

### **General description**

The DA9021/22 family is a highly integrated PMIC subsystem with supply domains to support a wide range of application processors, associated peripherals, and user interface functions. Combining a switched-mode USB compatible charger, full power-path management, three bucks, five linear regulators and support for multiple sleep modes, the DA9021 offers an energy-optimised solution suitable for portable handheld, wireless and, infotainment applications.

DA9021/22 comes in a 4 x 4 mm, 64-bump, WLCSP package making it ideal for space constrained applications.

The high-efficiency Li-lon/Polymer switching charger supports precise current/voltage charging as well as pre-charge and USB modes without processor interaction. During charging, the die temperature is thermally regulated enabling high-capacity batteries to be rapidly charged at currents up to 1.26 A with minimum thermal impact to space-constrained PCBs.

DA9021 offers a merged buck configuration for a combined 1.6 A or DA9022 offers a higher voltage capability on one DC-DC buck converter which is ideal for peripherals and memory running up to 3.6 V. USB suspend mode operation is supported and, for robustness, the power input is protected against over-voltage conditions.

The internally generated system power rail supports power scenarios such as instant-on with a fully discharged battery.

The power efficiency and flexibility of the switching DC-DC bucks is maintained to generate the various supply domains.

Controlled by a programmable digital power manager, the eight user-programmable switched/linear regulators may be configured to meet the start-up sequence, voltage, and timing requirements for most applications. The power manager includes supply-rail qualification and system reset management. For optimal processor energy-per-task performance, Dynamic Voltage Scaling (DVS) is available on up to four supply domains. Dialog's patented SmartMirror™ dynamic biasing is implemented on all linear regulators.

### **Key features**

- Switched USB charger with power path management
- Three buck converters with DVC, 0.5 V to 3.6 V, up to 800 mA
- Five programmable LDOs, high PSRR, 1 % accuracy
- 32 kHz RTC oscillator
- An integrated 7-channel general purpose ADC
- 9-bit GPIO bus for enhanced wakeup and peripheral control
- HS2-wire and 4-wire control interfaces
- Unique USB supply detection and charge current selection
- 64 WLCSP 4x4 mm, 0.5 mm pitch package

## **Applications**

- Personal media players
- Smartphone handsets

- Personal navigation devices
- Consumer infotainment devices
- IoT



### **Contents**

| Ge  | neral   | descrip        | tion                                               | 1  |
|-----|---------|----------------|----------------------------------------------------|----|
| Ke  | y feati | ures           |                                                    | 1  |
| Αp  | plicati | ions           |                                                    | 1  |
| Со  | ntents  | S              |                                                    | 2  |
| Fic | ures    |                |                                                    | 5  |
| •   | •       |                |                                                    |    |
|     |         |                | lefinitions                                        |    |
| 1   |         |                |                                                    |    |
| 2   |         | •              | am                                                 |    |
| 3   |         |                | upply domains                                      |    |
| 4   | Pad o   | descript       | tion                                               | 12 |
| 5   | Abso    | lute ma        | aximum ratings                                     | 20 |
| 6   | Reco    | mmend          | led operating conditions                           | 21 |
| 7   | Curre   | ent cons       | sumption                                           | 21 |
| 8   | Elect   | rical ch       | aracteristics                                      | 22 |
|     | 8.1     |                | I/O characteristics                                |    |
|     | 8.2     | •              | characteristics                                    |    |
|     | 8.3     | Power          | on reset characteristics                           | 23 |
|     | 8.4     | 4-wire         | control bus                                        | 24 |
|     | 8.5     | Oscilla        | tor characteristics                                | 24 |
|     | 8.6     |                | nce voltage generation and temperature supervision |    |
|     | 8.7     | LDO vo         | oltage regulators                                  |    |
|     |         | 8.7.1          | LDO1                                               |    |
|     |         | 8.7.2          | LDO3                                               |    |
|     |         | 8.7.3          | LDO7                                               |    |
|     |         | 8.7.4          | LDO9                                               |    |
|     |         | 8.7.5          | LDO10                                              |    |
|     |         | 8.7.6          | LDOCORE                                            |    |
|     | 8.8     |                | buck converters                                    |    |
|     |         |                | BUCKCORE                                           |    |
|     |         | 8.8.2<br>8.8.3 | BUCKPROBUCKPERI                                    |    |
|     |         | 8.8.4          | BUCKMEM                                            |    |
|     | 8.9     |                | / charger                                          |    |
|     | 0.0     | 8.9.1          | Charger buck                                       |    |
|     |         | 8.9.2          | Voltage levels on VBAT                             |    |
|     |         | 8.9.3          | Charging modes                                     |    |
|     |         | 8.9.4          | Charger detection circuit                          |    |
|     |         | 8.9.5          | VBUS charge control                                | 39 |
|     |         | 8.9.6          | Charge timer                                       | 39 |
|     |         | 8.9.7          | DCCC and active-diode                              | 39 |
|     | 8.10    | Oscilla        | tor40                                              |    |
|     | 8.11    | Refere         | nce voltage generation and temperature supervision | 40 |
| 9   | Real    | time clo       | ock and 32 kHz oscillator                          | 41 |

**Datasheet** 

© 2017 Dialog Semiconductor



|     | 9.1   | 32 kHz oscillator                                            | 41   |
|-----|-------|--------------------------------------------------------------|------|
|     | 9.2   | RTC counter and alarm                                        | 41   |
| 10  | Typic | al characteristics                                           | 43   |
|     | 10.1  | Buck regulator performance                                   | 43   |
|     | 10.2  | Linear regulator performance                                 | 44   |
|     | 10.3  | ADC performance                                              | 45   |
|     | 10.4  | Power path performance                                       | 45   |
| 11  | Func  | tional description                                           | 46   |
|     |       | Power manager IO ports                                       |      |
|     | 11.2  | -                                                            |      |
|     | 11.3  | Hardware reset (nSHUTDOWN, nONKEY, GPIO14 & GPIO15)          |      |
|     | 11.4  | · · · · · · · · · · · · · · · · · · ·                        |      |
|     | 11.5  | System enable (SYS_EN)                                       | 47   |
|     | 11.6  | Power enable (PWR_EN)                                        | 47   |
|     |       | Power1 enable (PWR1_EN)                                      |      |
|     |       | General purpose feedback signal 1 (GP_FB1: EXT_WAKEUP/READY) |      |
|     | 11.9  | Power domain status (PWR_UP/GP_FB2)                          | 48   |
|     | 11.10 | Supply rail fault (nVDD_FAULT)                               | 48   |
|     | 11.11 | Interrupt request (nIRQ)                                     | 48   |
|     |       | Real time clock output (OUT_32K)                             |      |
|     |       | IO_supply voltage (VDD_IO)                                   |      |
| 12  | Conti | rol interfaces                                               | . 49 |
|     | 12.1  |                                                              |      |
|     |       | 4-wire communication                                         |      |
|     |       | 2-wire communication                                         |      |
|     |       | 12.3.1 2-wire control bus protocol                           |      |
|     |       | 12.3.2 Alternative high speed 2-wire interface               |      |
| 13  | DAGO  | 21 operating modes                                           |      |
| 13  |       | ACTIVE mode                                                  |      |
|     |       | POWERDOWN mode                                               |      |
|     |       | RESET mode                                                   |      |
|     | 13.4  | NO-POWER mode                                                |      |
|     |       | POWER COMMANDER mode                                         | -    |
|     | 13.6  |                                                              |      |
|     | 13.0  | 13.6.1 Power-On-Reset (nPOR)                                 |      |
|     |       | 13.6.2 Application wakeup                                    |      |
|     |       | 13.6.3 Power supply sequencer                                |      |
|     | D     |                                                              |      |
| 14  |       | Ster page control                                            |      |
|     | 14.1  | Register page 0                                              |      |
|     |       | 14.1.1 Power manager control and monitoring                  |      |
| 15  |       | Extender                                                     |      |
|     | 15.1  | GPIO control                                                 | 76   |
| 16  | Powe  | er supply sequencer                                          | 81   |
|     | 16.1  | Power sequencer                                              | 83   |
| 17  | Volta | ge regulatorsge regulators                                   | 86   |
|     |       | DA9021/22 core regulator LDOCORE                             |      |
| Dat | achor |                                                              |      |



