicate the current state of the modem control line cts_n. This bit is the complement of cts_n. When the Clear to Send input (cts_n) is asserted it is an indication that the modem or data set is ready to exchange data with the UART Ctrl. 0 = cts_n input is de-asserted (logic 1) 1 = cts_n input is asserted (logic 0) In Loopback Mode (MCR[4] = 1), CTS is the same as MCR[1] (RTS).	0x0
3	R	UART_DDCD	Delta Data Carrier Detect. This is used to indicate that the modem control line dcd_n has changed since the last time the MSR was read. 0 = no change on dcd_n since last read of MSR 1 = change on dcd_n since last read of MSR Reading the MSR clears the DDCD bit. In Loopback Mode (MCR[4] = 1), DDCD reflects changes on MCR[3] (Out2). Note, if the DDCD bit is not set and the dcd_n signal is asserted (low) and a reset occurs (software or otherwise), then the DDCD bit is set when the reset is removed if the dcd_n signal remains asserted.	0x0
2	R	UART_TERI	 Trailing Edge of Ring Indicator. This is used to indicate that a change on the input ri_n (from an active-low to an inactive-high state) has occurred since the last time the MSR was read. 0 = no change on ri_n since last read of MSR 1 = change on ri_n since last read of MSR Reading the MSR clears the TERI bit. In Loopback Mode (MCR[4] = 1), TERI reflects when MCR[2] (Out1) has changed state from a high to a low. 	0x0
1	-	-	Reserved	0x0
D	R	UART_DCTS	 Delta Clear to Send. This is used to indicate that the modem control line cts_n has changed since the last time the MSR was read. 0 = no change on cts_n since last read of MSR 1 = change on cts_n since last read of MSR Reading the MSR clears the DCTS bit. In Loopback Mode (MCR[4] = 1), DCTS reflects changes on MCR[1] (RTS). Note, if the DCTS bit is not set and the cts_n signal is asserted (low) and a reset occurs (software or otherwise), then the DCTS bit is set when the reset is removed if the cts_n signal remains asserted. 	0x0

Bit Mode Symbol Description Reset 15:8 Reserved 0x0 7:0 R/W UART_SCRATCH_PA 0x0 This register is for programmers to use as a temporary storage space. It has no defined purpose in the UART Ctrl. D

Table 144: UART2_LPDLL_REG (0x50001120)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
7:0 R/W	UART_LPDLL	 This register makes up the lower 8-bits of a 16-bit, read/write, Low Power Divisor Latch register that contains the baud rate divisor for the UART, which must give a baud rate of 115.2K. This is required for SIR Low Power (minimum pulse width) detection at the receiver. This register may be accessed only when the DLAB bit (LCR[7]) is set. The output low-power baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: Low power baud rate = (serial clock frequency)/(16* divisor) Therefore, a divisor must be selected to give a baud rate of 115.2K. NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH) are set to 0, the low-power baud clock is disabled and no low-power pulse detection (or any pulse detection) occurs at the receiver. Also, once the LPDLL is set, at least eight clock cycles of the slowest UART Ctrl clock should be allowed to pass before transmitting or receiving data. 	0x0

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	UART_LPDLH	 This register makes up the upper 8-bits of a 16-bit, read/write, Low Power Divisor Latch register that contains the baud rate divisor for the UART, which must give a baud rate of 115.2K. This is required for SIR Low Power (minimum pulse width) detection at the receiver. This register may be accessed only when the DLAB bit (LCR[7]) is set. The output low-power baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: Low power baud rate = (serial clock frequency)/(16* divisor) Therefore, a divisor must be selected to give a baud rate of 115.2K. NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH) are set to 0, the low-power baud clock is disabled and no low-power pulse detection (or any pulse detection) occurs at the receiver. Also, once the LPDLH is set, at least eight clock cycles of the slowest UART Ctrl clock should be allowed to pass before transmitting or receiving data. 	0x0

Table 146: UART2_SRBR_STHR0_REG (0x50001130)

ľ	Bit	Mode	Symbol	Description	Reset
	15:8	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
:0	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 147: UART2_SRBR_STHR1_REG (0x50001134)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Γ

Bit	Mode Symbol	Description	Reset
ť:0	R/W SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 148: UART2_SRBR_STHR2_REG (0x50001138)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Γ

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 149: UART2_SRBR_STHR3_REG (0x5000113C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/M	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 150: UART2_SRBR_STHR4_REG (0x50001140)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
7:0	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 151: UART2_SRBR_STHR5_REG (0x50001144)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Γ

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 152: UART2_SRBR_STHR6_REG (0x50001148)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mode Sy	mbol Description	Reset
:0 R/W SF	RBR_STHRX Shadow Receive Buffer Register x: This is a for the RBR and has been allocated sixteen so as to accommodate burst accesses from register contains the data byte received on t port (sin) in UART mode or the serial infrare infrared mode. The data in this register is val Ready (DR) bit in the Line status Register (L FIFOs are disabled (FCR[0] set to zero), the must be read before the next data arrives, or overwritten, resulting in an overrun error. If FI (FCR[0] set to one), this register accesses the receive FIFO. If the receive FIFO is full and the read before the next data character arrives, already in the FIFO will be preserved but an will be lost. An overrun error will also occur. See Holding Register 0: This is a shadow register has been allocated sixteen 32-bit locations is modate burst accesses from the master. Thi tains data to be transmitted on the serial out UART mode or the serial infrared output (sirred mode. Data should only be written to the THR Empty (THRE) bit (LSR[5]) is set. If FIF (FCR[0] set to zero) and THRE is set, writing the to the THR before the THRE is set again causes the overwritten. If FIFO's are enabled (FCR[0] set to zero) and THRE is set, writing the THR before the FIFO is full. The number determined by the value of FIFO Depth that configuration. Any attempt to write data whe	32-bit locations the master. This the serial input d input (sir_in) in id only if the Data _SR) is set. If e data in the RBR therwise it will be IFOs are enabled he head of the this register is not then the data y incoming data Shadow Transmit r for the THR and so as to accom- is register con- tput port (sout) in _out_n) in infra- e THR when the FO's are disabled g a single charac- inal writes to the ne THR data to be set to one) and may be written to r x (default=16) is you set during

Table 153: UART2_SRBR_STHR7_REG (0x5000114C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

t Mode Symbol	Description	Reset
0 R/W SRBR_ST	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 154: UART2_SRBR_STHR8_REG (0x50001150)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Bit Mod	de Symbo	Description	Reset
7:0 R/W	SRBR_	THRX Shadow Receive Buffer Register x: This is a shadow regist for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. The register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) infrared mode. The data in this register is valid only if the Da Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RE must be read before the next data arrives, otherwise it will overwritten, resulting in an overrun error. If FIFOs are enable (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is r read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming dat will be lost. An overrun error will also occur. Shadow Transr Holding Register 0: This is a shadow register for the THR a has been allocated sixteen 32-bit locations so as to accom modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) UART mode or the serial infrared output (sir_out_n) in infra red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disable (FCR[0] set to zero) and THRE is set, writing a single chara- ter to the THR clears the THRE. Any additional writes to th THR before the THRE is set again causes the THR data to overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written the THR before the FIFO is full. The number x (default=16) determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is free sults in the write data being lost.	s a R e d d t t d c- e s

Table 155: UART2_SRBR_STHR9_REG (0x50001154)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Bit	Mode	Symbol	Description	Reset
7:0	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 156: UART2_SRBR_STHR10_REG (0x50001158)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Bit	Mode	Symbol	Description	Reset
7:0	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 157: UART2_SRBR_STHR11_REG (0x5000115C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
':O	R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 158: UART2_SRBR_STHR12_REG (0x50001160)

	Bit	Mode	Symbol	Description	Reset
l	15:8	-	-	Reserved	0x0

Low Power Bluetooth Smart SoC with Audio Codec

Bit Mod	e Symbol	Description	Reset
7:0 R/M	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 159: UART2_SRBR_STHR13_REG (0x50001164)

В	Bit	Mode	Symbol	Description	Reset
1	5:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 160: UART2_SRBR_STHR14_REG (0x50001168)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

Bit Mod	e Symbol	Description	Reset
7:0 R/W	SRBR_STHRX	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.	0x0

Table 161: UART2_SRBR_STHR15_REG (0x5000116C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0

t Mode Symbol	Description Reset
) R/W SRBR_STHF	Shadow Receive Buffer Register x: This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set. If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved but any incoming data will be lost. An overrun error will also occur. Shadow Transmit Holding Register 0: This is a shadow register for the THR and has been allocated sixteen 32-bit locations so as to accom- modate burst accesses from the master. This register con- tains data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infra- red mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If FIFO's are disabled (FCR[0] set to zero) and THRE is set, writing a single charac- ter to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten. If FIFO's are enabled (FCR[0] set to one) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full

Bit	Mode	Symbol	Description	Reset
15:5	-	-	Reserved	0x0
4	R	UART_RFF	Receive FIFO Full. This is used to indicate that the receive FIFO is completely full. 0 = Receive FIFO not full 1 = Receive FIFO Full This bit is cleared when the RX FIFO is no longer full.	0x0
3	R	UART_RFNE	Receive FIFO Not Empty. This is used to indicate that the receive FIFO contains one or more entries. 0 = Receive FIFO is empty 1 = Receive FIFO is not empty This bit is cleared when the RX FIFO is empty.	0x0
2	R	UART_TFE	Transmit FIFO Empty. This is used to indicate that the transmit FIFO is completely empty. 0 = Transmit FIFO is not empty 1 = Transmit FIFO is empty This bit is cleared when the TX FIFO is no longer empty.	0x1

Bit	Mode	Symbol	Description	Reset
1	R	UART_TFNF	Transmit FIFO Not Full. This is used to indicate that the transmit FIFO in not full. 0 = Transmit FIFO is full 1 = Transmit FIFO is not full This bit is cleared when the TX FIFO is full.	0x1
0	-	-	Reserved	0x0

Table 163: UART2_TFL_REG (0x50001180)

Bit	Mode	Symbol	Description	Reset
15:0	R	UART_TRANSMIT_FI FO_LEVEL	Transmit FIFO Level. This is indicates the number of data entries in the transmit FIFO.	0x0

Table 164: UART2_RFL_REG (0x50001184)

Bit	Mode	Symbol	Description	Reset
15:0	R	UART_RECEIVE_FIF O_LEVEL	Receive FIFO Level. This is indicates the number of data entries in the receive FIFO.	0x0

Table 165: UART2_SRR_REG (0x50001188)

Bit	Mode	Symbol	Description	Reset
15:3	-	-	Reserved	0x0
2	W	UART_XFR	XMIT FIFO Reset. This is a shadow register for the XMIT FIFO Reset bit (FCR[2]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the transmit FIFO. This resets the control portion of the transmit FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.	0x0
1	W	UART_RFR	RCVR FIFO Reset. This is a shadow register for the RCVR FIFO Reset bit (FCR[1]). This can be used to remove the burden on software having to store previously written FCR values (which are pretty static) just to reset the receive FIFO This resets the control portion of the receive FIFO and treats the FIFO as empty. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.	0x0
0	W	UART_UR	UART Reset. This asynchronously resets the UART Ctrl and synchronously removes the reset assertion. For a two clock implementation both pclk and sclk domains are reset.	0x0

Table 166: UART2_SRTS_REG (0x5000118C)

	Bit	Mode	Symbol	Description	Reset
L	15:1	-	-	Reserved	0x0

Table 1	66: UAF	RT2_SRTS_REG (0x5000	0118C)	IICONDU
Bit	Mode	Symbol	Description	Reset
0	R/W	UART_SHADOW_RE QUEST_TO_SEND	Shadow Request to Send. This is a shadow register for the RTS bit (MCR[1]), this can be used to remove the burden of having to perform a read-mod- ify-write on the MCR. This is used to directly control the Request to Send (rts_n) output. The Request To Send (rts_n) output is used to inform the modem or data set that the UART Ctrl is ready to exchange data. When Auto Flow Control is disabled (MCR[5] = 0), the rts_n signal is set low by programming MCR[1] (RTS) to a high. When Auto Flow Control is enabled (MCR[5] = 1) and FIFOs are enabled (FCR[0] = 1), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). Note that in Loopback mode (MCR[4] = 1), the rts_n output is held inactive-high while the value of this location is internally looped back to an input.	0x0

Table 167: UART2_SBCR_REG (0x50001190)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	UART_SHADOW_BR EAK_CONTROL	Shadow Break Control Bit. This is a shadow register for the Break bit (LCR[6]), this can be used to remove the burden of having to performing a read modify write on the LCR. This is used to cause a break condi- tion to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared. If SIR_MODE active (MCR[6] = 1) the sir_out_n line is contin- uously pulsed. When in Loopback Mode, the break condition is internally looped back to the receiver.	0x0

Table 168: UART2_SDMAM_REG (0x50001194)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	UART_SHADOW_DM A_MODE	Shadow DMA Mode. This is a shadow register for the DMA mode bit (FCR[3]). This can be used to remove the burden of having to store the pre- viously written value to the FCR in memory and having to mask this value so that only the DMA Mode bit gets updated. This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals. 0 = mode 0 1 = mode 1	0x0

Table 169: UART2_SFE_REG (0x50001198)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0

Table	e 169: UAF	RT2_SFE_REG (0x50001	198)	
Bit	Mode	Symbol	Description	Reset
0	R/W	UART_SHADOW_FIF O_ENABLE	Shadow FIFO Enable. This is a shadow register for the FIFO enable bit (FCR[0]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the FIFO enable bit gets updated.This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. If this bit is set to zero (disabled) after being enabled then both the XMIT and RCVR controller por- tion of FIFOs are reset.	0x0

Table 170: UART2_SRT_REG (0x5000119C)

Bit	Mode	Symbol	Description	Reset
15:2	-	-	Reserved	0x0
1:0	R/W	UART_SHADOW_RC VR_TRIGGER	Shadow RCVR Trigger. This is a shadow register for the RCVR trigger bits (FCR[7:6]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the RCVR trigger bit gets updated. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. It also determines when the dma_rx_req_n signal is asserted when DMA Mode (FCR[3]) = 1. The following trigger levels are supported: 00 = 1 character in the FIFO $01 = FIFO \hat{A}^{1/2}_{1/2}$ full $10 = FIFO \hat{A}^{1/2}_{1/2}$ full 11 = FIFO 2 less than full	0x0

Table 171: UART2_STET_REG (0x500011A0)

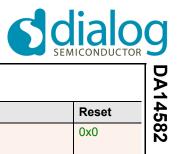

Bit	Mode	Symbol	Description	Reset
15:2	-	-	Reserved	0x0
1:0	R/W	UART_SHADOW_TX _EMPTY_TRIGGER	Shadow TX Empty Trigger. This is a shadow register for the TX empty trigger bits (FCR[5:4]). This can be used to remove the burden of having to store the previously written value to the FCR in memory and having to mask this value so that only the TX empty trig- ger bit gets updated. This is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. The following trigger levels are supported: 00 = FIFO empty 01 = 2 characters in the FIFO $10 = FIFO \hat{A}^{1/4}$ full $11 = FIFO \hat{A}^{1/2}$ full	0x0

Table 172: UART2_HTX_REG (0x500011A4)