| 18 | DC/D  | C buck converters                                                                     | 88  |
|----|-------|---------------------------------------------------------------------------------------|-----|
|    | 18.1  | Converters BUCKCORE, BUCKPRO (DA9021 only) and BUCKMEM with DVC                       | 88  |
|    | 18.2  | Converter BUCKPERI with OTP programmable output voltage and bypass mode (DA9022 only) | 90  |
|    | 18.3  | Power supplies                                                                        |     |
| 19 | Prog  | rammable battery charger                                                              | 103 |
|    | 19.1  | High efficiency charger DC-DC buck converter                                          |     |
|    | 19.2  |                                                                                       |     |
|    | 19.3  | VBUS overvoltage protection and USB suspend                                           |     |
|    | 19.4  | Battery pre-charge mode                                                               |     |
|    | 19.5  | Fast linear-charge mode                                                               | 107 |
|    | 19.6  | Thermal charge current control                                                        | 107 |
|    | 19.7  | Dynamic charging current control (DCCC) and active-diode                              | 108 |
|    | 19.8  | Programmable charge termination by time                                               | 108 |
|    |       | 19.8.1 Battery charger                                                                | 109 |
| 20 | Moni  | toring ADC and touch screen interface                                                 | 114 |
|    | 20.1  | ADC overview                                                                          | 114 |
|    |       | 20.1.1 Input MUX                                                                      | 114 |
|    |       | 20.1.2 ADC                                                                            | 114 |
|    | 20.2  | MANUAL CONVERSION mode                                                                |     |
|    | 20.3  | Automatic measurements scheduler                                                      | 115 |
|    |       | 20.3.1 A0: VDDOUT low voltage nIRQ measurement mode                                   |     |
|    |       | 20.3.2 A1: ICH (and ICH_BAT average) measurement mode                                 |     |
|    |       | 20.3.3 A2: TBAT and battery temperature warning nIRQ measurement mode                 |     |
|    |       | 20.3.4 A4, A5: automatic measurement and high/low threshold warning nIRQ mode.        |     |
|    |       | 20.3.5 A8: automatic measurement of internal temperature                              |     |
|    | 00.4  | 20.3.6 A3, A9: manual measurement VBAT and VBBAT                                      |     |
|    | 20.4  | Fixed threshold comparator                                                            |     |
|    |       | 20.4.1 LED driver                                                                     |     |
|    |       | 20.4.2 GP-ADC                                                                         |     |
|    | 20 E  | 20.4.3 RTC calendar and alarm                                                         |     |
|    | 20.5  | Register page 1                                                                       |     |
| •  |       |                                                                                       |     |
|    | _     | ster Map                                                                              |     |
| 22 |       | age information                                                                       |     |
|    | 22.1  | Package outlines                                                                      | 133 |
| 23 | Exter | rnal component selection                                                              | 134 |
|    | 23.1  | Capacitor selection                                                                   | 134 |
|    | 23.2  | Inductor selection                                                                    | 135 |
|    |       | Resistors 135                                                                         |     |
|    | 23.4  | External pass transistors and Schottky diodes                                         |     |
|    | 23.5  | Battery pack temperature sensor (NTC)                                                 | 135 |
|    | 23.6  | Crystal 136                                                                           |     |
| 24 | Layo  | ut guidelines                                                                         | 137 |
|    | 24.1  | General recommendations                                                               | 137 |
|    | 24.2  | System supply and charger                                                             | 137 |

**Datasheet** 

17-Feb-2017



|     | 24.3                  | LDOs and switched mode supplies                                                     | 137      |  |  |  |  |  |
|-----|-----------------------|-------------------------------------------------------------------------------------|----------|--|--|--|--|--|
|     | 24.4                  | 4 Crystal oscillator1                                                               |          |  |  |  |  |  |
|     | 24.5                  | DA9021 thermal connection, land pad and stencil design                              | 138      |  |  |  |  |  |
| 25  | Defin                 | itions                                                                              | 139      |  |  |  |  |  |
|     |                       | Power dissipation and thermal design                                                |          |  |  |  |  |  |
|     | 25.2                  | Regulator parameters                                                                |          |  |  |  |  |  |
|     | 20.2                  | 25.2.1 Dropout voltage                                                              |          |  |  |  |  |  |
|     |                       | •                                                                                   |          |  |  |  |  |  |
|     |                       |                                                                                     |          |  |  |  |  |  |
|     |                       | 25.2.3 Line regulation                                                              |          |  |  |  |  |  |
|     |                       | 25.2.4 Load regulation                                                              |          |  |  |  |  |  |
| 26  | Order                 | ring information                                                                    | 141      |  |  |  |  |  |
|     | 26.1                  | Additional applications information                                                 | 141      |  |  |  |  |  |
| Re  | vision                | history                                                                             | 141      |  |  |  |  |  |
|     |                       |                                                                                     |          |  |  |  |  |  |
|     | <b>gure</b><br>ure 1: | S Block diagram                                                                     | . 10     |  |  |  |  |  |
|     |                       | PCB board DA9021 pad arrangement (view from the top)                                |          |  |  |  |  |  |
| _   |                       | PCB board DA9022 pad arrangement (view from the top)                                |          |  |  |  |  |  |
|     |                       | Pad arrangement colour key4-wire control bus timing diagram                         |          |  |  |  |  |  |
|     |                       | Schematics of the RTC oscillator and counter functionality                          |          |  |  |  |  |  |
| _   |                       | BUCKPERI efficiency curves                                                          |          |  |  |  |  |  |
|     |                       | BUCKCORE efficiency curves                                                          |          |  |  |  |  |  |
|     |                       | BUCKPRO efficiency curves                                                           |          |  |  |  |  |  |
|     |                       | : BUCKMEM efficiency curves<br>: Typical buck line transient                        |          |  |  |  |  |  |
|     |                       | : Typical buck load transient                                                       |          |  |  |  |  |  |
|     |                       | : Typical LDO load regulation                                                       |          |  |  |  |  |  |
| Fig | ure 14                | : Typical LDO drop-out voltage                                                      | . 44     |  |  |  |  |  |
| _   |                       | : Typical LDO line transient                                                        |          |  |  |  |  |  |
| _   |                       | : LDO load transient                                                                |          |  |  |  |  |  |
|     |                       | : Typical LDO voltage vs temperature<br>: ADC DNL performance                       |          |  |  |  |  |  |
|     |                       | : ADC INL performance                                                               |          |  |  |  |  |  |
| Fig | ure 20                | Power path behaviour USB100 mode                                                    | . 45     |  |  |  |  |  |
| Fig | ure 21                | Power path behaviour USB500 mode                                                    | 45       |  |  |  |  |  |
|     |                       | : Transitioning supply from USB 5 V (via VBUS) to VBAT                              |          |  |  |  |  |  |
| Fig | ure 23                | : Control ports and interface: : Schematic of 4-wire and 2-wire power manager bus   | 40<br>10 |  |  |  |  |  |
| Fia | ure 25                | : 4-wire host write and read timing (nCS POL = '0', CPOL = '0', CPHA = '0')         | . 50     |  |  |  |  |  |
|     |                       | : 4-wire host write and read timing (nCS_POL = '0', CPOL = '0', CPHA = '1')         |          |  |  |  |  |  |
|     |                       | : 4-wire host write and read timing (nCS_POL = '0', CPOL = '1', CPHA = '0')         |          |  |  |  |  |  |
|     |                       | : 4-wire host write and read timing (nCS_POL = '0', CPOL = '1', CPHA = '1')         |          |  |  |  |  |  |
|     |                       | : Timing of 2-wire START and STOP condition                                         |          |  |  |  |  |  |
|     |                       | : 2-wire byte write (SO/DATA line)<br>: Examples of 2-wire byte read (SO/DATA line) |          |  |  |  |  |  |
|     |                       | : 2-wire page write (SO/DATA line)                                                  |          |  |  |  |  |  |
| Fig | ure 33                | : 2-wire repeated write (SO/DATA line)                                              | . 54     |  |  |  |  |  |
| Fig | ure 34                | : Start-up from NO-POWER to POWERDOWN mode                                          | . 59     |  |  |  |  |  |
|     |                       | : Content of OTP power sequencer register cell                                      |          |  |  |  |  |  |
|     |                       | : Allocation of supplies (IDs) into to the sequencer time slots                     |          |  |  |  |  |  |
|     |                       | : Typical power-up timing: : Power mode transitions                                 |          |  |  |  |  |  |
| 9   | a10 00                | . Tower mode transitions                                                            | . 02     |  |  |  |  |  |

**Datasheet** 



| Figure 39: Smart Mirror™ voltage regulator                                                             |    |
|--------------------------------------------------------------------------------------------------------|----|
| Figure 40: DC-DC buck converter Figure 41: BUCKCORE merged with BUCKPRO                                | 88 |
|                                                                                                        |    |
| Figure 42: BUCKPERI BYPASS mode                                                                        |    |
| Figure 44: Charger detection                                                                           |    |
| Figure 45: DCCC & active diode operation                                                               |    |
| Figure 46: ADC block diagram                                                                           |    |
| Figure 47: ADC sequence                                                                                |    |
| Figure 48: DA9021/22 package outline drawing                                                           |    |
| Figure 49: Line regulation                                                                             |    |
| Figure 50: Load regulation                                                                             |    |
|                                                                                                        |    |
| Tables                                                                                                 |    |
| Table 1: Regulator overview                                                                            | 11 |
| Table 2: Pin description for DA9021                                                                    |    |
| Table 3: Pin description for DA9022                                                                    |    |
| Table 4: Pin type definition                                                                           | 19 |
| Table 5: Absolute maximum ratings                                                                      |    |
| Table 6: Recommended operating conditions                                                              |    |
| Table 7: Current consumption                                                                           |    |
| Table 8: Digital I/O (VDD_REF > 2.8 V)                                                                 |    |
| Table 9: GPIOs                                                                                         |    |
| Table 10: Power on reset                                                                               |    |
| Table 11: 4-wire timing                                                                                |    |
| Table 12: Oscillator                                                                                   |    |
| Table 13: Reference voltage generation and temperature supervision                                     |    |
| Table 14: LDO1                                                                                         |    |
| Table 15: LDO3                                                                                         |    |
| Table 16: LDO7                                                                                         |    |
| Table 17: LDO9                                                                                         |    |
| Table 18: LDO10                                                                                        |    |
| Table 19: LDOCORE (T <sub>a</sub> = -25 °C to +85 °C)                                                  |    |
| Table 20: BUCKCORE                                                                                     |    |
| Table 21: BUCKPRO (DA9021 only)                                                                        |    |
| Table 22: BUCKPERI (DA9022 only)                                                                       |    |
| Table 23: BUCKMEM                                                                                      |    |
| Table 24: Battery charger                                                                              |    |
| Table 25: Charger buck                                                                                 |    |
| Table 26: Voltage levels on VBAT                                                                       |    |
| Table 27: Charging modes                                                                               |    |
| Table 28: Charger detection circuit                                                                    |    |
| Table 29: VBUS charge control                                                                          |    |
| Table 30: Charge timer                                                                                 |    |
| Table 31: DCCC and active-diode                                                                        |    |
| Table 32: Oscillator (T <sub>A</sub> = -25 °C to +85 °C)                                               |    |
| Table 33: Reference voltage generation and temperature supervision (T <sub>A</sub> = -25 °C to +85 °C) |    |
| Table 34: 4-wire clock configurations                                                                  |    |
| Table 35: 4-wire interface summary                                                                     |    |
| Table 36: Wakeup events                                                                                |    |
| Table 37: Power sequencer controlled actions                                                           |    |
| Table 38: Register page control                                                                        |    |
| Table 39: STATUS_A                                                                                     |    |
| Table 40: STATUS_B                                                                                     |    |
| Table 41: STATUS_C                                                                                     |    |
| Table 42: STATUS_D                                                                                     |    |
| Table 43: EVENT_A                                                                                      |    |
| Table 44: EVENT_B                                                                                      | 67 |
|                                                                                                        |    |

**Datasheet** 

© 2017 Dialog Semiconductor



|           | EVENT_C                                              |      |
|-----------|------------------------------------------------------|------|
|           | EVENT_D                                              |      |
|           | FAULT_LOG                                            |      |
|           | IRQ_MASK_A                                           |      |
|           | IRQ_MASK_B                                           |      |
|           | IRQ_MASK_C                                           |      |
|           | IRQ_MASK_D                                           |      |
|           | CONTROL_A                                            |      |
|           | CONTROL_B                                            |      |
|           | CONTROL_C                                            |      |
|           | CONTROL_D                                            |      |
|           | PD_DIS                                               |      |
| Table 57: | INTERFACE                                            | . 73 |
| Table 58: | RESET                                                | . 74 |
| Table 59: | GPIO0 to 1                                           | . 76 |
| Table 60: | RESERVED                                             | . 77 |
| Table 61: | GPIO8 to 9                                           | . 77 |
| Table 62: | GPIO10 to 11                                         | . 78 |
| Table 63: | GPIO12 to 13                                         | . 78 |
| Table 64: | GPIO14 to 15                                         | . 79 |
|           | ID 0 to 1                                            |      |
|           | ID 2 to 3                                            |      |
|           | RESERVED                                             |      |
|           | ID 6 to 7                                            |      |
|           | ID 8 to 9                                            |      |
|           | ID 10 to 11                                          |      |
|           | ID 12 to 13                                          |      |
|           | ID 14 to 15                                          |      |
|           | ID 16 to 17                                          |      |
|           | ID 18 to 19                                          |      |
|           | ID 20 to 21                                          |      |
|           | SEQ status                                           |      |
|           | SEQ A                                                |      |
|           | SEQ_B                                                |      |
|           | SEQ timer                                            |      |
|           | Selection of buck current limit from coil parameters |      |
|           | Buck A                                               |      |
|           | Buck B                                               |      |
|           | BUCKCORE                                             |      |
|           | BUCKPRO                                              | _    |
|           | BUCKMEM                                              |      |
|           | BUCKPERI                                             |      |
|           | LDO1                                                 |      |
|           | RESERVED                                             |      |
|           |                                                      |      |
|           | LDO3RESERVED                                         |      |
|           |                                                      |      |
|           | LDO7                                                 |      |
|           | RESERVED                                             |      |
|           | LDO9                                                 |      |
|           | LDO10                                                |      |
|           | SUPPLY                                               |      |
|           | PULLDOWN                                             |      |
|           | Thermal charge current control                       |      |
|           | CHG_BUCK                                             |      |
|           | WAIT_CONT                                            |      |
|           | ): ISET                                              |      |
|           | 1: BAT_CHG                                           |      |
|           | 2: CHG_CONT                                          |      |
| Table 103 | 3: INPUT_CONT                                        | 112  |