Bit	:	Mode	Symbol	Description	Reset
15:		-	-	Reserved	0x0

iaoi	e 172: UAF	RT2_HTX_REG (0x500	0011A4)	
Bit	Mode	Symbol	Description	Reset
0	R/W	UART_HALT_TX	 This register is use to halt transmissions for testing, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled. 0 = Halt TX disabled 1 = Halt TX enabled Note, if FIFOs are implemented and not enabled, the setting of the halt TX register has no effect on operation. 	0x0
Tabl	e 173: UAF	RT2_CPR_REG (0x500	0011F4)	
Bit	Mode	Symbol	Description	Reset
15:0	R	CPR	Component Parameter Register	0x0
		RT2_UCV_REG (0x500	·	Desit
Bit	Mode	Symbol	Description	Reset
15:0	R	UCV	Component Version	0x333038 2A
5:0	Mode R	Symbol CTR	Description Component Type Register	Reset
				10
		_CTRL_REG (0x50001		
Bit	Mode	Symbol	Description	Reset
Bit				
Tabl Bit 15	Mode	Symbol	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care.	Reset
Bit 15 14	Mode R/W	Symbol SPI_EN_CTRL	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care. 1 = SPI_EN pin enabled in slave mode. 0 = Disable SPI_INT_BIT to ICU 1 = Enable SPI_INT_BIT to ICU. Note that the SPI_INT_model is shared with AD_INT inter-	Reset 0x0
Bit 15	R/W R/W	Symbol SPI_EN_CTRL SPI_MINT SPI_INT_BIT SPI_DI	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care. 1 = SPI_EN pin enabled in slave mode. 0 = Disable SPI_INT_BIT to ICU 1 = Enable SPI_INT_BIT to ICU. Note that the SPI_INT_BIT to ICU. Note that the SPI_INT interrupt is shared with AD_INT interrupt 0 = RX Register or FIFO is empty. 1 = SPI interrupt. Data has been transmitted and received-Must be reset by SW by writing to SPI_CLEAR_INT_REG. Returns the actual value of pin SPI_DIN (delayed with two internal SPI clock cycles)	Reset 0x0 0x0
Bit 15 14 13 12 11	Mode R/W R/W R/W R R R	Symbol SPI_EN_CTRL SPI_MINT SPI_INT_BIT SPI_DI SPI_TXH	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care. 1 = SPI_EN pin enabled in slave mode. 0 = Disable SPI_INT_BIT to ICU 1 = Enable SPI_INT_BIT to ICU. Note that the SPI_INT_BIT to ICU. Note that the SPI_INT interrupt is shared with AD_INT interrupt 0 = RX Register or FIFO is empty. 1 = SPI interrupt. Data has been transmitted and received-Must be reset by SW by writing to SPI_CLEAR_INT_REG. Returns the actual value of pin SPI_DIN (delayed with two internal SPI clock cycles) 0 = TX-FIFO is not full, data can be written. 1 = TX-FIFO is full, data can not be written.	Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Bit 15 14 13 12 11 10	Mode R/W R/W R/W R R R R R	Symbol SPI_EN_CTRL SPI_MINT SPI_INT_BIT SPI_DI SPI_TXH SPI_FORCE_DO	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care. 1 = SPI_EN pin enabled in slave mode. 0 = Disable SPI_INT_BIT to ICU 1 = Enable SPI_INT_BIT to ICU. Note that the SPI_INT_BIT to ICU. Note that the SPI_INT interrupt is shared with AD_INT interrupt 0 = RX Register or FIFO is empty. 1 = SPI interrupt. Data has been transmitted and received-Must be reset by SW by writing to SPI_CLEAR_INT_REG. Returns the actual value of pin SPI_DIN (delayed with two internal SPI clock cycles) 0 = TX-FIFO is not full, data can be written. 1 = TX-FIFO is full, data can not be written. 1 = TX-FIFO is full, data can not be written. 1 = Force SPIDO output level to value of SPI_DO.	Reset 0x0 0x0
Bit 15 14 13 12 11	Mode R/W R/W R/W R R R	Symbol SPI_EN_CTRL SPI_MINT SPI_INT_BIT SPI_DI SPI_TXH	Description 0 = SPI_EN pin disabled in slave mode. Pin SPI_EN is don't care. 1 = SPI_EN pin enabled in slave mode. 0 = Disable SPI_INT_BIT to ICU 1 = Enable SPI_INT_BIT to ICU. Note that the SPI_INT_BIT to ICU. Note that the SPI_INT interrupt is shared with AD_INT interrupt 0 = RX Register or FIFO is empty. 1 = SPI interrupt. Data has been transmitted and received-Must be reset by SW by writing to SPI_CLEAR_INT_REG. Returns the actual value of pin SPI_DIN (delayed with two internal SPI clock cycles) 0 = TX-FIFO is not full, data can be written. 1 = TX-FIFO is full, data can not be written. 0 = normal operation	Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Table	Table 176: SPI_CTRL_REG (0x50001200)					
Bit	Mode	Symbol	Description	Reset		
6	R/W	SPI_SMN	Master/slave mode 0 = Master, 1 = Slave(SPI1 only)	0x0		
5	R/W	SPI_DO	Pin SPI_DO output level when SPI is idle or when SPI_FORCE_DO=1	0x0		
4:3	R/W	SPI_CLK	Select SPI_CLK clock frequency in master mode:00 = (XTAL) / (CLK_PER_REG *8) 01 = (XTAL) / (CLK_PER_REG *4) 10 = (XTAL) / (CLK_PER_REG *2) 11 = (XTAL) / (CLK_PER_REG *14)	0x0		
2	R/W	SPI_POL	Select SPI_CLK polarity. 0 = SPI_CLK is initially low. 1 = SPI_CLK is initially high.	0x0		
1	R/W	SPI_PHA	Select SPI_CLK phase. See functional timing diagrams in SPI chapter	0x0		
0	R/W	SPI_ON	0 = SPI Module switched off (power saving). Everything is reset except SPI_CTRL_REG0 and SPI_CTRL_REG1. When this bit is cleared the SPI will remain active in master mode until the shift register and holding register are both empty. 1 = SPI Module switched on. Should only be set after all con- trol bits have their desired values. So two writes are needed!	0x0		

Table 177: SPI_RX_TX_REG0 (0x50001202)

Γ

Bit	Mode	Symbol	Description	Reset
15:0	R0/W	SPI_DATA0	Write: SPI_TX_REG0 output register 0 (TX-FIFO) Read: SPI_RX_REG0 input register 0 (RX-FIFO) In 8 or 9 bits mode bits 15 to 8 are not used, they contain old data.	0x0

Table 178: SPI_RX_TX_REG1 (0x50001204)

Bit	Mode	Symbol	Description	Reset
15:0	R0/W	SPI_DATA1	Write: SPI_TX_REG1 output register 1 (MSB's of TX-FIFO) Read: SPI_RX_REG1 input register 1 (MSB's of RX-FIFO) In 8 or 9 or 16 bits mode bits this register is not used.	0x0

Table 179: SPI_CLEAR_INT_REG (0x50001206)

Bit	Mode	Symbol	Description	Reset
15:0	R0/W	SPI_CLEAR_INT	Writing any value to this register will clear the SPI_CTRL_REG[SPI_INT_BIT] Reading returns 0.	0x0

Table 180: SPI_CTRL_REG1 (0x50001208)

Bit	Mode	Symbol	Description	Reset
15:5	-	-	Reserved	0x0
4	R/W	SPI_9BIT_VAL	Determines the value of the first bit in 9 bits SPI mode.	0x0

Bit	Mode	Symbol	Description	Reset
3	R	SPI_BUSY	 0 = The SPI is not busy with a transfer. This means that either no TX-data is available or that the transfers have been suspended due to a full RX-FIFO. The SPIx_CTRL_REG0[SPI_INT_BIT] can be used to distinguish between these situations. 1 = The SPI is busy with a transfer. 	0x0
2	R/W	SPI_PRIORITY	 0 = The SPI has low priority, the DMA request signals are reset after the corresponding acknowledge. 1 = The SPI has high priority, DMA request signals remain active until the FIFOS are filled/emptied, so the DMA holds the AHB bus. 	0x0
1:0	R/W	SPI_FIFO_MODE	0: TX-FIFO and RX-FIFO used (Bidirectional mode). 1: RX-FIFO used (Read Only Mode) TX-FIFO single depth, no flow control 2: TX-FIFO used (Write Only Mode), RX-FIFO single depth, no flow control 3: No FIFOs used (backwards compatible mode)	0x3

Table 181: I2C_CON_REG (0x50001300)

Γ

Bit	Mode	Symbol	Description	Reset
15:7	-	-	Reserved	0x0
6	R/W	I2C_SLAVE_DISABLE	Slave enabled or disabled after reset is applied, which means software does not have to configure the slave. 0=slave is enabled 1=slave is disabled Software should ensure that if this bit is written with '0', then bit 0 should also be written with a '0'.	0x1
5	R/W	I2C_RESTART_EN	Determines whether RESTART conditions may be sent when acting as a master 0= disable 1=enable	0x1
4	R/W	I2C_10BITADDR_MA STER	Controls whether the controller starts its transfers in 7- or 10- bit addressing mode when acting as a master. 0= 7-bit addressing 1= 10-bit addressing	0x1
3	R/W	I2C_10BITADDR_SLA VE	When acting as a slave, this bit controls whether the controller responds to 7- or 10-bit addresses. 0= 7-bit addressing 1= 10-bit addressing	0x1
2:1	R/W	I2C_SPEED	These bits control at which speed the controller operates. 1= standard mode (100 kbit/s) 2= fast mode (400 kbit/s)	0x2
0	R/W	I2C_MASTER_MODE	This bit controls whether the controller master is enabled. 0= master disabled 1= master enabled Software should ensure that if this bit is written with '1' then bit 6 should also be written with a '1'.	0x1

Table 182: I2C_TAR_REG (0x50001304)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
11	R/W	SPECIAL	This bit indicates whether software performs a General Call or START BYTE command. 0: ignore bit 10 GC_OR_START and use IC_TAR normally 1: perform special I2C command as specified in GC_OR_START bit	0x0
10	R/W	GC_OR_START	 If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a General Call or START byte command is to be performed by the controller. 0: General Call Address - after issuing a General Call, only writes may be performed. Attempting to issue a read command results in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register. The controller remains in General Call mode until the SPECIAL bit value (bit 11) is cleared. 1: START BYTE 	0x0
9:0	R/W	IC_TAR	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To gener- ate a START BYTE, the CPU needs to write only once into these bits. Note: If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are shared between master and slave, so full loopback is not feasible. Only one direction loopback mode is supported (simplex), not duplex. A master cannot transmit to itself; it can transmit to only a slave	0x55

Table 183: I2C_SAR_REG (0x50001308)

Г

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	IC_SAR	The IC_SAR holds the slave address when the I2C is operat- ing as a slave. For 7-bit addressing, only IC_SAR[6:0] is used. This register can be written only when the I2C interface is disabled, which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect.	0x55

Table 184: I2C_DATA_CMD_REG (0x50001310)

Bit	Mode	Symbol	Description	Reset
15:9	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
8	R/W	CMD	This bit controls whether a read or a write is performed. This bit does not control the direction when the I2C Ctrl acts as a slave. It controls only the direction when it acts as a master. 1 = Read 0 = Write When a command is entered in the TX FIFO, this bit distin- guishes the write and read commands. In slave-receiver mode, this bit is a "don't care" because writes to this register are not required. In slave-transmitter mode, a "0" indicates that CPU data is to be transmitted and as DAT or IC_DATA_CMD[7:0]. When programming this bit, you should remember the following: attempting to perform a read opera- tion after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the I2C_RAW_INTR_STAT_REG), unless bit 11 (SPECIAL) in the I2C_TAR register has been cleared. If a "1" is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs. NOTE: It is possible that while attempting a master I2C read transfer on the controller, a RD_REQ interrupt may have occurred simultaneously due to a remote I2C master address- ing the controller. In this type of scenario, it ignores the I2C_DATA_CMD write, generates a TX_ABRT interrupt, and	0x0
7:0	R/W	DAT	waits to service the RD_REQ interrupt This register contains the data to be transmitted or received on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the controller. However, when you read this register, these bits return the value of data received on the controller's interface.	0x0

Table 185: I2C_SS_SCL_HCNT_REG (0x50001314)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	IC_SS_SCL_HCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for standard speed. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set. NOTE: This register must not be programmed to a value higher than 65525, because the controller uses a 16-bit coun- ter to flag an I2C bus idle condition when this counter reaches a value of IC_SS_SCL_HCNT + 10.	0x48

Low Power Bluetooth Smart SoC with Audio Codec

Table 186: I2C_SS_SCL_LCNT_REG (0x50001318)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	IC_SS_SCL_LCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for standard speed. This register can be written only when the I2C interface is dis- abled which corresponds to the I2C_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 8; hardware prevents values less than this being written, and if attempted, results in 8 being set.	0x4F

Table 187: I2C_FS_SCL_HCNT_REG (0x5000131C)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	IC_FS_SCL_HCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for fast speed. It is used in high- speed mode to send the Master Code and START BYTE or General CALL. This register can be written only when the I2C interface is disabled, which corresponds to the I2C_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 6; hardware prevents values less than this being written, and if attempted results in 6 being set.	0x8

Table 188: I2C_FS_SCL_LCNT_REG (0x50001320)

Bit Mode	de Symbol	Description	Reset
15:0 R/W	IC_FS_SCL_LCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low-period count for fast speed. It is used in high- speed mode to send the Master Code and START BYTE or General CALL. This register can be written only when the I2C interface is disabled, which corresponds to the I2C_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 8; hardware prevents values less than this being written, and if attempted results in 8 being set. For designs with APB_DATA_WIDTH = 8 the order of pro- gramming is important to ensure the correct operation of the controller. The lower byte must be programmed first. Then the upper byte is programmed.	0x17

Table 189: I2C_INTR_STAT_REG (0x5000132C)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
11	R	R_GEN_CALL	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disa- bling controller or when the CPU reads bit 0 of the I2C_CLR_GEN_CALL register. The controller stores the received data in the Rx buffer.	0x0
10	R	R_START_DET	Indicates whether a START or RESTART condition has occurred on the I2C interface regardless of whether controller is operating in slave or master mode.	0x0
9	R	R_STOP_DET	Indicates whether a STOP condition has occurred on the I2C interface regardless of whether controller is operating in slave or master mode.	0x0