| Table 104: CHG_TIME                    |     |
|----------------------------------------|-----|
| Table 105: R69 to R78                  | 116 |
| Table 106: LED4 CONT                   | 117 |
| Table 107: LED5_CONT                   | 117 |
| Table 108: ADC_MAN                     |     |
| Table 109: ADC_CONT                    |     |
| Table 110: ADC_RES_L                   |     |
| Table 111: ADC RES H                   |     |
| Table 112: VDD RES                     |     |
| Table 113: VDD_MON                     |     |
| Table 114: ICHG AV                     |     |
| Table 115: ICHG_THD                    |     |
| Table 116: ICHG_ITID                   |     |
|                                        |     |
| Table 117: TBAT_RES                    |     |
| Table 118: TBAT_HIGHP                  |     |
| Table 119: TBAT_HIGHN                  |     |
| Table 120: TBAT_LOW                    |     |
| Table 121: T_OFFSET                    |     |
| Table 122: ADCIN4_RES                  |     |
| Table 123: AUTO4_HIGH                  |     |
| Table 124: AUTO4_LOW                   |     |
| Table 125: ADCIN5_RES                  |     |
| Table 126: AUTO5_HIGH                  |     |
| Table 127: AUTO5_LOW                   |     |
| Table 128: R102, R103                  | 121 |
| Table 129: TJUNC_RES                   | 121 |
| Table 130: R105, R106                  | 122 |
| Table 131: COUNT S                     | 122 |
| Table 132: COUNT MI                    | 122 |
| Table 133: COUNT H                     | 122 |
| Table 134: COUNT D                     |     |
| Table 135: COUNT MO                    |     |
| Table 136: COUNT Y                     |     |
| Table 137: ALARM MI                    |     |
| Table 138: ALARM H                     |     |
| Table 139: ALARM D                     |     |
| Table 140: ALARM MO                    |     |
| Table 141: ALARM Y                     |     |
| Table 142: SECOND A                    |     |
| <del>-</del>                           |     |
| Table 144: SECOND_B                    |     |
| Table 144: SECOND_C                    |     |
| Table 145: SECOND_D                    |     |
| Table 146: PAGE_CON_P1                 |     |
| Table 147: CHIP_ID                     |     |
| Table 148: CONFIG_ID                   |     |
| Table 149: OTP_CONT                    |     |
| Table 150: OSC_TRIM                    |     |
| Table 151: Register map                |     |
| Table 152: Recommended capacitor types |     |
| Table 153: Recommended inductor types  |     |
| Table 154: Recommended resistor types  |     |
| Table 155: Example FETs:               |     |
| Table 156: Example NTC                 |     |
| Table 157: Example crystal             | 136 |



#### 1 Terms and definitions

ADC Analog to Digital Converter
BCD Binary Coded Decimal
CC Constant Current
CV Constant Voltage

DCCC Dynamic Charger Current Control

DVC Dynamic Voltage Control
DVS Dynamic Voltage Scaling
ESD Electrostatic Discharge
ESR Equivalent Series Resistance

GND Ground

GSM Global System for Mobile Communication

Internet of Things
IRQ Interrupt Request

LDO Low Dropout Voltage Regulator

LED Light Emitting Diode

NTC Negative Temperature Coefficient

OTP One Time Programmable

OV Overvoltage

PCB Printed Circuit Board

PFM Pulse Frequency Modulation

PMIC Power Management Integrated Circuit

PSRR Power Supply Rejection Ratio

PWM Pulse Width Modulation

RTC Real Time Clock

TDMA Time Division Multiple Access
TRC Trimming Release Code
USB Universal Serial Bus

WLCSP Wafer Level Chip Scale Package



# 2 Block diagram

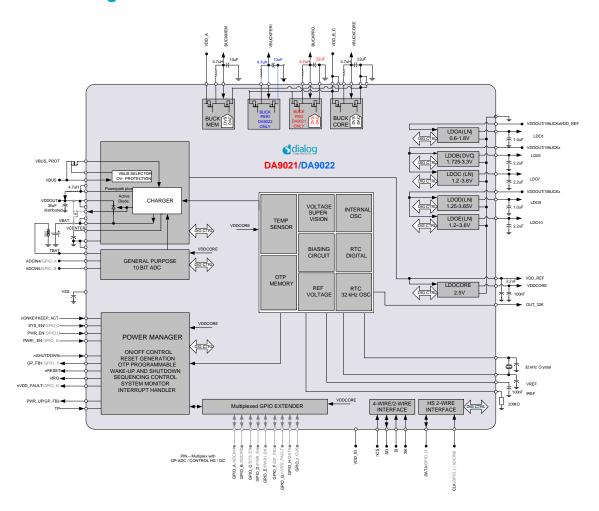



Figure 1: Block diagram



# 3 Generated supply domains

The default voltages in Table 1 indicate the voltages obtained from an un-programmed device.

**Table 1: Regulator overview** 

| Regulator               | Supplied voltage                                    | Supplied<br>max.<br>current<br>(mA) | External<br>component | Notes                                                                                                                                                     |
|-------------------------|-----------------------------------------------------|-------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BUCKCORE                | 0.5 V to 2.075 V<br>±3 % accuracy                   | 700                                 | 2.2 μH to 4.7 μH      | DVC, 2 MHz, 25 mV steps,<br>DVC ramp with controlled slew rate;<br>pull-down resistor switch off                                                          |
|                         | default 1.8 V                                       | 800                                 |                       | Between DVC transitions                                                                                                                                   |
| BUCKPRO  DA9021 only    | 0.5 V to 2.075 V<br>±3 % accuracy                   | 700                                 | 2.2 μH to 4.7 μH      | DVC, 2 MHz, 25 mV steps,<br>DVC ramp with controlled slew rate,<br>pull-down resistor switch off                                                          |
|                         | default 1.2 V                                       | 800                                 |                       | Between DVC transitions                                                                                                                                   |
| BUCKPERI<br>DA9022 only | 1.8 V to 3.6 V<br>±3 % accuracy<br>default 3.3 V    | 650                                 | 2.2 μH to 4.7 μH      | 2 MHz, 50 or 100 mV steps At low input voltages the buck switches to a follower mode (100 % duty cycle), second output with sequencer controllable switch |
|                         |                                                     | 750                                 |                       | < 2.1 V                                                                                                                                                   |
| BUCKMEM                 | 0.95 V to 2.525 V<br>±3 % accuracy                  | 650                                 | 2.2 μH to 4.7 μH      | DVC, 2 MHz, 25 mV steps, DVC ramp with controlled slew rate, pull-down resistor switch off                                                                |
|                         | default 2.0 V                                       | 750                                 |                       | < 2.075 V and between DVC transitions                                                                                                                     |
| LDO1                    | 0.6 V to 1.8 V<br>±3 % accuracy<br>default 1.2 V    | 40                                  | 1.0 μF                | High PSSR, low noise LDO, 50 mV steps, pull-down resistor switch off                                                                                      |
| LDO3                    | 1.725 V to 3.3 V<br>±3 % accuracy<br>default 2.85 V | 200                                 | 2.2 µF                | DVC, digital LDO, 25 mV steps, DVC with controlled slew rate                                                                                              |
| LDO7                    | 1.2 V to 3.6 V<br>±3% accuracy<br>default 3.1 V     | 200                                 | 2.2 µF                | High PSRR, low noise, 50 mV steps                                                                                                                         |
| LDO9                    | 1.25 V to 3.6 V<br>±1 % accuracy<br>default 2.5 V   | 100                                 | 1.0 μF                | High PSRR, low noise, 50 mV steps,<br>OTP trimmed, optional hardware<br>control, common supply with LDOE                                                  |
| LDO10                   | 1.2 V to 3.6 V<br>±3 % accuracy<br>default 1.8 V    | 250                                 | 2.2 µF                | High PSRR, low noise, 50 mV steps, common supply with LDOD                                                                                                |
| LDOCORE                 | 2.5 V<br>±2 % accuracy                              | 4                                   | 100 nF                | Not for external use                                                                                                                                      |