DA14582

Tabl	e 189: I2C <u>-</u>	_INTR_STAT_REG (0	0x5000132C)	
Bit	Mode	Symbol	Description	Reset
8	R	R_ACTIVITY	This bit captures I2C Ctrl activity and stays set until it is cleared. There are four ways to clear it: => Disabling the I2C Ctrl => Reading the IC_CLR_ACTIVITY register => Reading the IC_CLR_INTR register => System reset Once this bit is set, it stays set unless one of the four methods is used to clear it. Even if the controller module is idle, this bit remains set until cleared, indicating that there was activity on the bus.	0x0
7	R	R_RX_DONE	When the controller is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted byte. This occurs on the last byte of the transmission, indicat- ing that the transmission is done.	0x0
6	R	R_TX_ABRT	This bit indicates if the controller, as an I2C transmitter, is unable to complete the intended actions on the contents of the transmit FIFO. This situation can occur both as an I2C master or an I2C slave, and is referred to as a "transmit abort". When this bit is set to 1, the I2C_TX_ABRT_SOURCE regis- ter indicates the reason why the transmit abort takes places. NOTE: The controller flushes/resets/empties the TX FIFO whenever this bit is set. The TX FIFO remains in this flushed state until the register I2C_CLR_TX_ABRT is read. Once this read is performed, the TX FIFO is then ready to accept more data bytes from the APB interface.	0x0
5	R	R_RD_REQ	This bit is set to 1 when the controller is acting as a slave and another I2C master is attempting to read data from the con- troller. The controller holds the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means that the slave has been addressed by a remote master that is asking for data to be transferred. The processor must respond to this interrupt and then write the requested data to the I2C_DATA_CMD register. This bit is set to 0 just after the pro- cessor reads the I2C_CLR_RD_REQ register	0x0
4	R	R_TX_EMPTY	This bit is set to 1 when the transmit buffer is at or below the threshold value set in the I2C_TX_TL register. It is automatically cleared by hardware when the buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided there is activity in the master or slave state machines. When there is no longer activity, then with ic_en=0, this bit is set to 0.	0x0
3	R	R_TX_OVER	Set during transmit if the transmit buffer is filled to 32 and the processor attempts to issue another I2C command by writing to the IC_DATA_CMD register. When the module is disabled, this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared	0x0
2	R	R_RX_FULL	Set when the receive buffer reaches or goes above the RX_TL threshold in the I2C_RX_TL register. It is automati- cally cleared by hardware when buffer level goes below the threshold. If the module is disabled (I2C_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this bit is cleared once the I2C_ENABLE bit 0 is programmed with a 0, regardless of the activity that contin- ues.	0x0

126

Bit	Mode	Symbol	Description	Reset
1	R	R_RX_OVER	Set if the receive buffer is completely filled to 32 and an addi- tional byte is received from an external I2C device. The con- troller acknowledges this, but any data bytes received after the FIFO is full are lost. If the module is disabled (I2C_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.	0x0
0	R	R_RX_UNDER	Set if the processor attempts to read the receive buffer when it is empty by reading from the IC_DATA_CMD register. If the module is disabled (I2C_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.	0x0

Table 190: I2C_INTR_MASK_REG (0x50001330)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
11	R/W	M_GEN_CALL	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
10	R/W	M_START_DET	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x0
9	R/W	M_STOP_DET	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x0
8	R/W	M_ACTIVITY	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x0
7	R/W	M_RX_DONE	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
6	R/W	M_TX_ABRT	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
5	R/W	M_RD_REQ	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
4	R/W	M_TX_EMPTY	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
3	R/W	M_TX_OVER	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
2	R/W	M_RX_FULL	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
1	R/W	M_RX_OVER	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1
0	R/W	M_RX_UNDER	These bits mask their corresponding interrupt status bits in the I2C_INTR_STAT register.	0x1

Table 191: I2C_RAW_INTR_STAT_REG (0x50001334)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
11	R	GEN_CALL	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared either by disa- bling controller or when the CPU reads bit 0 of the I2C_CLR_GEN_CALL register. I2C Ctrl stores the received data in the Rx buffer.	0x0

Reset

0x0

0x0

0x0

0x0

0x0

0x0

0x0

DA14582
N

		SEM			
Table 191: I2C_RAW_INTR_STAT_REG (0x50001334)					
Bit Mode	Symbol	Description			
10 R	START_DET	Indicates whether a START or RESTART condition has occurred on the I2C interface regardless of whether controller is operating in slave or master mode.			
9 R	STOP_DET	Indicates whether a STOP condition has occurred on the I2C interface regardless of whether controller is operating in slave or master mode.			
8 R	ACTIVITY	This bit captures I2C Ctrl activity and stays set until it is cleared. There are four ways to clear it: => Disabling the I2C Ctrl => Reading the IC_CLR_ACTIVITY register => Reading the IC_CLR_INTR register => System reset Once this bit is set, it stays set unless one of the four methods is used to clear it. Even if the controller module is idle, this bit remains set until cleared, indicating that there was activity on the bus.			
7 R	RX_DONE	When the controller is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted byte. This occurs on the last byte of the transmission, indicat- ing that the transmission is done.			
6 R	TX_ABRT	 This bit indicates if the controller, as an I2C transmitter, is unable to complete the intended actions on the contents of the transmit FIFO. This situation can occur both as an I2C master or an I2C slave, and is referred to as a "transmit abort". When this bit is set to 1, the I2C_TX_ABRT_SOURCE register indicates the reason why the transmit abort takes places. NOTE: The controller flushes/resets/empties the TX FIFO whenever this bit is set. The TX FIFO remains in this flushed state until the register I2C_CLR_TX_ABRT is read. Once this read is performed, the TX FIFO is then ready to accept more data bytes from the APB interface. 			
5 R	RD_REQ	This bit is set to 1 when I2C Ctrl is acting as a slave and another I2C master is attempting to read data from the con- troller. The controller holds the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means that the slave has been addressed by a remote master that is asking for data to be transferred. The processor must respond to this interrupt and then write the requested data to the I2C_DATA_CMD register. This bit is set to 0 just after the pro- cessor reads the I2C_CLR_RD_REQ register			
4 R	TX_EMPTY	This bit is set to 1 when the transmit buffer is at or below the threshold value set in the I2C_TX_TL register. It is automatically cleared by hardware when the buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided there is activity in the master or slave state machines. When there is no longer activity, then with ic_en=0, this bit is set to 0.			
3 R	TX_OVER	Set during transmit if the transmit buffer is filled to 32 and the processor attempts to issue another I2C command by writing to the IC_DATA_CMD register. When the module is disabled, this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared			

Tabl	e 191: I2C <u>.</u>	_RAW_INTR_STAT_	REG (0x50001334)	
Bit	Mode	Symbol	Description	Reset
	R	RX_FULL	Set when the receive buffer reaches or goes above the RX_TL threshold in the I2C_RX_TL register. It is automati- cally cleared by hardware when buffer level goes below the threshold. If the module is disabled (I2C_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this bit is cleared once the I2C_ENABLE bit 0 is programmed with a 0, regardless of the activity that contin- ues.	0x0
	R	RX_OVER	Set if the receive buffer is completely filled to 32 and an addi- tional byte is received from an external I2C device. The con- troller acknowledges this, but any data bytes received after the FIFO is full are lost. If the module is disabled (I2C_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.	0x0
	R	RX_UNDER	Set if the processor attempts to read the receive buffer when it is empty by reading from the IC_DATA_CMD register. If the	0x0
			module is disabled (I2C_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.	
	e 192: I2C_ Mode	_RX_TL_REG (0x50	level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.	Reset
lit			level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared. 001338)	Reset 0x0
Tabl Bit 15:5 4:0			level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared. 001338) Description	
Bit 15:5 4:0	Mode - R/W	Symbol -	level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared. 001338) Description Receive FIFO Threshold Level Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in I2C_RAW_INTR_STAT register). The valid range is 0-31, with the additional restriction that hardware does not allow this value to be set to a value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 1 entry, and a value of 31 sets the threshold for 32 entries.	0x0
Sit 5:5 :0	Mode - R/W	Symbol - RX_TL	level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared. 001338) Description Receive FIFO Threshold Level Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in I2C_RAW_INTR_STAT register). The valid range is 0-31, with the additional restriction that hardware does not allow this value to be set to a value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 1 entry, and a value of 31 sets the threshold for 32 entries.	0x0
5:5 :0	Mode - R/W e 193: I2C	Symbol - RX_TL TX_TL_REG (0x500	level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared. 001338) Description Receive FIFO Threshold Level Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in I2C_RAW_INTR_STAT register). The valid range is 0-31, with the additional restriction that hardware does not allow this value to be set to a value larger than the depth of the buffer. If an attempt is made to do that, the actual value set will be the maximum depth of the buffer. A value of 0 sets the threshold for 1 entry, and a value of 31 sets the threshold for 32 entries. 00133C)	0x0 0x0

Bit

15:1

Table 194: I2C_CLR_INTR_REG (0x50001340)					
Bit	Mode	Symbol	Description	Reset	
0	R	CLR_INTR	Read this register to clear the combined interrupt, all individ- ual interrupts, and the I2C_TX_ABRT_SOURCE register. This bit does not clear hardware clearable interrupts but soft- ware clearable interrupts. Refer to Bit 9 of the I2C_TX_ABRT_SOURCE register for an exception to clearing I2C_TX_ABRT_SOURCE	0x0	

Table 195: I2C_CLR_RX_UNDER_REG (0x50001344)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_RX_UNDER	Read this register to clear the RX_UNDER interrupt (bit 0) of the I2C_RAW_INTR_STAT register.	0x0

Table 196: I2C_CLR_RX_OVER_REG (0x50001348)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_RX_OVER	Read this register to clear the RX_OVER interrupt (bit 1) of the I2C_RAW_INTR_STAT register.	0x0

Table 197: I2C_CLR_TX_OVER_REG (0x5000134C)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_TX_OVER	Read this register to clear the TX_OVER interrupt (bit 3) of the I2C_RAW_INTR_STAT register.	0x0

Table 198: I2C_CLR_RD_REQ_REG (0x50001350)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_RD_REQ	Read this register to clear the RD_REQ interrupt (bit 5) of the I2C_RAW_INTR_STAT register.	0x0

Table 199: I2C_CLR_TX_ABRT_REG (0x50001354)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_TX_ABRT	Read this register to clear the TX_ABRT interrupt (bit 6) of the IC_RAW_INTR_STAT register, and the I2C_TX_ABRT_SOURCE register. This also releases the TX FIFO from the flushed/reset state, allowing more writes to the TX FIFO. Refer to Bit 9 of the I2C_TX_ABRT_SOURCE register for an exception to clearing IC_TX_ABRT_SOURCE.	0x0

Table 200: I2C_CLR_RX_DONE_REG (0x50001358)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_RX_DONE	Read this register to clear the RX_DONE interrupt (bit 7) of the I2C_RAW_INTR_STAT register.	0x0

Table 201: I2C_CLR_ACTIVITY_REG (0x5000135C)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_ACTIVITY	Reading this register clears the ACTIVITY interrupt if the I2C is not active anymore. If the I2C module is still active on the bus, the ACTIVITY interrupt bit continues to be set. It is automatically cleared by hardware if the module is disabled and if there is no further activity on the bus. The value read from this register to get status of the ACTIVITY interrupt (bit 8) of the IC_RAW_INTR_STAT register	0x0

Table 202: I2C_CLR_STOP_DET_REG (0x50001360)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_ACTIVITY	Reading this register clears the ACTIVITY interrupt if the I2C is not active anymore. If the I2C module is still active on the bus, the ACTIVITY interrupt bit continues to be set. It is automatically cleared by hardware if the module is disabled and if there is no further activity on the bus. The value read from this register to get status of the ACTIVITY interrupt (bit 8) of the IC_RAW_INTR_STAT register.	0x0

Table 203: I2C_CLR_START_DET_REG (0x50001364)

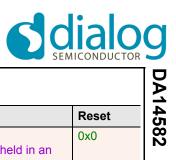

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R	CLR_START_DET	Read this register to clear the START_DET interrupt (bit 10) of the IC_RAW_INTR_STAT register.	0x0

Table 204: I2C_CLR_GEN_CALL_REG (0x50001368)

В	it	Mode	Symbol	Description	Reset
1	5:1	-	-	Reserved	0x0
0		R	CLR_GEN_CALL	Read this register to clear the GEN_CALL interrupt (bit 11) of I2C_RAW_INTR_STAT register.	0x0

Table 205: I2C_ENABLE_REG (0x5000136C)

	Bit	Mode	Symbol	Description	Reset
l	15:1	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
0	R/W	CTRL_ENABLE	Controls whether the controller is enabled. 0: Disables the controller (TX and RX FIFOs are held in an erased state) 1: Enables the controller Software can disable the controller while it is active. However, it is important that care be taken to ensure that the controller is disabled properly. When the controller is disabled, the following occurs: * The TX FIFO and RX FIFO get flushed. * Status bits in the IC_INTR_STAT register are still active until the controller goes into IDLE state. If the module is transmitting, it stops as well as deletes the contents of the transmit buffer after the current transfer is complete. If the module is receiving, the controller stops the current transfer at the end of the current byte and does not acknowledge the transfer. There is a two ic_clk delay when enabling or disabling the controller	0x0

Bit	Mode	Symbol	Description	Reset
15:7	-	-	Reserved	0x0
6	R	SLV_ACTIVITY	 Slave FSM Activity Status. When the Slave Finite State Machine (FSM) is not in the IDLE state, this bit is set. 0: Slave FSM is in IDLE state so the Slave part of the control- ler is not Active 1: Slave FSM is not in IDLE state so the Slave part of the con- troller is Active 	0x0
5	R	MST_ACTIVITY	 Master FSM Activity Status. When the Master Finite State Machine (FSM) is not in the IDLE state, this bit is set. 0: Master FSM is in IDLE state so the Master part of the controller is not Active 1: Master FSM is not in IDLE state so the Master part of the controller is Active 	0x0
4	R	RFF	Receive FIFO Completely Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty location, this bit is cleared. 0: Receive FIFO is not full 1: Receive FIFO is full	0x0
3	R	RFNE	Receive FIFO Not Empty. This bit is set when the receive FIFO contains one or more entries; it is cleared when the receive FIFO is empty. 0: Receive FIFO is empty 1: Receive FIFO is not empty	0x0
2	R	TFE	 Transmit FIFO Completely Empty. When the transmit FIFO is completely empty, this bit is set. When it contains one or more valid entries, this bit is cleared. This bit field does not request an interrupt. 0: Transmit FIFO is not empty 1: Transmit FIFO is empty 	0x1
1	R	TFNF	Transmit FIFO Not Full. Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full. 0: Transmit FIFO is full 1: Transmit FIFO is not full	0x1

Table	e 206: I2C_	_STATUS_REG (0x50001	370)	
Bit	Mode	Symbol	Description	Reset
)	R	I2C_ACTIVITY	I2C Activity Status.	0x0
	-	_TXFLR_REG (0x500013	74)	
Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0x0
5:0	R	TXFLR	Transmit FIFO Level. Contains the number of valid data entries in the transmit FIFO. Size is constrained by the TXFLR value	0x0
Table	e 208: I2C	_RXFLR_REG (0x500013	378)	
Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0x0
5:0	R	RXFLR	Receive FIFO Level. Contains the number of valid data entries in the receive FIFO. Size is constrained by the RXFLR value	0x0
Bit	Mode	SDA_HOLD_REG (0x50	Description	Reset
15:0	R/W	IC_SDA_HOLD	SDA Hold time	0x1
Table Bit	e 210: I2C <u></u> Mode	_TX_ABRT_SOURCE_RI	EG (0x50001380) Description	Reset
15	R	ABRT_SLVRD_INTX	1: When the processor side responds to a slave mode request for data to be transmitted to a remote master and user writes a 1 in CMD (bit 8) of 2IC_DATA_CMD register	0x0
14	R	ABRT_SLV_ARBLOS T	1: Slave lost the bus while transmitting data to a remote mas- ter. 12C_TX_ABRT_SOURCE[12] is set at the same time. Note: Even though the slave never "owns" the bus, something could go wrong on the bus. This is a fail safe check. For instance, during a data transmission at the low-to-high transition of SCL, if what is on the data bus is not what is supposed to be transmitted, then the controller no longer own the bus.	0x0
13	R	ABRT_SLVFLUSH_TX FIFO	1: Slave has received a read command and some data exists in the TX FIFO so the slave issues a TX_ABRT interrupt to flush old data in TX FIFO.	0x0
12	R	ARB_LOST	1: Master has lost arbitration, or if I2C_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost arbitration. Note: I2C can be both master and slave at the same time.	0x0
	-	ABRT_MASTER_DIS	1: User tries to initiate a Master operation with the Master mode disabled.	0x0
11	R		mode disabled.	

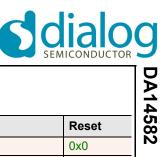

Bit	Mode	Symbol	Description	Reset
9	R	ABRT_SBYTE_NORS TRT	To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; restart must be enabled (I2C_CON[5]=1), the SPECIAL bit must be cleared (I2C_TAR[11]), or the GC_OR_START bit must be cleared (I2C_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this regis- ter. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, bit 9 clears for one cycle and then gets re-asserted. 1: The restart is disabled (IC_RESTART_EN bit (I2C_CON[5]) = 0) and the user is try- ing to send a START Byte.	0x0
8	R	ABRT_HS_NORSTRT	1: The restart is disabled (IC_RESTART_EN bit (I2C_CON[5]) = 0) and the user is trying to use the master to transfer data in High Speed mode	0x0
7	R	ABRT_SBYTE_ACKD ET	1: Master has sent a START Byte and the START Byte was acknowledged (wrong behavior).	0x0
6	R	ABRT_HS_ACKDET	1: Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior).	0x0
5	R	ABRT_GCALL_READ	1: the controller in master mode sent a General Call but the user programmed the byte following the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).	0x0
4	R	ABRT_GCALL_NOAC K	1: the controller in master mode sent a General Call and no slave on the bus acknowledged the General Call.	0x0
3	R	ABRT_TXDATA_NOA CK	1: This is a master-mode only bit. Master has received an acknowledgement for the address, but when it sent data byte(s) following the address, it did not receive an acknowledge from the remote slave(s).	0x0
2	R	ABRT_10ADDR2_NO ACK	1: Master is in 10-bit address mode and the second address byte of the 10-bit address was not acknowledged by any slave.	0x0
1	R	ABRT_10ADDR1_NO ACK	1: Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.	0x0
0	R	ABRT_7B_ADDR_NO ACK	1: Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.	0x0

Table 211: I2C_SDA_SETUP_REG (0x50001394)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	SDA_SETUP	SDA Setup. This register controls the amount of time delay (number of I2C clock periods) between the rising edge of SCL and SDA changing by holding SCL low when I2C block services a read request while operating as a slave-transmitter. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus Specification. This register must be programmed with a value equal to or greater than 2. It is recommended that if the required delay is 1000ns, then for an I2C frequency of 10 MHz, IC_SDA_SETUP should be programmed to a value of 11.Writes to this register succeed only when IC_ENABLE[0] = 0.	0x64

Low Power Bluetooth Smart SoC with Audio Codec

Г

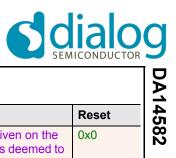


Table 212: I2C_ACK_GENERAL_CALL_REG (0x50001398)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	ACK_GEN_CALL	ACK General Call. When set to 1, I2C Ctrl responds with a ACK (by asserting ic_data_oe) when it receives a General Call. When set to 0, the controller does not generate General Call interrupts.	0x0

Table 213: I2C_ENABLE_STATUS_REG (0x5000139C)

Bit	Mode	Symbol	Description	Reset
15:3	-	-	Reserved	0x0
2	R	SLV_RX_DATA_LOST	Slave Received Data Lost. This bit indicates if a Slave- Receiver operation has been aborted with at least one data byte received from an I2C transfer due to the setting of IC_ENABLE from 1 to 0. When read as 1, the controller is deemed to have been actively engaged in an aborted I2C transfer (with matching address) and the data phase of the I2C transfer has been entered, even though a data byte has been responded with a NACK. NOTE: If the remote I2C mas- ter terminates the transfer with a STOP condition before the controller has a chance to NACK a transfer, and IC_ENABLE has been set to 0, then this bit is also set to 1. When read as 0, the controller is deemed to have been disa- bled without being actively involved in the data phase of a Slave-Receiver transfer. NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.	0x0
1	R	SLV_DISABLED_WHI LE_BUSY	Slave Disabled While Busy (Transmit, Receive). This bit indi- cates if a potential or active Slave operation has been aborted due to the setting of the IC_ENABLE register from 1 to 0. This bit is set when the CPU writes a 0 to the IC_ENABLE register while: (a) I2C Ctrl is receiving the address byte of the Slave-Trans- mitter operation from a remote master; OR, (b) address and data bytes of the Slave-Receiver operation from a remote master. When read as 1, the controller is deemed to have forced a NACK during any part of an I2C transfer, irrespective of whether the I2C address matches the slave address set in I2C Ctrl (IC_SAR register) OR if the transfer is completed before IC_ENABLE is set to 0 but has not taken effect. NOTE: If the remote I2C master terminates the transfer with a STOP condition before the the controller has a chance to NACK a transfer, and IC_ENABLE has been set to 0, then this bit will also be set to 1. When read as 0, the controller is deemed to have been disa- bled when there is master activity, or when the I2C bus is idle. NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.	0x0

Table 213: I2C_ENABLE_	STATUS I	REG ((0x5000139C)	
			000001000)	

Bit	Mode	Symbol	Description	Reset
0	R	IC_EN	ic_en Status. This bit always reflects the value driven on the output port ic_en. When read as 1, the controller is deemed to be in an enabled state. When read as 0, the controller is deemed completely inactive. NOTE: The CPU can safely read this bit anytime. When this bit is read as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2) and SLV_DISABLED_WHILE_BUSY (bit 1).	0x0

Table 214: I2C_IC_FS_SPKLEN_REG (0x500013A0)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	IC_FS_SPKLEN	This register must be set before any I2C bus transaction can take place to ensure stable operation. This register sets the duration, measured in ic_clk cycles, of the longest spike in the SCL or SDA lines that will be filtered out by the spike suppres- sion logic. This register can be written only when the I2C interface is disabled which corresponds to the IC_ENABLE register being set to 0. Writes at other times have no effect. The minimum valid value is 2; hardware prevents values less than this being written, and if attempted results in 2 being set.	0x1

Table 215: GPIO_IRQ0_IN_SEL_REG (0x50001400)

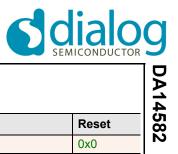
Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0x0

it Mo	ode S	ymbol	Description	Reset
R/V	N K	BRD_IRQ0_SEL	input selection that can generate a GPIO interrupt 0: no input selected 1: P0[0] is selected 2: P0[1] is selected 3: P0[2] is selected 4: P0[3] is selected 5: P0[4] is selected 6: P0[5] is selected 7: P0[6] is selected 8: P0[7] is selected 9: P1[0] is selected 10: P1[1] is selected 11: P1[2] is selected 12: P1[3] is selected 13: P1[4] is selected 14: P1[5] is selected 15: P2[0] is selected 16: P2[1] is selected 17: P2[2] is selected 18: P2[3] is selected 19: P2[4] is selected 20: P2[5] is selected 21: P2[6] is selected 22: P2[7] is selected 23: P2[8] is selected 24: P2[9] is selected 25: P3[0] is selected 26: P3[1] is selected 27: P3[2] is selected 28: P3[3] is selected 29: P3[4] is selected 20: P3[5] is selected 21: P2[6] is selected 22: P3[7] is selected 23: P3[7] is selected 24: P3[7] is selected 25: P3[7] is selected 26: P3[1] is selected 27: P3[2] is selected 28: P3[3] is selected 29: P3[4] is selected 20: P3[5] is selected 20: P3[7] is selected 21: P3[6] is selected 22: P3[7] is selected 23: P3[7] is selected 31: P3[6] is selected 32: P3[7] is selected 32: P3[7] is selected 32: P3[7] is selected 33: P3[7] is selected 34: P3[6] is selected 35: P3[7] is selected 35:	0x0
sit Mo		RQ1_IN_SEL_REG	Description	Reset
	-	-	Reserved	0x0
5:5 -	N K	BRD_IRQ1_SEL	see KBRD_IRQ0_SEL	0x0

Table 218: GPIO_IRQ3_IN_SEL_REG (0x50001406)

KBRD_IRQ2_SEL

Bit	Mode	Symbol	Description	Reset
15:5	-	-	Reserved	0x0
5:0	R/W	KBRD_IRQ3_SEL	see KBRD_IRQ0_SEL	0x0


see KBRD_IRQ0_SEL

U D + D SoC with Audio Codec

R/W

5:0

0x0

Table 219: GPIO_IRQ4_IN_SEL_REG (0x50001408)

Bit	Mode	Symbol	Description	Reset
15:5	-	-	Reserved	0x0
5:0	R/W	KBRD_IRQ4_SEL	see KBRD_IRQ0_SEL	0x0

Table 220: GPIO_DEBOUNCE_REG (0x5000140C)

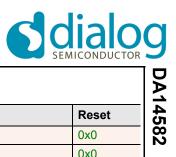

Bit	Mode	Symbol	Description	Reset
15:14	-	-	Reserved	0x0
13	R/W	DEB_ENABLE_KBRD	enables the debounce counter for the KBRD interface	0x0
12	R/W	DEB_ENABLE4	enables the debounce counter for GPIO IRQ4	0x0
11	R/W	DEB_ENABLE3	enables the debounce counter for GPIO IRQ3	0x0
10	R/W	DEB_ENABLE2	enables the debounce counter for GPIO IRQ2	0x0
9	R/W	DEB_ENABLE1	enables the debounce counter for GPIO IRQ1	0x0
8	R/W	DEB_ENABLE0	enables the debounce counter for GPIO IRQ0	0x0
7:6	-	-	Reserved	0x0
5:0	R/W	DEB_VALUE	Keyboard debounce time if enabled. Generate KEYB_INT after specified time. Debounce time: N*1 ms. N =063	0x0

Table 221: GPIO_RESET_IRQ_REG (0x5000140E)

Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0x0
5	R0/W	RESET_KBRD_IRQ	writing a 1 to this bit will reset the KBRD IRQ. Reading returns 0.	0x0
4	R0/W	RESET_GPIO4_IRQ	writing a 1 to this bit will reset the GPIO4 IRQ. Reading returns 0.	0x0
3	R0/W	RESET_GPIO3_IRQ	writing a 1 to this bit will reset the GPIO3 IRQ. Reading returns 0.	0x0
2	R0/W	RESET_GPIO2_IRQ	writing a 1 to this bit will reset the GPIO2 IRQ. Reading returns 0.	0x0
1	R0/W	RESET_GPIO1_IRQ	writing a 1 to this bit will reset the GPIO1 IRQ. Reading returns 0.	0x0
0	R0/W	RESET_GPIO0_IRQ	writing a 1 to this bit will reset the GPIO0 IRQ. Reading returns 0.	0x0

Table 222: GPIO_INT_LEVEL_CTRL_REG (0x50001410)

Bit	Mode	Symbol	Description	Reset
15:14	-	-	Reserved	0x0
12	R/W	EDGE_LEVELN4	see EDGE_LEVELn0, but for GPIO IRQ4	0x0
11	R/W	EDGE_LEVELN3	see EDGE_LEVELn0, but for GPIO IRQ3	0x0
10	R/W	EDGE_LEVELN2	see EDGE_LEVELn0, but for GPIO IRQ2	0x0
9	R/W	EDGE_LEVELN1	see EDGE_LEVELn0, but for GPIO IRQ1	0x0
8	R/W	EDGE_LEVELN0	0: do not wait for key release after interrupt was reset for GPIO IRQ0, so a new interrupt can be initiated immediately 1: wait for key release after interrupt was reset for IRQ0	0x0
7:6	-	-	Reserved	0x0
4	R/W	INPUT_LEVEL4	see INPUT_LEVEL0, but for GPIO IRQ4	0x0

Table 222: GPIO_INT_LEVEL_CTRL_REG (0x50001410)

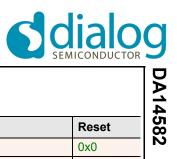

Bit	Mode	Symbol	Description	Reset
3	R/W	INPUT_LEVEL3	see INPUT_LEVEL0, but for GPIO IRQ3	0x0
2	R/W	INPUT_LEVEL2	see INPUT_LEVEL0, but for GPIO IRQ2	0x0
1	R/W	INPUT_LEVEL1	see INPUT_LEVEL0, but for GPIO IRQ1	0x0
0	R/W	INPUT_LEVEL0	0 = selected input will generate GPIO IRQ0 if that input is high. 1 = selected input will generate GPIO IRQ0 if that input is low.	0x0

Table 223: KBRD_IRQ_IN_SEL0_REG (0x50001412)

Bit	Mode	Symbol	Description	Reset
15	R/W	KBRD_REL	0 = No interrupt on key release 1 = Interrupt also on key release (also debouncing if enabled)	0x0
14	R/W	KBRD_LEVEL	0 = enabled input will generate KBRD IRQ if that input is high. 1 = enabled input will generate KBRD IRQ if that input is low.	0x0
13:8	R/W	KEY_REPEAT	While key is pressed, automatically generate repeating KEYB_INT after specified time unequal to 0. Repeat time: N*1 ms. N =163, N=0 disables the timer.	0x0
7	R/W	KBRD_P07_EN	enable P0[7] for the keyboard interrupt	0x0
6	R/W	KBRD_P06_EN	enable P0[6] for the keyboard interrupt	0x0
5	R/W	KBRD_P05_EN	enable P0[5] for the keyboard interrupt	0x0
4	R/W	KBRD_P04_EN	enable P0[4] for the keyboard interrupt	0x0
3	R/W	KBRD_P03_EN	enable P0[3] for the keyboard interrupt	0x0
2	R/W	KBRD_P02_EN	enable P0[2] for the keyboard interrupt	0x0
1	R/W	KBRD_P01_EN	enable P0[1] for the keyboard interrupt	0x0
0	R/W	KBRD P00 EN	enable P0[0] for the keyboard interrupt	0x0

Table 224: KBRD_IRQ_IN_SEL1_REG (0x50001414)