# 4 Pad description

|   | 1           | 2         | 3                        | 4                        | 5                      | 6                  | 7               | 8      |
|---|-------------|-----------|--------------------------|--------------------------|------------------------|--------------------|-----------------|--------|
| A | VBAT        | VBAT      | VDDOUT                   | VDDOUT                   | vsw                    | VBUS_PROT          | VCENTER         | VREF   |
| В | VBUCKPRO    | AD_CONT   | SYS_EN<br>_GPIO_8        | PWR_EN<br>_GPIO_9        | vsw                    | GP_FB1<br>_GPIO_12 | IREF            | хоит   |
| С | SWBUCKPRO   | nRESET    | nVDD_FAULT<br>_GPIO_13   | nSHUTDOWN                | ADCIN4 _<br>GPIO_0     | VBUS               | VBUS_SEL        | XIN    |
| D | VDD_COR_PRO | VBUCKMEM  | (VSS_BP_BP)<br>VSS_NOISY | (VSS)<br>VSS_NOISY       | (VSS_LDO)<br>VSS_QUIET | ADCIN5_<br>GPIO_1  | VDDCORE         | VLD01  |
| E | VDO_COR_PRO | nONKEY    | (VSS_BC_BM)<br>VSS_NOISY | (VSS)<br>VSS_NOISY       | (VSS_IO)<br>VSS_QUIET  | VDD_REF            | VDD_LD01        | VLD03  |
| F | SWBUCKCORE  | VBUCKCORE | PWR_UP_<br>GP_FB2        | (VSS_BC_BM)<br>VSS_NOISY | PWR_EN1_<br>GPIO_10    | VDD_LD07           | VDD_LDO3        | VLD07  |
| G | SWBUCKMEM   | nIRQ      | so                       | ТВАТ                     | TP                     | VDD_IO             | VDD_LDO9_10     | VLD09  |
| н | VDD_MEM     | оитз2К    | SI                       | sk                       | NCS                    | DATA_<br>GPIO_14   | CLK_<br>GPIO_15 | VLDO10 |

Figure 2: PCB board DA9021 pad arrangement (view from the top)



|   | 1          | 2         | 3                        | 4                        | 5                      | 6                  | 7               | 8      |
|---|------------|-----------|--------------------------|--------------------------|------------------------|--------------------|-----------------|--------|
| A | VBAT       | VBAT      | VDDQUT                   | VDDOUT                   | vsw                    | VBUS_PROT          | VCENTER         | VREF   |
| В | VBUCKPERI  | AD_CONT   | SYS_EN<br>_GPIO_8        | PWR_EN<br>_GPIO_9        | vsw                    | GP_FB1<br>_GPIO_12 | IREF            | хоит   |
| c | SWBUCKPERI | nRESET    | nVDD_FAULT<br>_GPIO_13   | nSHUTDOWN                | ADCIN4 _<br>GPIO_0     | VBUS               | VBUS_SEL        | XIN    |
| D | VDD_PERI   | VBUCKMEM  | (VSS_BP_BP)<br>VSS_NOISY | (VSS)<br>VSS_NOISY       | (VSS_LDO)<br>VSS_QUIET | ADCIN5_<br>GPIO_1  | VDDCORE         | VLD01  |
| E | VDD_CORE   | nONKEY    | (VSS_BC_BM)<br>VSS_NOISY | (VSS)<br>VSS_NOISY       | (VSS_IO)<br>VSS_QUIET  | VDD_REF            | VDD_LD01        | VLD03  |
| F | SWBUCKCORE | VBUCKCORE | PWR_UP_<br>GP_FB2        | (VSS_BC_BM)<br>VSS_NOISY | PWR_EN1_<br>GPIO_10    | VDD_LD07           | VDD_LD03        | VLD07  |
| G | SWBUCKMEM  | nIRQ      | so                       | ТВАТ                     | TP                     | VDD_IO             | VDD_LDO9_10     | VLDO9  |
| н | VDD_MEM    | OUT32K    | SI                       | sk                       | NCS                    | DATA_<br>GPIO_14   | CLK_<br>GPIO_15 | VLDO10 |

Figure 3: PCB board DA9022 pad arrangement (view from the top)



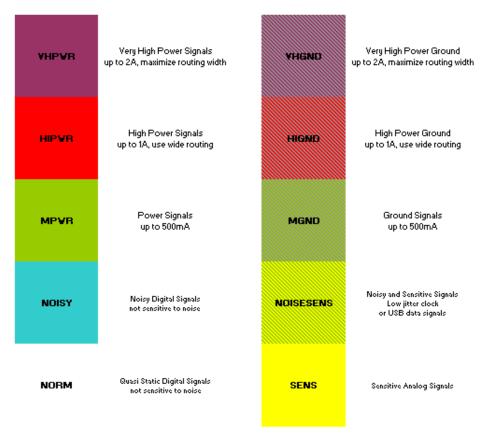



Figure 4: Pad arrangement colour key

Table 2: Pin description for DA9021

| Pin no.   | Pin name   | Type<br>(Table 4) | Description                                                                                                                                                            |  |
|-----------|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power mai | nager      |                   |                                                                                                                                                                        |  |
| E2        | nONKEY     | DI                | On/off key with optional long press shutdown                                                                                                                           |  |
| В3        | SYS_EN     | DI/DIO            | Hardware enable of power domain SYSTEM/GPIO_8                                                                                                                          |  |
| B4        | PWR_EN     | DI/DIO            | Hardware enable of power domain POWER/GPIO_9                                                                                                                           |  |
| F5        | PWR1_EN    | DI/DIO            | Hardware enable of power domain POWER1/GPIO_10 with high power output and blinking feature, input for power sequencer WAIT ID                                          |  |
| C4        | nSHUTDOWN  | DI                | Active low input from switch or error indication line from host to initiate shutdown                                                                                   |  |
| C2        | nRESET     | DO                | Active low RESET towards host                                                                                                                                          |  |
| В6        | GP_FB1     | DO/DIO            | Status indication towards host for a valid wakeup event (EXT_WAKEUP) or indicator for ongoing power mode transition (READY) /GPIO_12, enables hardware control of LDO9 |  |
| G2        | nIRQ       | DO                | Active low IRQ line towards host                                                                                                                                       |  |
| C3        | nVDD_FAULT | DO/DIO            | Active low indication for low supply voltage/GPIO_13                                                                                                                   |  |
| F3        | PWR_UP     | DO/DO             | Sequencer status indicator: All POWER IDs powered up (PWR_UP) or programmable level controlled from the power sequencer (GP_FB2)                                       |  |
| G6        | VDD_IO     | PS                | Supply I/O voltage rail                                                                                                                                                |  |