Bit	Mode	Symbol	Description	Reset
15	R/W	KBRD_P15_EN	enable P1[5] for the keyboard interrupt	0x0
14	R/W	KBRD_P14_EN	enable P1[4] for the keyboard interrupt	0x0
13	R/W	KBRD_P13_EN	enable P1[3] for the keyboard interrupt	0x0
12	R/W	KBRD_P12_EN	enable P1[2] for the keyboard interrupt	0x0
11	R/W	KBRD_P11_EN	enable P1[1] for the keyboard interrupt	0x0
10	R/W	KBRD_P10_EN	enable P1[0] for the keyboard interrupt	0x0
9	R/W	KBRD_P29_EN	enable P2[9] for the keyboard interrupt	0x0
8	R/W	KBRD_P28_EN	enable P2[8] for the keyboard interrupt	0x0
7	R/W	KBRD_P27_EN	enable P2[7] for the keyboard interrupt	0x0
6	R/W	KBRD_P26_EN	enable P2[6] for the keyboard interrupt	0x0
5	R/W	KBRD_P25_EN	enable P2[5] for the keyboard interrupt	0x0
4	R/W	KBRD_P24_EN	enable P2[4] for the keyboard interrupt	0x0
3	R/W	KBRD_P23_EN	enable P2[3] for the keyboard interrupt	0x0
2	R/W	KBRD_P22_EN	enable P2[2] for the keyboard interrupt	0x0
1	R/W	KBRD_P21_EN	enable P2[1] for the keyboard interrupt	0x0
0	R/W	KBRD P20 EN	enable P2[0] for the keyboard interrupt	0x0

Table 225: KBRD_IRQ_IN_SEL2_REG (0x50001416)

Bit	Mode	Symbol	Description	Reset
7	R/W	KBRD_P37_EN	enable P3[7] for the keyboard interrupt	0x0
6	R/W	KBRD_P36_EN	enable P3[6] for the keyboard interrupt	0x0
5	R/W	KBRD_P35_EN	enable P3[5] for the keyboard interrupt	0x0
4	R/W	KBRD_P34_EN	enable P3[4] for the keyboard interrupt	0x0
3	R/W	KBRD_P33_EN	enable P3[3] for the keyboard interrupt	0x0
2	R/W	KBRD_P32_EN	enable P3[2] for the keyboard interrupt	0x0
1	R/W	KBRD_P31_EN	enable P3[1] for the keyboard interrupt	0x0
0	R/W	KBRD_P30_EN	enable P3[0] for the keyboard interrupt	0x0

Table 226: GP_ADC_CTRL_REG (0x50001500)

Bit	Mode	Symbol	Description	Reset
15	R/W	GP_ADC_LDO_ZERO	Forces LDO-output to 0V.	0x0
14	R/W	GP_ADC_LDO_EN	Turns on LDO.	0x0
13	R/W	GP_ADC_CHOP	Takes two samples with opposite GP_ADC_SIGN to cancel the internal offset voltage of the ADC; Highly recommended for DC-measurements.	0x0
12	R/W	GP_ADC_MUTE	Takes sample at mid-scale (to dertermine the internal offset and/or noise of the ADC with regards to VDD_REF which is also sampled by the ADC).	0x0
11	R/W	GP_ADC_SE	0 = Differential mode 1 = Single ended mode	0x0
10	R/W	GP_ADC_SIGN	0 = Default 1 = Conversion with opposite sign at input and output to can- cel out the internal offset of the ADC and low-frequency	0x0
9:6	R/W	GP_ADC_SEL	ADC input selection which must be set before the GP_ADC_START bit is enabled. If GP_ADC_SE = 1 (single ended mode): 0000 = P0[0] 0011 = P0[1] 0010 = P0[2] 0011 = P0[3] 0100 = AVS 0101 = VDD_REF 0110 = VDD_RTT 0111 = VBAT3V 1000 = VDCDC 1001 = VBAT1V All other combinations are reserved. If GP_ADC_SE = 0 (differential mode): 0000 = P0[0] vs P0[1] All other combinations are P0[2] vs P0[3].	0x0
5	R/W	GP_ADC_MINT	0 = Disable (mask) GP_ADC_INT. 1 = Enable GP_ADC_INT to ICU.	0x0
4	R	GP_ADC_INT	1 = AD conversion ready and has generated an interrupt. Must be cleared by writing any value to GP_ADC_CLEAR_INT_REG.	0x0
3	R/W	GP_ADC_CLK_SEL	0 = Internal high-speed ADC clock used. 1 = Digital clock used.	0x0
2	-	GP ADC TEST	Reserved, keep 0.	0x0

Table 226: GP_ADC_CTRL_REG (0x50001500)					
Bit	Mode	Symbol	Description	Reset	
1	R/W	GP_ADC_START	 0 = ADC conversion ready. 1 = If a 1 is written, the ADC starts a conversion. After the conversion this bit will be set to 0 and the GP_ADC_INT bit will be set. 	0x0	
0	R/W	GP_ADC_EN	0 = ADC is disabled and in reset.1 = ADC is enabled and sampling of input is started.	0x0	

Table 227: GP_ADC_CTRL2_REG (0x50001502)

Bit	Mode	Symbol	Description	Reset
15:4	-	-	Reserved	0x0
3	R/W	GP_ADC_I20U	Adds 20uA constant load current at the ADC LDO to minimize ripple on the reference voltage of the ADC.	0x0
2	R/W	GP_ADC_IDYN	Enables dynamic load current at the ADC LDO to minimize ripple on the reference voltage of the ADC.	0x0
1	R/W	GP_ADC_ATTN3X	0 = Input voltages up to 1.2V allowed. 1 = Input voltages up to 3.6V allowed by enabling 3x attenua- tor.	0x0
0	R/W	GP_ADC_DELAY_EN	Enables delay function for several signals. This is not auto- cleared. Toggle this bit before every sampling to enable suc- cesive conversions.	0x0

Table 228: GP_ADC_OFFP_REG (0x50001504)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	GP_ADC_OFFP	Offset adjust of 'positive' array of ADC-network (effective if "GP_ADC_SE=0", or "GP_ADC_SE=1 AND GP_ADC_SIGN=0")	0x200

Table 229: GP_ADC_OFFN_REG (0x50001506)

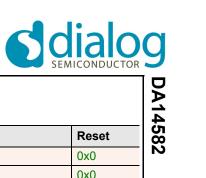

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	GP_ADC_OFFN	Offset adjust of 'negative' array of ADC-network (effective if "GP_ADC_SE=0", or "GP_ADC_SE=1 AND GP_ADC_SIGN=1")	0x200

Table 230: GP_ADC_CLEAR_INT_REG (0x50001508)

I	Bit	Mode	Symbol	Description	Reset
	15:0	R0/W		Writing any value to this register will clear the ADC_INT inter- rupt. Reading returns 0.	0x0

Table 231: GP_ADC_RESULT_REG (0x5000150A)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R	GP_ADC_VAL	Returns the 10 bits linear value of the last AD conversion.	0x0

Table 232: GP_ADC_DELAY_REG (0x5000150C)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	DEL_LDO_EN	Defines the delay before the LDO enable (GP_ADC_LDO_EN). Reset value is 0 µs since the LDO ena- ble should be the first thing to be programmed in the sequence of bringing the GP ADC up.	0x0

Table 233: GP_ADC_DELAY2_REG (0x5000150E)

Bit	Mode	Symbol	Description	Reset
15:8	R/W	DEL_ADC_START	Defines the delay for the GP_ADC_START bit. Reset value is 17 μ s which is the recommended value to wait before starting the GP ADC. This is the third and last step of bringing up the GP ADC	0x88
7:0	R/W	DEL_ADC_EN	Defines the delay for the GP_ADC_EN bit. Reset value is 16 μ s which is the recommended value to wait after enabling the LDO. This is the second step in bringing up the GP ADC.	0x80

Table 234: CLK_REF_SEL_REG (0x50001600)

Bit	Mode	Symbol	Description	Reset
15:3	-	-	Reserved	0x0
2	R/W	REF_CAL_START	Writing a '1' starts a calibration. This bit is cleared when calibration is finished, and CLK_REF_VAL is ready.	0x0
1:0	R/W	REF_CLK_SEL	Select clock input for calibration: 0x0 : RC32KHz oscillator 0x1 : RC16MHz oscillator	0x0
			0x2 : XTAL32KHz oscillator	
			0x3 : RCX32KHz oscillator	

Table 235: CLK_REF_CNT_REG (0x50001602)

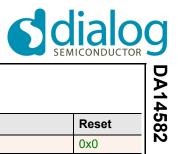

Bit	Mode	Symbol	Description	Reset
15:0	R/W	REF_CNT_VAL	Indicates the calibration time, with a decrement counter to 1.	0x0

Table 236: CLK_REF_VAL_L_REG (0x50001604)

I	Bit	Mode	Symbol	Description	Reset
	15:0	R	XTAL_CNT_VAL	Returns the lower 16 bits of XTAL16 clock cycles during the calibration time, defined with REF_CNT_VAL	0x0

Table 237: CLK_REF_VAL_H_REG (0x50001606)

Bit	Mode	Symbol	Description	Reset
15:0	R	XTAL_CNT_VAL	Returns the upper 16 bits of XTAL16 clock cycles during the calibration time, defined with REF_CNT_VAL	0x0

Table 238: P0_DATA_REG (0x50003000)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	—	Set P0 output register when written; Returns the value of P0 port when read	0x0

Table 239: P0_SET_DATA_REG (0x50003002)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	P0_SET	Writing a 1 to P0[y] sets P0[y] to 1. Writing 0 is discarded; Reading returns 0	0x0

Table 240: P0_RESET_DATA_REG (0x50003004)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	P0_RESET	Writing a 1 to P0[y] sets P0[y] to 0. Writing 0 is discarded; Reading returns 0	0x0

Table 241: P00_MODE_REG (0x50003006)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Bit M	lode Symbol	Description	Reset
1:0 R/	W PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_RX 13 = UART2_IRDA_RX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 22 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 242: P01_MODE_REG (0x50003008)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
4:0 R/W	PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_RX 12 = UART1_IRDA_TX 13 = UART2_IRDA_RX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 22 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 243: P02_MODE_REG (0x5000300A)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Bit Mode	Symbol	Description	Reset
:0 R/W	PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_TX 13 = UART2_IRDA_RX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 22 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 244: P03_MODE_REG (0x5000300C)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Bit M	lode	Symbol	Description	Reset
k:0 R/	/₩	PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_TX 12 = UART1_IRDA_TX 13 = UART2_IRDA_TX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 245: P04_MODE_REG (0x5000300E)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

t Mode Sy	Description	Reset
R/W PIE	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_TX 13 = UART2_IRDA_TX 13 = UART2_IRDA_TX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 246: P05_MODE_REG (0x50003010)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
1:0	R/W	PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_TX 13 = UART2_IRDA_TX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 22 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 247: P06_MODE_REG (0x50003012)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

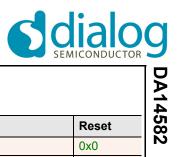

Bit Mo	ode Symbol	Description	Reset
4:0 RΛ	N PID	Function of port 0 = Port function, PUPD as set above 1 = UART1_RX 2 = UART1_TX 3 = UART2_RX 4 = UART2_TX 5 = SPI_DI 6 = SPI_DO 7 = SPI_CLK 8 = SPI_EN 9 = I2C_SCL 10 = I2C_SDA 11 = UART1_IRDA_RX 12 = UART1_IRDA_RX 13 = UART2_IRDA_RX 14 = UART2_IRDA_TX 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 18 = BLE_DIAG (only for P0[7:0]) 19 = UART1_CTSN 20 = UART1_RTSN 21 = UART2_RTSN 22 = UART2_RTSN 23 = PWM2 24 = PWM3 25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	0x0

Table 248: P07_MODE_REG (0x50003014)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0

Mod	e Symbol	Description	Reset
R/W	PID	Function of port 0 = Port function, PUPD as set above $1 = UART1_RX$ $2 = UART1_TX$ $3 = UART2_RX$ $4 = UART2_TX$ $5 = SPI_DI$ $6 = SPI_DO$ $7 = SPI_CLK$ $8 = SPI_EN$ $9 = I2C_SCL$ $10 = I2C_SDA$ $11 = UART1_IRDA_RX$ $12 = UART1_IRDA_TX$ $13 = UART2_IRDA_TX$ $13 = UART2_IRDA_TX$ 15 = ADC (only for P0[3:0]) 16 = PWM0 17 = PWM1 $18 = BLE_DIAG (only for P0[7:0])$ $19 = UART1_CTSN$ $20 = UART1_RTSN$ $21 = UART2_RTSN$ $22 = UART2_RTSN$ 23 = PWM2 24 = PWM3	0x0
		25 = PWM4 Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	
ble 249: F	1_DATA_REG (0x50	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	
Mod		Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1.	Reset
Mod	e Symbol	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020)	
8 - R/W	e Symbol	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read	Reset 0x0
t Mod :8 -) R/W able 250: F	e Symbol - P1_DATA 1_SET_DATA_REG	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read	Reset 0x0
t Mod :8 - R/W able 250: F	e Symbol - P1_DATA 1_SET_DATA_REG	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read (0x50003022)	Reset 0x0 0x0
it Mod 5:8 - 0 R/W Fable 250: F it Mod 5:8 -	e Symbol - P1_DATA 1_SET_DATA_REG	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read (0x50003022) Description	Reset 0x0 0x0 Reset
Mod 5:8 - :0 R/W Table 250: F iit Mod 5:8 - :0 R/W	e Symbol - P1_DATA 1_SET_DATA_REG e Symbol -	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read (0x50003022) Description Reserved Vertice Vertice Vertice Reserved Vertice Vertice Vertice Vertice Note: when a certain input function (like SPI_DI) is selected on more than 1 port point when written; Returns the value of P1 port when read Vertice Vertice Ver	Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0
It Mod 5:8 - 0 R/W Fable 250: F - it Mod 5:8 - 0 R/W 5:8 - 0 R/W	e Symbol - P1_DATA 1_SET_DATA_REG e Symbol - P1_SET 1_RESET_DATA_RE	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read (0x50003022) Description Reserved Vertice Vertice Vertice Reserved Vertice Vertice Vertice Vertice Note: when a certain input function (like SPI_DI) is selected on more than 1 port point when written; Returns the value of P1 port when read Vertice Vertice Ver	Reset 0x0 0x0 0x0 0x0 0x0 0x0
it Mod 5:8 - 60 R/W Table 250: F - it Mod 5:8 - 50 R/W 5:8 - 5:0 R/W	e Symbol - P1_DATA 1_SET_DATA_REG e Symbol - P1_SET 1_RESET_DATA_RE	Note: when a certain input function (like SPI_DI) is selected on more than 1 port pin, the port with the lowest index has the highest priority and P0 has higher priority than P1. 003020) Description Reserved Set P1 output register when written; Returns the value of P1 port when read (0x50003022) Description Reserved Writing a 1 to P1[y] sets P1[y] to 1. Writing 0 is discarded; Reading returns 0	Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 253: P11_MODE_REG (0x50003028)

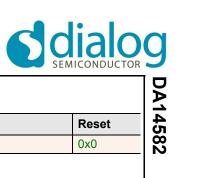

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x MODE REG[PID]	0x0

Table 254: P12_MODE_REG (0x5000302A)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 255: P13_MODE_REG (0x5000302C)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x2
7:5	-	-	Reserved	0x0

Table 255: P13_MODE_REG (0x5000302C)						
Bit	Mode	Symbol	Description	Reset		
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0		

Table 256: P14_MODE_REG (0x5000302E)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 257: P15_MODE_REG (0x50003030)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care P14_MODE_REG and P15_MODE_REG reset value is 1 (i.e. pulled up)	0x1
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 258: P2_DATA_REG (0x50003040)

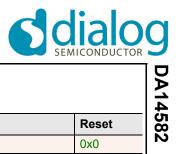

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	P2_DATA	Set P2 output register when written; Returns the value of P2 port when read	0x0