| Pin no.              | Pin name     | Type<br>(Table 4) | Description                                                                                                             |  |  |
|----------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| G5                   | TP           | DIO               | Test pin, enables POWER COMMANDER boot mode                                                                             |  |  |
| 4-/2-wire interfaces |              |                   |                                                                                                                         |  |  |
| G3                   | so           | DIO               | 4-wire data output or 2-wire data                                                                                       |  |  |
| НЗ                   | SI           | DI                | 4-wire data input                                                                                                       |  |  |
| H4                   | SK           | DI                | 4-wire/2-wire clock                                                                                                     |  |  |
| H4                   | nCS          | DI                | 4-wire chip select                                                                                                      |  |  |
| H6                   | DATA         | DIO               | HS-2-wire Data/GPIO_14 (enables reset if long press in parallel with GPI15) with high-power output and PWM LED control  |  |  |
| H7                   | CLK          | DI                | HS-2-wire Clock/GPIO_15 (enables reset if long press in parallel with GPI14) with high-power output and PWM LED control |  |  |
| Voltage reg          | ulators      |                   |                                                                                                                         |  |  |
| D8                   | VLDO1        | AO                | Output voltage from LDO1                                                                                                |  |  |
| E7                   | VDD_LDO1     | PS                | Supply voltage for LDO1                                                                                                 |  |  |
| E8                   | VLDO3        | AO                | Output voltage from LDO3                                                                                                |  |  |
| F7                   | VDD_LDO3     | PS                | Supply voltage for LDO3                                                                                                 |  |  |
| F8                   | VLDO7        | AO                | Output voltage from LDO7                                                                                                |  |  |
| F6                   | VDD_LDO7     | PS                | Supply voltage for LDO7                                                                                                 |  |  |
| G8                   | VLDO9        | AO                | Output voltage from LDO9                                                                                                |  |  |
| H8                   | VLDO10       | AO                | Output voltage from LDO10                                                                                               |  |  |
| G7                   | VDD_LDO9_10  | PS                | Supply voltage for LDO9 and LDO10                                                                                       |  |  |
| D7                   | VDDCORE      | AO                | Supply for internal circuitry                                                                                           |  |  |
| E6                   | VDD_REF      | AO                | Switched supply from VBAT or VBUS                                                                                       |  |  |
| DC-DC buc            | k converters |                   |                                                                                                                         |  |  |
| F2                   | VBUCKCORE    | Al                | Sense node for DVC DC-DC BUCKCORE                                                                                       |  |  |
| F1                   | SWBUCKCORE   | AO                | Switching node for BUCKCORE to be connected to SWBUCKPRO for buck merge                                                 |  |  |
| B1                   | VBUCKPRO     | Al                | Sense node for DVC DC-DC BUCKPRO                                                                                        |  |  |
| C1                   | SWBUCKPRO    | AO                | Switching node for BUCKPRO to be connected to SWBUCKCORE for buck merge                                                 |  |  |
| D2                   | VBUCKMEM     | Al                | Sense node for DVC DC-DC BUCKMEM                                                                                        |  |  |
| G1                   | SWBUCKMEM    | AO                | Switching node for BUCKMEM                                                                                              |  |  |
| D1                   | VDD_COR_PRO  | PS                | Supply voltage for BUCKCORE and BUCKPRO to be connected to VDDOUT                                                       |  |  |
| E1                   | VDD_COR_PRO  | PS                | Supply voltage for BUCKCORE and BUCKPRO to be connected to VDDOUT                                                       |  |  |
| H1                   | VDD_MEM      | PS                | Supply voltage for BUCKMEM to be connected to VDDOUT                                                                    |  |  |



| Pin no.      | Pin name           | Type<br>(Table 4) | Description                                                                                                |
|--------------|--------------------|-------------------|------------------------------------------------------------------------------------------------------------|
| Reference v  | voltage generation | 1                 |                                                                                                            |
| A8           | VREF               | AIO               | Reference voltage output Decouple with 100 nF                                                              |
| B7           | IREF               | AO                | Connection for bias setting Configure with high precision 200 k $\Omega$ resistor                          |
| Internal osc | cillator           |                   |                                                                                                            |
| C8           | XIN                | AIO               | 32 kHz crystal connection<br>Adjust with 10 pF                                                             |
| B8           | XOUT               | AIO               | 32 kHz crystal connection<br>Adjust with 10 pF                                                             |
| H2           | OUT_32K            | DO                | 32 kHz oscillator buffer output                                                                            |
| Charger      |                    |                   |                                                                                                            |
| C7           | VBUS_SEL           | AO                | Control for external over voltage protection and input selection of VBUS                                   |
|              |                    |                   | To be connected to gate of PFET                                                                            |
| A6           | VBUS_PROT          | PS                | Overvoltage protected VBUS charger input                                                                   |
| C6           | VBUS               | PS                | USB or wall charger input                                                                                  |
| A7           | VCENTER            | PS                | Protected input for switching charger (decouple with 10 μF)                                                |
| A5           | VSW                | PS                | Switching node for charger buck                                                                            |
| B5           | VSW                | PS                | Switching node for charger buck                                                                            |
| A3           | VDDOUT             | PS                | System power supply output                                                                                 |
| A4           | VDDOUT             | PS                | System power supply output                                                                                 |
| B2           | AD_CONT            | AO                | Active diode controller output  To be connected to gate of PFET (leave unconnected, if not used)           |
| A1           | VBAT               | PS                | Connection to main battery                                                                                 |
| A2           | VBAT               | PS                | Connection to main battery                                                                                 |
| General pur  | rpose ADC          |                   |                                                                                                            |
| G4           | TBAT               | AIO               | Connection to battery NTC resistor                                                                         |
| C5           | ADCIN4             | AI/DIO            | Connection to GP ADC auto channel 4 with threshold IRQ and resistor measurement option/GPIO_0              |
| D6           | ADCIN5             | AI/DIO            | Connection to GP ADC channel 5 with 1.2 V hardware comparator IRQ/GPIO_1, enables hardware control of LDO4 |
| VSS          |                    |                   |                                                                                                            |
| D5           | GND                | VSS_QUIET         | VSS_LDO                                                                                                    |
| E5           | GND                | VSS_QUIET         | VSS_IO                                                                                                     |
| D3           | GND                | VSS_NOISY         | VSS_BP_BP                                                                                                  |
| D4           | GND                | VSS_NOISY         | vss                                                                                                        |
| E3           | GND                | VSS_NOISY         | VSS_BC_BM                                                                                                  |
| E4           | GND                | VSS_NOISY         | vss                                                                                                        |
| F4           | GND                | VSS               | VSS_BC_BM                                                                                                  |



Table 3: Pin description for DA9022

| Pin no.      | Pin name    | Type (Table 4) | Description                                                                                                                                                            |
|--------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power mar    | nager       |                |                                                                                                                                                                        |
| E2           | nONKEY      | DI             | On/off key with optional long press shutdown                                                                                                                           |
| B3           | SYS_EN      | DI/DIO         | Hardware enable of power domain SYSTEM/GPIO_8                                                                                                                          |
| B4           | PWR_EN      | DI/DIO         | Hardware enable of power domain POWER/GPIO_9                                                                                                                           |
| F5           | PWR1_EN     | DI/DIO         | Hardware enable of power domain POWER1/GPIO_10 with high-power output and blinking feature, input for power sequencer WAIT ID                                          |
| C4           | nSHUTDOWN   | DI             | Active low input from switch or error indication line from host to initiate shutdown                                                                                   |
| C2           | nRESET      | DO             | Active low RESET towards host                                                                                                                                          |
| B6           | GP_FB1      | DO/DIO         | Status indication towards host for a valid wakeup event (EXT_WAKEUP) or indicator for ongoing power mode transition (READY) /GPIO_12, enables hardware control of LDO9 |
| G2           | nIRQ        | DO             | Active low IRQ line towards host                                                                                                                                       |
| C3           | nVDD_FAULT  | DO/DIO         | Active low indication for low supply voltage/GPIO_13                                                                                                                   |
| F3           | PWR_UP      | DO/DO          | Sequencer status indicator: All POWER IDs powered up (PWR_UP) or programmable level controlled from the power sequencer (GP_FB2)                                       |
| G6           | VDD_IO      | PS             | Supply I/O voltage rail                                                                                                                                                |
| G5           | TP          | DIO            | Test pin, enables POWER COMMANDER boot mode                                                                                                                            |
| 4-/2-wire in | nterfaces   |                |                                                                                                                                                                        |
| G3           | SO          | DIO            | 4-wire data output or 2-wire data                                                                                                                                      |
| H3           | SI          | DI             | 4-wire data input                                                                                                                                                      |
| H4           | SK          | DI             | 4-wire/2-wire clock                                                                                                                                                    |
| H4           | nCS         | DI             | 4-wire chip select                                                                                                                                                     |
| H6           | DATA        | DIO            | HS-2-wire Data/GPIO_14 (enables reset if long press in parallel with GPI15) with high-power output and PWM LED control                                                 |
| H7           | CLK         | DI             | HS-2-wire Clock/GPIO_15 (enables reset if long press in parallel with GPI14) with high-power output and PWM LED control                                                |
| Voltage re   | gulators    |                |                                                                                                                                                                        |
| D8           | VLDO1       | AO             | Output voltage from LDO1                                                                                                                                               |
| E7           | VDD_LDO1    | PS             | Supply voltage for LDO1                                                                                                                                                |
| E8           | VLDO3       | AO             | Output voltage from LDO3                                                                                                                                               |
| F7           | VDD_LDO3    | PS             | Supply voltage for LDO3                                                                                                                                                |
| F8           | VLDO7       | AO             | Output voltage from LDO7                                                                                                                                               |
| F6           | VDD_LDO7    | PS             | Supply voltage for LDO7                                                                                                                                                |
| G8           | VLDO9       | AO             | Output voltage from LDO9                                                                                                                                               |
| H8           | VLDO10      | AO             | Output voltage from LDO10                                                                                                                                              |
| G7           | VDD_LDO9_10 | PS             | Supply voltage for LDO9 and LDO10                                                                                                                                      |
| D7           | VDDCORE     | AO             | Supply for internal circuitry                                                                                                                                          |
| E6           | VDD_REF     | AO             | Switched supply from VBAT or VBUS                                                                                                                                      |