Table 259: P2_SET_DATA_REG (0x50003042)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	P2_SET	Writing a 1 to P2[y] sets P2[y] to 1. Writing 0 is discarded; Reading returns 0	0x0

Table 260: P2_RESET_DATA_REG (0x50003044)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	P2_RESET	Writing a 1 to P2[y] sets P2[y] to 0. Writing 0 is discarded; Reading returns 0	0x0

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0
Table Bit	262: P21	_MODE_REG (0x	50003048) Description	Rese
-	wode	Symbol	· ·	
15:10	_	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 263: P22_MODE_REG (0x5000304A)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 264: P23_MODE_REG (0x5000304C)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 265: P24_MODE_REG (0x5000304E)

E	Bit	Mode	Symbol	Description	Reset
1	15:10	-	-	Reserved	0x0

Tabl Bit	e 265: P24 Mode	_MODE_REG (0x	5000304E) Description	Reset
:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
			in analog mode, these bits are don't care	
7:5	-	-	Reserved	0x0

Table 266: P25_MODE_REG (0x50003050)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 267: P26_MODE_REG (0x50003052)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 268: P27_MODE_REG (0x50003054)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 269: P28_MODE_REG (0x50003056)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0

Table Bit	e 269: P28 Mode	_MODE_REG (0x	50003056) Description	Reset
:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 270: P29_MODE_REG (0x50003058)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In analog mode, these bits are don't care	0x2
7:5	-	-	Reserved	0x0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0x0

Table 271: P01_PADPWR_CTRL_REG (0x50003070)

Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
13:8	R/W	P1_OUT_CTRL	1 = P1_x port output is powered by 1V rail 0 = P1_x port output is powered by 3V rail bit 8 controls the power of P1[0], bit 13 controls the power of P1[5]	0x0
7:0	R/W	P0_OUT_CTRL	1 = P0_x port output is powered by 1V rail 0 = P0_x port output is powered by 3V rail bit 0 controls the power of P0[0], bit 7 controls the power of P0[7]	0x0

Table 272: P2_PADPWR_CTRL_REG (0x50003072)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	P2_OUT_CTRL	1 = P2_x port output is powered by 1V rail 0 = P2_x port output is powered by 3V rail bit 0 controls the power of P2[0], bit 9 controls the power of P2[9],	0x0

Table 273: P3_PADPWR_CTRL_REG (0x50003074)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0
7:0	R/W	P3_OUT_CTRL	1 = P3_x port output is powered by 1V rail 0 = P3_x port output is powered by 3V rail bit 0 controls the power of P3[0], bit 7 controls the power of P3[7],	0

Table 274: P3_DATA_REG (0x50003080)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0
7:0	R/W	P3_DATA	Set P3 output register when written; Returns the value of P3 port when read	0

Table 275: P3_SET_DATA_REG (0x50003082)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0
7:0	R0/W	P3_SET	Writing a 1 to P3[y] sets P3[y] to 1. Writing 0 is discarded; Reading returns 0	0

Table 276: P3_RESET_DATA_REG (0x50003084)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0
7:0	R0/W	P3_RESET	Writing a 1 to P0[y] sets P0[y] to 0. Writing 0 is discarded; Reading returns 0	0

Table 277: P30_MODE_REG (0x50003086)

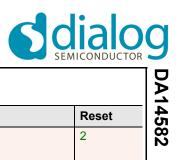

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 278: P31_MODE_REG (0x50003088)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 279: P32_MODE_REG (0x5000308A)

	Bit	Mode	Symbol	Description	Reset
L	15:10	-	-	Reserved	0

Table 279: P32_MODE_REG (0x5000308A)				
Bit	Mode	Symbol	Description	Reset
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 280: P33_MODE_REG (0x5000308C)

Γ

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 281: P34_MODE_REG (0x5000308E)

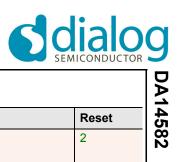

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 282: P35_MODE_REG (0x50003090)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 283: P36_MODE_REG (0x50003092)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0

Bit	Mode	Symbol	Description	Reset
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x MODE REG[PID]	0

Table 284: P37_MODE_REG (0x50003094)

Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0
9:8	R/W	PUPD	00 = Input, no resistors selected 01 = Input, pull-up selected 10 = Input, Pull-down selected 11 = Output, no resistors selected In ADC mode, these bits are don't care	2
7:5	-	-	Reserved	0
4:0	R/W	PID	See P0x_MODE_REG[PID]	0

Table 285: WATCHDOG_REG (0x50003100)

Bit	Mode	Symbol	Description	Reset
15:9	R0/W	WDOG_WEN	0000.000 = Write enable for Watchdog timer else Write disable. This filter prevents unintentional presetting the watchdog with a SW run-away.	0x0
8	R/W	WDOG_VAL_NEG	0 = Watchdog timer value is positive.1 = Watchdog timer value is negative.	0x0
7:0	R/W	WDOG_VAL	Write:Watchdog timer reload value. Note that all bits 15-9must be 0 to reload this register.Read:Actual Watchdog timer value. Decremented by 1 every10.24 msec. Bit 8 indicates a negative counter value. 2, 1, 0,1FF16, 1FE16 etc. An NMI or WDOG (SYS) reset is generatedunder the following conditions:If WATCHDOG_CTRL_REG[NMI_RST] = 0 thenIf WDOG_VAL = 0 -> NMI (Non Maskable Interrupt)if WDOG_VAL = 1F016 -> WDOG reset -> reload FF16If WATCHDOG_CTRL_REG[NMI_RST] = 1 thenif WDOG_VAL <= 0 -> WDOG reset -> reload FF16	0xFF

Table 286: WATCHDOG_CTRL_REG (0x50003102)

Bit	Mode	Symbol	Description	Reset
15:14	-	-	Reserved	0x0

	D
	Þ
	1
	4
_	5
	82

Table 286: WATCHDOG CTRL REG (0x50003102)

Bit	Mode	Symbol	Description	Reset
0	R/W	NMI_RST	 0 = Watchdog timer generates NMI at value 0, and WDOG (SYS) reset at <=-16. Timer can be frozen /resumed using SET_FREEZE_REG[FRZ_WDOG]/ RESET_FREEZE_REG[FRZ_WDOG]. 1 = Watchdog timer generates a WDOG (SYS) reset at value 0 and can not be frozen by Software. Note that this bit can only be set to 1 by SW and only be reset with a WDOG (SYS) reset or SW reset. The watchdog is always frozen when the Cortex-M0 is halted in DEBUG State. 	0x0

Table 287: CHIP_ID1_REG (0x50003200)

Bit	Mode	Symbol	Description	Reset
7:0	R	CHIP_ID1	First character of device type "580" in ASCII.	0x35

Table 288: CHIP_ID2_REG (0x50003201)

Bit	Mode	Symbol	Description	Reset
7:0	R	CHIP_ID2	Second character of device type "580" in ASCII.	0x38

Table 289: CHIP_ID3_REG (0x50003202)

Bit	Mode	Symbol	Description	Reset
7:0	R	CHIP_ID3	Third character of device type "580" in ASCII.	0x30

Table 290: CHIP_SWC_REG (0x50003203)

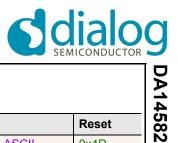

Bit	Mode	Symbol	Description	Reset
7:4	-	-	Reserved	0x0
3:0	R	CHIP_SWC	SoftWare Compatibility code. Integer (default = 0) which is incremented if a silicon change has impact on the CPU Firmware. Can be used by software developers to write silicon revision dependent code.	0x0

Table 291: CHIP_REVISION_REG (0x50003204)

Bit	Mode	Symbol	Description	Reset
7:0	R	REVISION_ID	Chip version, corresponds with type number in ASCII. 0x41 = 'A', 0x42 = 'B'	0x41

Table 292: CHIP_CONFIG1_REG (0x50003205)

Bit	Mode	Symbol	Description	Reset
7:0	R	CHIP_CONFIG1	First character of Chip Configuration "0M2" in ASCII.	0x30

Reset

0x4D

Table 2	Table 293: CHIP_CONFIG2_REG (0x50003206)						
Bit	Mode	Symbol	Description				
7:0	R	CHIP_CONFIG2	Second character of Chip Configuration "0M2" in ASCII.				

Table 294: CHIP_CONFIG3_REG (0x50003207)

ľ	Bit	Mode	Symbol	Description	Reset
	7:0	R	CHIP_CONFIG3	Third character of Chip Configuration "0M2" in ASCII.	0x32

Table 295: CHIP_TEST1_REG (0x5000320A)

Bit	Mode	Symbol	Description	Reset
7:0	-	-	Reserved	0x0

Table 296: CHIP_TEST2_REG (0x5000320B)

Bit	Mode	Symbol	Description	Reset
7:0	-	-	Reserved	0x20

Table 297: SET_FREEZE_REG (0x50003300)

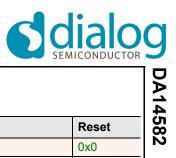

Bit	Mode	Symbol	Description	Reset
15:4	-	-	Reserved	0x0
3	R/W	FRZ_WDOG	If '1', the watchdog timer is frozen, '0' is discarded. WATCHDOG_CTRL_REG[NMI_RST] must be '0' to allow the freeze function.	0x0
2	R/W	FRZ_BLETIM	If '1', the BLE master clock is frozen, '0' is discarded.	0x0
1	R/W	FRZ_SWTIM	If '1', the SW Timer (TIMER0) is frozen, '0' is discarded.	0x0
0	R/W	FRZ_WKUPTIM	If '1', the Wake Up Timer is frozen, '0' is discarded.	0x0

Table 298: RESET_FREEZE_REG (0x50003302)

Bit	Mode	Symbol	Description	Reset
15:4	-	-	Reserved	0x0
3	R/W	FRZ_WDOG	If '1', the watchdog timer continues, '0' is discarded.	0x0
2	R/W	FRZ_BLETIM	If '1', the the BLE master clock continues, '0' is discarded.	0x0
1	R/W	FRZ_SWTIM	If '1', the SW Timer (TIMER0) continues, '0' is discarded.	0x0
0	R/W	FRZ_WKUPTIM	If '1', the Wake Up Timer continues, '0' is discarded.	0x0

Table 299: DEBUG_REG (0x50003304)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	DEBUGS_FREEZE_E N	Default '1', freezing of the on-chip timers is enabled when the Cortex-M0 is halted in DEBUG State. If '0', freezing of the on-chip timers is depending on FREEZE_REG when the Cortex-M0 is halted in DEBUG State <u>except</u> the watchdog timer. The watchdog timer is always fro- zen when the Cortex-M0 is halted in DEBUG State.	0x1

Table 300: GP_STATUS_REG (0x50003306)

Bit	Mode	Symbol	Description	Reset
15:1	-	-	Reserved	0x0
0	R/W	CAL_PHASE	If '1', it designates that the chip is in Calibration Phase i.e. the OTP has been initially programmed but no Calibration has occured.	0x0

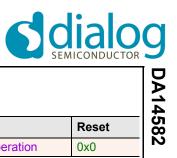
Table 301: GP_CONTROL_REG (0x50003308)

Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0
5:1	R/W	EM_MAP	Select the mapping of the Exchange memory pages. 0: EM size 0 kB, SysRAM size 42 kB 1: EM size 2 kB, SysRAM size 48 kB 2: EM size 3 kB, SysRAM size 47 kB 3: EM size 4 kB, SysRAM size 47 kB 3: EM size 5 kB, SysRAM size 46 kB 4: EM size 5 kB, SysRAM size 46 kB 5: EM size 6 kB, SysRAM size 43 kB 7: EM size 6 kB, SysRAM size 43 kB 7: EM size 8 kB, SysRAM size 40 kB 10: EM size 5 kB, SysRAM size 40 kB 11: EM size 6 kB, SysRAM size 40 kB 12: EM size 7 kB, SysRAM size 40 kB 13: EM size 8 kB, SysRAM size 40 kB 14: EM size 9 kB, SysRAM size 40 kB 15: EM size 10 kB, SysRAM size 40 kB 16: Reserved 17: EM size 6 kB, SysRAM size 38 kB 18: EM size 9 kB, SysRAM size 38 kB 20: EM size 10 kB, SysRAM size 38 kB 21: EM size 10 kB, SysRAM size 38 kB 22: EM size 10 kB, SysRAM size 38 kB 23: EM size 12 kB, SysRAM size	0x1
0	R/W	BLE WAKEUP REQ	If '1', the BLE wakes up.	0x0

Table 302: TIMER0_CTRL_REG (0x50003400)

Bit	Mode	Symbol	Description	Reset
15:4	-	-	Reserved	0x0
3	R/W	PWM_MODE	 0 = PWM signals are '1' during high time. 1 = PWM signals send out the (fast) clock divided by 2 during high time. So it will be in the range of 1 to 8 MHz. 	0x0
2	R/W	TIM0_CLK_DIV	 1 = Timer0 uses selected clock frequency as is. 0 = Timer0 uses selected clock frequency divided by 10. Note that this applies only to the ON-counter. 	0x0
1	R/W	TIM0_CLK_SEL	1 = Timer0 uses 16, 8, 4 or 2 MHz (fast) clock frequency. 0 = Timer0 uses 32 kHz (slow) clock frequency.	0x0
0	R/W	TIM0_CTRL	0 = Timer0 is off and in reset state. 1 = Timer0 is running.	0x0