| Pin no.      | Pin name          | Type<br>(Table 4) | Description                                                                                             |
|--------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------|
| DC-DC buck   | converters        |                   |                                                                                                         |
| F2           | VBUCKCORE         | Al                | Sense node for DVC DC-DC BUCKCORE                                                                       |
| F1           | SWBUCKCORE        | AO                | Switching node for BUCKCORE to be connected to SWBUCKPERI for buck merge                                |
| B1           | VBUCKPERI         | AI                | Sense node for DVC DC-DC VBUCKPERI                                                                      |
| C1           | SWVBUCKPERI       | AO                | Switching node for BUCKPERI to be connected to SWBUCKCORE for buck merge                                |
| D2           | VBUCKMEM          | AI                | Sense node for DVC DC-DC BUCKMEM                                                                        |
| G1           | SWBUCKMEM         | AO                | Switching node for BUCKMEM                                                                              |
| D1           | VDD_PERI          | PS                | Supply voltage for BUCKPERI To be connected to VDDOUT                                                   |
| E1           | VDD_COR           | PS                | Supply voltage for BUCKCORE  To be connected to VDDOUT                                                  |
| H1           | VDD_MEM           | PS                | Supply voltage for BUCKMEM To be connected to VDDOUT                                                    |
| Reference v  | oltage generation |                   |                                                                                                         |
| A8           | VREF              | AIO               | Reference voltage output                                                                                |
| Decouple wi  | th 100 nF         |                   |                                                                                                         |
| B7           | IREF              | AO                | Connection for bias setting Configure with high precision 200 k $\Omega$ resistor                       |
| Internal osc | illator           |                   |                                                                                                         |
| C8           | XIN               | AIO               | 32 kHz crystal connection adjust with 10 pF                                                             |
| B8           | XOUT              | AIO               | 32 kHz crystal connection adjust with 10 pF                                                             |
| H2           | OUT_32K           | DO                | 32 kHz oscillator buffer output                                                                         |
| Charger      |                   |                   |                                                                                                         |
| C7           | VBUS_SEL          | AO                | Control for external overvoltage protection and input selection of VBUS To be connected to gate of PFET |
| A6           | VBUS_PROT         | PS                | Overvoltage protected VBUS charger input                                                                |
| C6           | VBUS              | PS                | USB or wall charger input                                                                               |
| A7           | VCENTER           | PS                | Protected input for switching charger (decouple with 10 μF)                                             |
| A5           | VSW               | PS                | Switching node for charger buck                                                                         |
| B5           | VSW               | PS                | Switching node for charger buck                                                                         |
| A3           | VDDOUT            | PS                | System power supply output                                                                              |
| A4           | VDDOUT            | PS                | System power supply output                                                                              |
| B2           | AD_CONT           | AO                | Active diode controller output  To be connected to gate of PFET (leave unconnected, if not used)        |
| A1           | VBAT              | PS                | Connection to main battery                                                                              |
| A2           | VBAT              | PS                | Connection to main battery                                                                              |
| General pur  | pose ADC          |                   |                                                                                                         |
| G4           | TBAT              | AIO               | Connection to battery NTC resistor                                                                      |



| Pin no. | Pin name | Type<br>(Table 4) | Description                                                                                                |
|---------|----------|-------------------|------------------------------------------------------------------------------------------------------------|
| C5      | ADCIN4   | AI/DIO            | Connection to GP ADC auto channel 4 with threshold IRQ and resistor measurement option/GPIO_0              |
| D6      | ADCIN5   | AI/DIO            | Connection to GP ADC channel 5 with 1.2 V hardware comparator IRQ/GPIO_1, enables hardware control of LDO4 |
| VSS     |          |                   |                                                                                                            |
| D5      | GND      |                   | VSS_LDO                                                                                                    |
| E5      | GND      |                   | VSS_IO                                                                                                     |
| D3      | GND      |                   | VSS_BP_BP                                                                                                  |
| D4      | GND      |                   | VSS                                                                                                        |
| E3      | GND      |                   | VSS_BC_BM                                                                                                  |
| E4      | GND      |                   | VSS                                                                                                        |
| F4      | GND      |                   | VSS_BC_BM                                                                                                  |

### Table 4: Pin type definition

| Pin type | Description                     | Pin type | Description                   |
|----------|---------------------------------|----------|-------------------------------|
| DI       | Digital Input                   | Al       | Analog Input                  |
| DO       | Digital Output                  | AO       | Analog Output                 |
| DIO      | Digital Input/Output            | AIO      | Analog Input/Output           |
| DIOD     | Digital Input/Output Open Drain | BP       | Backdrive Protection          |
| PU       | Fixed Pull-Up Resistor          | SPU      | Switchable Pull-Up Resistor   |
| PD       | Fixed Pull-Down Resistor        | SPD      | Switchable Pull-Down Resistor |



### 5 Absolute maximum ratings

The maximum continuous charger voltage must be less than 5.5 V. The overvoltage protection (OVP) circuit will help protect against transients above this level minimising effects on operation lifetime.

VDDOUT must not be driven from an external supply if the charger buck is used.

**Table 5: Absolute maximum ratings** 

| Parameter                                         | Symbol                                    | Conditions (Note 1) | Min           | Max                        | Unit |
|---------------------------------------------------|-------------------------------------------|---------------------|---------------|----------------------------|------|
| Storage temperature                               |                                           |                     | -40           | +95                        | °C   |
| Operating temperature                             | Ta(max)                                   |                     | -25           | +85                        | °C   |
| Power supply Input                                | VBAT,<br>VBUS_PROT,<br>VDDOUT,<br>VDD_REF |                     | -0.3          | 5.5                        | V    |
| Supply voltage charger                            | VBUS                                      |                     | -0.3          | 12                         | V    |
| Supply voltage buck input pins                    |                                           |                     | VDDOUT -0.3 V | VDDOUT + 0.3 V<br>5 V max. | V    |
| Supply voltage<br>all pins except listed<br>above |                                           |                     | -0.3          | VDDOUT + 0.3 V<br>5 V max. | V    |
| Maximum power dissipation                         |                                           |                     |               | 1.86                       | W    |
| Package thermal resistance                        |                                           |                     | Note 2        | 21.5                       | K/W  |
| ESD susceptibility                                |                                           | Human body<br>model |               | 2                          | kV   |

- Note 1 Stresses beyond those listed under 'Absolute maximum ratings' may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- **Note 2** JEDEC 6 layer board, still air, influenced by PCB technology and layout. The numbers of supplies that can be used at the same time at maximum dissipation power is limited by the thermal resistance of the package and the PCB layout.



### 6 Recommended operating conditions

All voltages are referenced to VSS unless otherwise stated. Currents flowing into DA9021/22 are deemed positive, currents flowing out are deemed negative. All parameters are valid over the recommended temperature range and power supply range unless otherwise noted. Please note that the power dissipation must be limited to avoid overheating of DA9021/22. The maximum power dissipation should not be reached with maximum ambient temperature.