Bit 15:0 Table Bit	Mode R0/W	Symbol TIM0_ON	Description Timer0 On reload value:	Reset
	204: TIM			0x0
	204. TIM		If read the actual counter value ON_CNTer is returned	
	304. I IIVI	ER0_RELOAD_M_REG	(0x50003404)	
SIT	Mode	Symbol	Description	Reset
15:0	R0/W	TIM0_M	Timer0 'high' reload valuelf read the actual counter value T0_CNTer is returned	0x0
Table	a 305: TIM	ER0_RELOAD_N_REG	(0x50003406)	
Bit	Mode	Symbol	Description	Reset
15:0	R0/W	TIM0_N	Timer0 'low' reload value:	0x0
			If read the actual counter value T0_CNTer is returned	
Table	9 306: PW	M2_DUTY_CYCLE (0x50	0003408)	
Bit	Mode	Symbol	Description	Reset
3:0	R/W	DUTY_CYCLE	duty cycle for PWM	0x0
		M3_DUTY_CYCLE (0x50	100340A)	
Bit	Mode	Symbol	Description	Reset
it			·	Reset
Bit 13:0	Mode R/W	Symbol	Description duty cycle for PWM	
Bit 3:0 Table	Mode R/W	Symbol DUTY_CYCLE	Description duty cycle for PWM	
Bit 3:0 Table Bit	Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50	Description duty cycle for PWM 000340C)	0x0
Bit 13:0 Table Bit 13:0	Mode R/W 308: PW Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol	Description duty cycle for PWM 000340C) Description duty cycle for PWM	0x0 Reset
Bit 13:0 Table Bit 13:0	Mode R/W 308: PW Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE	Description duty cycle for PWM 000340C) Description duty cycle for PWM	0x0 Reset
it 3:0 Table it 3:0 Table	Mode R/W 308: PW Mode R/W 309: TRI	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE PLE_PWM_FREQUENC	Description duty cycle for PWM 000340C) Description duty cycle for PWM Y (0x5000340E)	0x0 Reset 0x0
Bit 13:0 Table Bit 13:0 Table Bit 13:0	Mode R/W 308: PW 308: PW Mode R/W 309: TRI Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE PLE_PWM_FREQUENC Symbol FREQ	Description duty cycle for PWM Description duty cycle for PWM Y (0x5000340E) Description Freq for PWM 2 3 4	0x0 Reset 0x0
Bit 13:0 Table Bit 13:0 Table Bit 13:0	Mode R/W 308: PW 308: PW Mode R/W 309: TRI Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE PLE_PWM_FREQUENC	Description duty cycle for PWM Description duty cycle for PWM Y (0x5000340E) Description Freq for PWM 2 3 4	0x0 Reset 0x0
Bit 3:0 Table Bit 3:0 Table Bit 3:0 Table	Mode R/W 308: PWI Mode R/W 309: TRII Mode R/W 309: TRII Mode R/W	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE PLE_PWM_FREQUENC Symbol FREQ PLE_PWM_CTRL_REG	Description duty cycle for PWM 000340C) Description duty cycle for PWM Y (0x5000340E) Description Freq for PWM 2 3 4 (0x50003410)	0x0 0x0 Reset 0x0
Bit 3:0 Table Bit 3:0 Table Bit Table Bit	Mode R/W 308: PW Mode R/W 309: TRI Mode R/W 310: TRI Mode	Symbol DUTY_CYCLE M4_DUTY_CYCLE (0x50 Symbol DUTY_CYCLE PLE_PWM_FREQUENC Symbol FREQ PLE_PWM_CTRL_REG Symbol	Description duty cycle for PWM 000340C) Description duty cycle for PWM Y (0x5000340E) Description Freq for PWM 2 3 4 (0x50003410) Description	0x0 0x0 Reset 0x0 Reset 0x0 Reset 0x0



6.1 CODEC REGISTER FILE Table 311: Register map Codec

Address	Port	Description
0x00001200	ENV_REG	Test environment register
0x00001202	TEST_CTRL_REG	Test control register
0x00001210	BANDGAP_REG	Bandgap register
0x00001212	BAT_CTRL_REG	Power control register
0x00001220	GPIO_DATA_REG	GPIO Data input /out register
0x00001222	GPIO_SET_DATA_REG	GPIO Set port pins register
0x00001224	GPIO_RESET_DATA_REG	GPIO Reset port pins register
0x00001226	GPIO_DIR_REG	GPIO Direction register
0x0000122A	GPIO_PUPD_REG	GPIO Pull-up pull-down register
0x00001250	DMA0_A_STARTL_REG	Start address Low A of DMA channel 0
0x00001254	DMA0_A_IDX_REG	DMA Receive index A of channel 0
0x00001256	DMA0_B_STARTL_REG	Start address Low B of DMA channel 0
0x0000125A	DMA0_B_IDX_REG	DMA Receive B index channel 0
0x0000125E	DMA0_LEN_REG	DMA receive length register channel 0
0x00001260	DMA0_CTRL_REG	Control register for the DMA channel 0
0x00001280	CODEC_MIC_REG	Codec microphone control register
0x00001282	CODEC_LSR_REG	Codec loudspeaker control register
0x00001284	CODEC_VREF_REG	Codec vref control register
0x00001286	CODEC_IN_OUT_REG	CODEC input/output register
0x00001288	CODEC_ADDA_REG	Codec ad/da control register
0x0000128A	CODEC_OFFSET1_REG	Codec offset error and compensation register
0x0000128C	CODEC_TEST_CTRL_REG	Codec test control register codec
0x0000128E	CODEC_OFFSET2_REG	Codec offset compensation register
0x000012E2	CLK_CTRL_REG	PLL control register
0x000012E4	PLL_DIV_REG	PLL control register
0x000012E6	PER_DIV_REG	Peripheral divider register
0x000012E8	CODEC_DIV_REG	Codec divider register
0x000012FA	VERSION_REG0	Version register 0
0x000012FB	VERSION_REG1	Version register 1
0x000012FC	VERSION_REG2	Version register 2
0x000012FD	VERSION_REG3	Version register 3
0x000012FE	VERSION_REG4	Version register 4
0x000012FF	VERSION REG5	Version register 5

Table 312: ENV_REG (0x00001200)

Bit	Mode	Symbol	Description	Reset
15:4	-	-	Reserved	0x0
3:0	R	ENV_DATA	Value of pins GPIO[3-2] on rising edge of RSTn. Used for test purposes Bitfields [1-0] are reserved	0x0

Bit	Mode	Symbol	Description	Reset
15:0	R/W	TEST_CTRL	For test purpose only. Must be all 0 for normal operation	0x0
Table	314: BAN	IDGAP_REG (0x000	01210)	
Bit	Mode	Symbol	Description	Reset
15:12	-	-	Reserved	0x0
11:10	R	BG_COMP	Bandgap Trim comparator output (see also chapter "Bandgap reference") (valid when BG_COMP_PD = '0') 11: Bandgap voltage is to high (relative to VDD) 01: Bandgap voltage is OK (relative to VDD) 00: Bandgap voltage is to low (relative to VDD)	0x0
9	R/W	BG_COMP_PD	'0': Enable bandgap trim comparators '1': Bandgap trim comparators in power-down.	0x0
8:6	R/W	BANDGAP_I	Internal reference current adjust. Since the internal reference current can not be measured by the customer, these bits shall not be changed. Setting these bits will not affect the bandgap voltage. 1.00: + 40 % 1.01: + 30 % 1.10: + 20 % 1.11: + 10 % 0.00: + 0 % <- prescribed value if no current tuning done 0.01: - 10 % 0.10: - 20 % 0.11: - 30 %	
5:4	R/W	BANDGAP_VIT	1x: Voltage and current -5.6 % <- for test purposes only x1: Voltage and current +5.6 % <- for test purposes only	0x0
3:0	R/W	BANDGAP_VI	Bandgap reference voltage and current adjust to trim internal bandgap. The correct value of the bandgap can be checked with BG_COMP if BG_COMP_PD=0. These bits must be set before the current bits 8-6 because it affects the reference currents. 0000: -5.6 % 0001: -4.9% 0010: -4.2 % 0010: -4.2 % 0010: -2.8 % 0100: -2.8 % 0101: -2.1 % 0110: -1.4 % 1000: midlevel 1001: +0.7 % 1010: +1.4 % 1011: +2.1 % 1100: +2.8 % 1101: +3.5 %	0x8

Table 315: BAT_CTRL_REG (0x00001212)

Bit	Mode	Symbol	Description	Reset
15:2	-	-	Reserved	0x0

© 2015 Dialog Semiconductor

Company Confidential

Table	e 315: BAT	CTRL_REG (0x000	001212)	
Bit	Mode	Symbol	Description	Reset
:0	R/W	PADS_A	Reference voltage adjust for PAD input stage. This register must be set to a higher value before a higher VDDIO is applied and set to a lower value after a lower VDDIO is applied. Reversing this order may damage the PADs. '0x' : For VDDIO: 1.75 2.0 V '1x' : For VDDIO: 2.01 3.45 V	0x11
	-	O_DATA_REG (0x00	0001220)	
Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:8	-	GPO_DATA	Write, set pin GPOx if output enabled with GPIO_MODE_REG[3-2]) Read, returns 0	0x0
7:0	R/W	GPIO_DATA	Write, set pin GPIOx (if output enabled with GPIO_DIR_REG[x]) Read, returns the value of pin value GPIOx] Bit fields [7-4] and [1-0] are reserved.	0x0
Table	e 317: GPI	O_SET_DATA_REG	(0x00001222)	
Bit	Mode	Symbol	Description	Reset
15:10	-	-	Reserved	0x0
9:0	R/W	GPIO_SET	Writing a '1' sets GPIO_DATA_REG[x] to '1' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0	0x0
			Bit fields [7-4] and [1-0] are reserved.	
Table	9 318: GPI	O_RESET_DATA_RI	Bit fields [7-4] and [1-0] are reserved.	
	e 318: GPI Mode	O_RESET_DATA_RI	Bit fields [7-4] and [1-0] are reserved.	Reset
Bit			Bit fields [7-4] and [1-0] are reserved.	Reset 0x0
Bit 15:10			Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description	-
Bit 15:10 9:0	Mode - R/W	Symbol -	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved.	0x0
Bit 15:10 9:0 Table	Mode - R/W	Symbol - GPIO_RESET	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved.	0x0
Bit 15:10 9:0 Table Bit	Mode - R/W 319: GPI	Symbol - GPIO_RESET O_DIR_REG (0x0000	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved. 01226)	0x0 0x0
Bit 15:10 9:0 Table Bit 15:8	Mode - R/W 319: GPI	Symbol - GPIO_RESET O_DIR_REG (0x0000	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved. 01226) Description	0x0 0x0
Bit 15:10 9:0 Table Bit 15:8 7:0	Mode - R/W 319: GPI Mode - R/W	Symbol - GPIO_RESET O_DIR_REG (0x0000 Symbol -	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved. 01226) Description Reserved '0': Pin GPIOx is input '1': Pin GPIOx is output Bit fields [7-4] and [1-0] are reserved. Keep reset value	0x0 0x0 Reset 0x0
Bit 15:10 9:0 Table Bit 15:8 7:0 Table	Mode - R/W 319: GPI Mode - R/W	Symbol - GPIO_RESET O_DIR_REG (0x0000 Symbol - GPIO_DIR	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved. 01226) Description Reserved '0': Pin GPIOx is input '1': Pin GPIOx is output Bit fields [7-4] and [1-0] are reserved. Keep reset value	0x0 0x0 Reset 0x0
Bit 9:0 Table Bit 15:8 7:0	Mode - R/W 319: GPI Mode - R/W 320: GPI	Symbol - GPIO_RESET O_DIR_REG (0x0000 Symbol - GPIO_DIR O_PUPD_REG (0x00	Bit fields [7-4] and [1-0] are reserved. EG (0x00001224) Description Reserved Writing a '1' sets GPIO_DATA_REG[x] to '0' if output enabled with GPIO_DIR_REG[x] Writing 0 is discarded, Reading returns 0 Bit fields [7-4] and [1-0] are reserved. 01226) Description Reserved '0': Pin GPIOx is input '1': Pin GPIOx is output Bit fields [7-4] and [1-0] are reserved. Keep reset value 000122A)	0x0 0x0 Reset 0x0 0x0

Table 321:	DMA0 A	STARTL	REG ((0x00001250)

Bit	Mode	Symbol	Description	Reset
15:13	-	-	Reserved	0x0
12:0	R/W	DMAX_A_STARTL	Start source/destination address A The source/destination direction is set by bit DIR in DMA_CTRL_REGx.	0x0

Table 322: DMA0_A_IDX_REG (0x00001254)

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	DMAX_A_IDX	This register, added to DMA_A_START_REGx, is the source/ destination address of the next DMA cycle. Incremented with 0 or 2 after each DMA cycle.The source/destination direction is set by bit DIR in CTRL_REGx	0x0

Table 323: DMA0_B_STARTL_REG (0x00001256)

Bit	Mode	Symbol	Description	Reset
15:13	-	-	Reserved	0x0
12:0	R/W	DMAX_B_STARTL	Start source/destination address BThe source/destination direction is set by bit DIR in CTRL_REGx.	0x0

Table 324: DMA0_B_IDX_REG (0x0000125A)

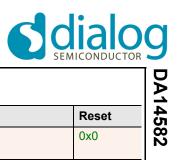
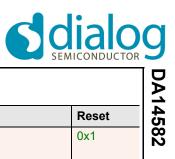

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	DMAX_B_IDX	This register, added to DMA_B_START_REGx, is the source/ destination address of the next DMA cycle. Incremented with 0 or 2 after each DMA cycle. The source/destination direction is set by bit DIR in CTRL_REGx	0x0

Table 325: I	ΟΜΔΟ	IFN	REG	(0x000	125F)
			ILC.		

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7:0	R/W	DMA_LEN	Length in bytes (DMA_LEN must be <= 0xFF - AINC) If this register equals DMA0_A_IDX_REG then if DMA_CIRCULAR = 0, then the DMA stops. DMA0_A_IDX_REG, DMA0_B_IDX_REG must be reset by SW if DMA_CIRCULAR = 1, then DMA_A_IDX_REG and DMA0_B_IDX_REG are both reset and DMA continues.	0x0

Table 326: DMA0_CTRL_REG (0x00001260)

Bit	Mode	Symbol	Description	Reset
15	-	-	Reserved	0x0
14	R/W	SYNC_SEL	'0': 8/16kHz trigger for DMA by CODEC(Note CODEC must be switched on) '1': Reserved	0x0
13:12	-	-	Reserved	0x0



Bit	Mode	Symbol	Description	Reset
11	R/W	DREQ_LEVEL	'0': normal operation '1': Stop DMA if DMA_ON is set to '0'.	0x0
10	R/W	CIRCULAR	 '0': Normal mode. The DMA channel stops if register DMA_A_IDX_REGx equals register DMA0_LEN_REG.This mode is for SPI operation. '1': Circular mode. If DMA0_A_IDX_REG equals register DMA0_LEN_REG, the DMA0_A_IDX_REG and DMA0_B_IDX_REG are both reset and the DMA starts from the start. This mode is used to transfer codec samples 	0x0
9:8	R/W	AINC	Increment count DMA0_A_IDX_REG register.00 : do not increment 01 : Reserved 10 : Increment address with one word	0x0
7:6	R/W	BINC	Increment count DMA0_B_IDX_REG register00 : do not increment 01 : Reserved 10 : Increment address with one word	0x0
5	R/W	DREQ_MODE	'0': DMA channel starts immediately.'1': DMA channel triggered by 8/16 kHz Codec clock	0x0
4	-	-	Reserved	0x0
3	R/W	IND	Reserved, must be set to 1	0x0
2	R/W	DIR	Transfer direction: '0' : A to B.'1' : B to A.	0x0
1	-	-	Reserved	0x0
0	R/W	DMA_ON	'0' : DMA channel is off, clocks are disabled '1' : DMA channel is on will be automatically cleared in normal mode after a complete transfer if DMA0_IDX_REG equals DMA0_LEN_REG. If DMA operation must be stopped before a transfer is completed, bit 11 must be set to '1' and DMA_ON must be set to '0'	0x0

Table 327: CODEC_MIC_REG (0x00001280)

Г

Bit	Mode	Symbol	Description	Reset
15:13	-	-	Reserved	0x0
12	-	MICH_ON	Reserved, must be kept 0	0x0
11	R/W	MICN_AGND_OUT	0: MICn not connected to internal AGND 1: MICn connected to internal AGND	0x0
10	-	-	Reserved	0x0
9	R/W	MIC_OFFCOM_ON	Offset compensation control (for test purpose only) 0: off (normal operation) 1: on.	0x0
8	R/W	MIC_OFFCOM_SG	Offset compensation values (for test purpose only) 0: added to MICp. 1: added to MICn	0x0
7:4	R/W	MIC_GAIN	Microphone amplifier gain in steps of 2 dB 0000: 0 dB, 1111: +30 dB (Refer to table "Microphone Amplifier" for the voltage level at 0 dBm0)	0x0
3	R/W	MIC_MUTE	0: normal operation 1: mute MIC inputs	0x0

Bit	Mode	Symbol	Description	Reset
2	R/W	MIC_PD	1: Microphone amplifier power down 0: on.	0x1
1:0	R/W	MIC_MODE	Microphone input configuration M[1], M[0] 00: Normal Differential or single ended AC coupled. 01: MICp single ended. MICn disabled; High impedance 10: MICn single ended. MICp disabled; High impedance 11: MICp/n disabled; High impedance. And microphone amplifier is muted. Disabled pins are internally connected to analog ground.	0x0

Table 328: CODEC_LSR_REG (0x00001282)

Bit	Mode	Symbol	Description	Reset
15:14	-	-	Reserved	0x0
13:11	R/W	LSRATT	Loudspeaker amplifier analog gain in steps of 1 dB 000: 2dB, 111: -12 dB (Refer to table "LSRp/LSRn output" for voltage level at 0 dBm0)	0x0
10	R/W	LSR_GND_PD	Obsolete, any value written to this bit will have no effect.	0x1
9	R/W	LSREN_SE	 Differential to single ended conversion enabled. 0: disabled 	0x0
8:6	-	-	Reserved	0x100
5	R/W	LSRN_PD	1: LSRn amplifier power down 0: on.	0x1
4:3	R/W	LSRN_MODE	 00: LSRn output has AGND reference voltage (If LSRN_PD = 1 then LSRn has high impedance) 01: Reserved 10: Differential mode DAn to LSRn amplifier 11: Single ended mode to LSRn amplifier (LSREN_SE must be set to 1) 	0x0
2	R/W	LSRP_PD	1: LSRp amplifier power down 0: on.	0x1
1:0	R/W	LSRP_MODE	00: LSRp output has AGND reference voltage (If LSRP_PD = 1 then LSR+ has high impedance) 01: reserved 10: Differential mode DAp amplifier to LSRp amplifier 11: Single ended mode to LSRp amplifier (LSREN_SE must be set to 1)	0x0

Bit	Mode	Symbol	Description	Reset
15:8	-	-	Reserved	0x0
7	R/W	BIAS_PD	1: Bias current for all CODEC amplifiers power down 0: on.	0x1
6	R/W	VREF_BG_PD	1: Bandgap current mirror power down 0: on. Must be active if VREFp is used.	0x0
5	-	-	Reserved	0x0
4	R/W	VBUF_INIT	0: 1M ohm (+/-30%) series resistor to VBUF pin.(recom- mended setting) 1: 100k ohm (+/-30%) series resistor to VBUF pin	0x1
3:1	-	-	Reserved	0x0

Table 3	329: COD	EC_VREF_REG (0x000		IICONDUCTOR	
Bit	Mode	Symbol	Description	Reset	45
0	R/W	VREF_PD	1: VREFp amplifier power down 0: on	0x1	582

Table 330: CODEC_IN_OUT_REG (0x00001286)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	CODEC_DATA	Read: 16 bits CODEC input register Write: 16 bits CODEC output register if selected	0x0

Table 331: CODEC_ADDA_REG (0x00001288)

Bit	Mode	Symbol	Description	Reset
15	R/W	SIDE_TONE_ON	Digital Side tone 0: off 1: on	0x0
14:12	R/W	SIDE_TONE	Digital Side tone between MIC to LSR 000: 0 dB 001: -6dB 010: -12dB 011: -18dB (default) 100: -24dB 101: -30dB 110: -36dB 111: -42dB	0x11
11	-	-	Reserved	0x0
10	R/W	ADDA_COFF	 0: ADDA clocks on. Normal operation. 1: ADDA clocks off. This bit or all AD_PD, DA_PD, MIC_PD, LSRP_PD, LSRN_PD cause the digital part of the Audio CODEC to be switched off. For optimal power saving in the Audio CODEC analog part, all applicable CODEC_xxx_PD bits must also be set to '1' if a block is not used. 	0x0
9:7	-	-	Reserved	0x0
6	R/W	REFINT_PD	 1: Internal reference opamps power down 0: on. Must be active if Codec AD or DA is used. 	0x1
5:4	-	-	Reserved	0x0
3	R/W	AD_DITH_OFF	0: Codec AD dithering on (normal), 1: off	0x0
2	R/W	DA_DITH_OFF	0: Codec DA dithering on (normal), 1: off	0x0
1	R/W	DA_PD	1: Codec DA power down, 0: on	0x1
0	R/W	AD_PD	1: Codec AD power down, 0: on	0x1

Table 332: CODEC_OFFSET1_REG (0x0000128A)

Bit	Mode	Symbol	Description	Reset
15:0	R	COR1	Offset error value (2's complement) (Refer to chapter "Codec offset compensation") Each MIC_GAIN setting has a different offset error value.	0x0

Table 333: CODEC_TEST_CTRL_REG (0x0000128C)

Bit	t	Mode	Symbol	Description	Reset
15	:14	-	-	Reserved	0x0

Table 333: CODEC_TEST_CTRL_REG (0x0000128C)

Bit	Mode	Symbol	Description	Reset
13	R	COR_STAT	'0': CODEC_OFFSET_REG2 may be loaded with a new value. '1': The CODEC_OFFSET_REG2 is being copied to the inter- nal offset compensation register, caused by a write operation to the CODEC_MIC_REG. During this synchronisation pro- cess, the new MIC_GAIN and corresponding CODEC_OFFSET_REG2 value become effective at the same time.	0x0
12	R/W	COR_ON	'0': Digital offset compensation disabled. '1': Digital offset compensation enabled. Must be set to '1' before the CODEC_OFFSET_REG2 and CODEC_MIC_REG[MIC_GAIN] are initially written.	0x0
11:0	R/W	TCR	Test control bit must be 0 for normal operation	0x0

Table 334: CODEC_OFFSET2_REG (0x0000128E)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	COR2	Offset compensation value 2 (2's complement). For an applied MIC_GAIN setting, the offset error value must be copied to this register.	0x0

Table 335: CLK_CTRL_REG (0x000012E2)

Bit	Mode	Symbol	Description	Reset
15:7	-	-	Reserved	0x0
6	R/W	HF_SEL	'0': PLL operates from 28-48 MHz '1': PLL operates from 48-56 MHz. This bit must be set at the same time as VCO_ON is set.	
5	R/W	LPF_SEL	 '0': PLL slow loop filter; used if Fupd <=1 MHz '1': PLL fast loop filter; used if Fupd > 1MHz Examples:Fclk Fvco VD/XD Fupd LPF_SEL 10.368 41.472 MHz 12/3 3.456 MHz 112.288 36.824 MHz 48/16 768 kHz 0 	0x0
4	R/W	VCO_ON	'0': PLL VCO off'1': PLL VCO on, settling time to be timed with software (Refer to chapter PLL Clock switching procedure"	
3	R/W	PLL_BYPASSN	'0': PLL in bypass mode, Xtal is main system clock () '1': PLL clock is main system clock ()	
2	-	-	Reserved	0x0
1	R/W	CP_ON	'0': PLL VCO Charge pump off '1': PLL VCO Charge pump on (Normal operation)	0x0
0	R/W	TESTMODE_SEL	If PLL test mode enabled: '0': VCO test mode '1': PLL divider test mode.	0x0

Table 336: PLL_DIV_REG (0x000012E4)

Bit	Mode	Symbol	Description	Reset
15	-	-	Reserved	0x0

Bit	Mode	Symbol	Description	Reset
14	R/W	DIV3	PLL VCO divider DIV3 DIV 4 VD[3-0] Divide by 0 0 0000 undefined 1 0 xxxx 8 1 1 xxxx 12 0 0 0001 2x8=16 0 0 0010 3x8=24	0x0
13	R/W	DIV4	0	0x0
12:9	R/W	VD	0	0x0
3	R/W	DIV1	PLL xtal divider DIV1 DIV 2 XD[6-0] Divide by 0 0 0000 undefined 1 0 xxx xxxx 4 1 1 xxx xxxx 3 0 x 000 0111 7 0 x 000 1010 10 0 x 000 1011 11 0 x 000 1101 13 0 x 000 1110 14 0 x 100 0001 65 0 x 111 1111 127	0x0
7	R/W	DIV2	0	0x0
6:0	R/W	XD	0000000	0x0

Table 337: PER_DIV_REG (0x000012E6)

Bit	Mode	Symbol	Description	Reset
15:6	-	-	Reserved	0x0
5:0	R/W	PER_DIV	Peripheral clock divider factor. This value determines the base frequency for PER_CLK if PLL is on. The minimum value of this register is 2.	0x4

Table 338: CODEC_DIV_REG (0x000012E8)

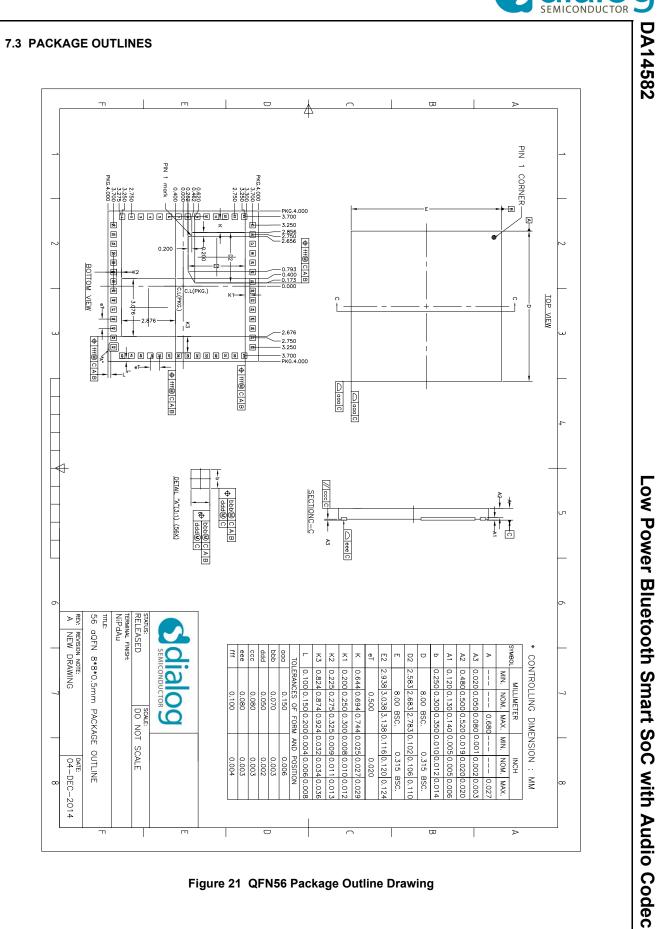
Bit	Mode	Symbol	mbol Description	
15:8	-	-	Reserved	
7	-	CODEC_DIV_RES1	Reserved, must be kept 0	0x0
6	R/W	CLOCK_SOURCE	0: CODEC_DIV_REG clock input is PLL/XTAL 1: CODEC_DIV_REG clock input is PER_CLK clock	0x0

Bit	Mode	Symbol	Description	Reset
:0	R/W	CODEC_DIV	Codec clock divider factor. This value determines the CODEC_CLK base frequency of 1.152 MHz (8kHz) resp 2.304 MHz (16 kHz) . The input frequency of this divider depends on the value of CLOCK_SOURCE and the PLL/ XTAL and PER_CLK. See Table 3 on page 8 for typical values.	0x20
Tabl	e 339: VEF	SION_REG0 (0x00	0012FA)	
Bit	Mode	Symbol	Description	Reset
7:0	R	VDEV1	First character of device type in ASCII. "439"	0x34
		SION_REG1 (0x00		
Bit 7:0	Mode R	Symbol VDEV2	Description Second character of device type in ASCII. "439"	0x33
Tabl	_	SION_REG2 (0x00		Pasat
Tabl Bit 7:0	Mode R	Symbol VDEV3	Description Third character of device type in ASCII. "439"	Reset
Tabl Bit 7:0 Tabl Bit	Mode R e 342: VEF Mode	Symbol VDEV3 RSION_REG3 (0x00 Symbol	Description Third character of device type in ASCII. "439" 0012FD) Description	
Table Bit 7:0 Table Bit 7:0	Mode R e 342: VEF Mode R e 343: VEF	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE)	0x39 Reset 0x0
Tabl Bit 7:0 Tabl Bit 7:0 Tabl	Mode R e 342: VEF Mode R e 343: VEF Mode	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00 Symbol	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE) Description	0x39 Reset 0x0 Reset
Tabl Bit 7:0 Tabl Bit 7:0 Tabl Bit	Mode R e 342: VEF Mode R e 343: VEF	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE)	0x39 Reset 0x0
Tabl Bit 7:0 Tabl Bit 7:0	Mode R e 342: VEF Mode R e 343: VEF Mode	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00 Symbol	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE) Description Chip version, corresponds with type number	0x39 Reset 0x0 Reset
Table Bit 7:0 Table Bit 7:0 Table Bit 7:4 3:0	Mode R e 342: VEF Mode R e 343: VEF Mode R R	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00 Symbol VREV	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE) Description Chip version, corresponds with type number 0x1: 'A', 0x2: 'B', etc. Metal change revision 0x0: No metal change in mask set of "chip version" 0x1: first metal change. 0x2: Second metal change, etc.	0x39 Reset 0x0 Reset 0x1
Tabl	Mode R e 342: VEF Mode R e 343: VEF Mode R R	Symbol VDEV3 RSION_REG3 (0x00 Symbol VCONF RSION_REG4 (0x00 Symbol VREV VMETAL	Description Third character of device type in ASCII. "439" 0012FD) Description Reserved 0012FE) Description Chip version, corresponds with type number 0x1: 'A', 0x2: 'B', etc. Metal change revision 0x0: No metal change in mask set of "chip version" 0x1: first metal change. 0x2: Second metal change, etc.	0x39 Reset 0x0 Reset 0x1

7. Package information

7.1 MOISTURE SENSITIVITY LEVEL (MSL)

The MSL is an indicator for the maximum allowable time period (floor life time) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a maximum temperature of 30 $^{\circ}$ C and a maximum relative humidity of 60 $^{\circ}$ RH. before the solder reflow process.


QFN packages are qualified for MSL 3.

MSL Level	Floor Life Time
MSL 3	168 hours
MSL 1	Unlimited at 30°C/85%RH

7.2 SOLDERING INFORMATION

Refer to the JEDEC standard J-STD-020 for relevant soldering information.

This document can be downloaded from http://www.jedec.org

Status definitions

Version	Datasheet status	Product status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for prod- uct development. Specifications may change in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterisation data for products in pre-production. Speci- fications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's <u>Standard Terms and Conditions of Sale</u>, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

RoHS compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2). Dialog Semiconductor's statement on RoHS can be found on the customer portal <u>https://support.diasemi.com/</u>. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor PLC Phone: +44 1793 757700

Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email

enquiry@diasemi.com

North America Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site www.dialog-semiconductor.com Singapore

Dialog Semiconductor Singapore Phone: +65 64 849929

China Dialog Semiconductor China

Phone: +86 21 5178 2561

Dialog Semiconductor Korea Phone: +82 2 3469 8291

© 2015 Dialog Semiconductor

176