Table 6: Recommended operating conditions

| Parameter              | Symbol | Conditions | Min | Тур | Max           | Unit |
|------------------------|--------|------------|-----|-----|---------------|------|
| Operating temperature  | Та     |            | -25 |     | +70           | °C   |
| Supply voltage         | VBAT   |            | 0   |     | 4.4           | V    |
| Supply voltage charger | VBUS   |            | 0   |     | 5.5           | V    |
| Supply voltage IO      | VDD_IO |            | 1.2 |     | 3.6<br>Note 1 | V    |

Note 1 VDD\_IO must not exceed VDDOUT.

### 7 Current consumption

**Table 7: Current consumption** 

| Operating mode        | Conditions (Ta = 25 °C)                                                                   | Min | Тур | Max           | Unit |
|-----------------------|-------------------------------------------------------------------------------------------|-----|-----|---------------|------|
| NO-POWER              | Detection circuits running, oscillator off                                                |     |     | 15            | μΑ   |
| RESET                 | VDD_REF > 2.2 V, bucks and LDOs off (except LDOCORE), RTC unit on                         |     |     | 45            | μΑ   |
| POWERDOWN (standby)   | VDD_REF > 2.8 V, supplies off (except LDOCORE), all blocks in POWERDOWN mode, RTC unit on |     |     | 45            | μΑ   |
| POWERDOWN (hibernate) | BUCKCORE, LDOCORE, enabled, RTC and GPIO on                                               |     |     | 155<br>Note 1 | μA   |
| ACTIVE                | All supplies, GPIO, RTC and GPADC on                                                      |     |     | 375           | μΑ   |

Note 1 Enabled bucks are set to FORCED SLEEP mode setting "00"



### 8 Electrical characteristics

### 8.1 Digital I/O characteristics

Table 8: Digital I/O (VDD\_REF > 2.8 V)

| Parameter                                                                                              | Symbol       | Conditions                  | Min                       | Тур           | Max               | Unit |
|--------------------------------------------------------------------------------------------------------|--------------|-----------------------------|---------------------------|---------------|-------------------|------|
| GPI0 – GPI15, nONKEY,<br>nSHUTDOWN SYS_EN,<br>PWR_EN, PWR1_EN,<br>CLK, DATA, Input High<br>Voltage     | VIH          | VDDCORE mode<br>VDD_IO mode | 1.0<br>0.7*VDD_IO         |               | VDDOUT            | V    |
| GPI0 – GPI15, nONKEY,<br>nSHUTDOWN SYS_EN,<br>PWR_EN, PWR1_EN<br>CLK, DATA, Input Low<br>Voltage       | VIL          | VDDCORE mode<br>VDD_IO mode |                           |               | 0.4<br>0.3*VDD_IO | V    |
| SK, nCS, SI Input High<br>Voltage                                                                      | VIL          | VDDCORE mode<br>VDD_IO mode | 0.7*VDDCORE<br>0.7*VDD_IO |               | VDDOUT            | V    |
| SK, nCS, SI Input Low<br>Voltage                                                                       | VIH          | VDDCORE mode<br>VDD_IO mode | -0.3                      |               | 0.3*VDD_IO        | V    |
| GPO0 – GPO15,<br>nVDD_FAULT, SO<br>nRESET, nIRQ, PWR_UP,<br>GP_FB2, OUT_32K,<br>Output High Voltage    | VIH          | VDD_IO mode                 | 0.8*VDD_IO                |               |                   |      |
| GPO0 – GPO15,DATA,<br>SO, nRESET, nIRQ, (open<br>drain mode) Output High<br>Voltage                    | VIL          | VDD_IO mode                 |                           |               |                   | V    |
| GPO0 – GPO15,DATA,<br>SO, nVDD_FAULT,<br>nRESET nIRQ, PWR_UP,<br>GP_FB2, OUT_32K<br>Output Low Voltage | VOH<br>@1 mA |                             | 0                         | Open<br>drain | VDDOUT            | V    |



#### 8.2 **GPIO** characteristics

Table 9: GPIOs

| Parameter                                         | Conditions                | Min       | Тур          | Max        | Unit |
|---------------------------------------------------|---------------------------|-----------|--------------|------------|------|
| Sink current capability<br>GPO 14, 15             | VGPIO = 0.1 V             |           | 30           |            | mA   |
| Sink current capability GPO 10,                   | VGPIO = 0.5 V             |           | 15           |            | mA   |
| Source current capability<br>GPO 10, 14,15        | VGPIO = 0.8 * VDD_IO      |           | -4<br>Note 1 |            | mA   |
| Sink current capability<br>GPO 0 to 9, 12 to 13   | VGPIO = 0.3 V             |           | 1            |            | mA   |
| Source current capability<br>GPO 0 to 9, 12 to 13 | VGPIO = 0.8 * VDD_IO      |           | -1<br>Note 2 |            | mA   |
| GPO pull-up resistor                              | = 1.5 V<br>VDD IO = 1.8 V | 100<br>60 | 180<br>120   | 340<br>175 | kΩ   |
|                                                   | = 3.3 V                   | 25        | 40           | 60         |      |

Note 1 For  $V_{SUPPLY}$  < 1.5 V the source current for min 0.8 \* VDD is limited to 0.8 mA

Note 2 For  $V_{SUPPLY} < 1.5 \text{ V}$  the source current for min 0.8 \* VDD is limited to 0.5 mA

#### 8.3 Power on reset characteristics

Table 10: Power on reset

| Parameter                              | Symbol                   | Min  | Тур                       | Max  | Unit |
|----------------------------------------|--------------------------|------|---------------------------|------|------|
| Deep discharge lockout lower threshold | VPOR_LOWER               |      | 2.0                       |      | V    |
| Deep discharge lockout upper threshold | VPOR_UPPER               |      | 2.3                       |      | ٧    |
| Under voltage lower threshold          | VDD_FAULT_LOWER          | 2.4  | 2.9                       | 3.15 | ٧    |
| Under voltage lower threshold accuracy | VDD_FAULT_LOWER_ACCURACY |      | ±2                        |      | %    |
| Under voltage upper threshold          | VDD_FAULT_UPPER          |      | VDD_FAULT_LOWER<br>+ 0.15 |      | ٧    |
| Charger buck under voltage             | VDDOUT_MIN               | 3.35 | 3.40                      | 3.45 | V    |



#### 8.4 4-wire control bus

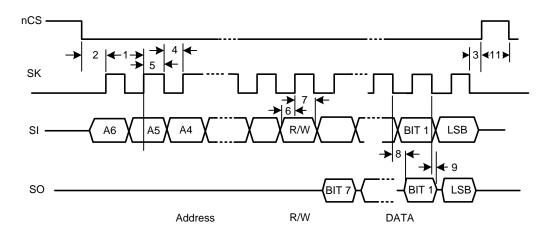



Figure 5: 4-wire control bus timing diagram

#### **NOTE**

The above timing is valid for active low and high CS

Table 11: 4-wire timing

| Parameter           | Symbol           | Label in Figure 5                  | Min                  | Тур | Max | Unit |
|---------------------|------------------|------------------------------------|----------------------|-----|-----|------|
| Cycle time          | tc               | 1                                  | 70                   |     |     | ns   |
| Enable lead time    | t <sub>CSS</sub> | 2, from CS active to first SK edge | 20                   |     |     | ns   |
| Enable lag time     | t <sub>SCS</sub> | 3, from last SK edge to CS idle    | 20                   |     |     | ns   |
| Clock low time      | t <sub>CL</sub>  | 4                                  | 0.4 * t <sub>C</sub> |     |     | ns   |
| Clock high time     | t <sub>CH</sub>  | 5                                  | 0.4 * t <sub>C</sub> |     |     | ns   |
| Data in setup time  | t <sub>SIS</sub> | 6                                  | 5                    |     |     | ns   |
| Data in hold time   | t <sub>SIH</sub> | 7                                  | 5                    |     |     | ns   |
| Data out valid time | t <sub>SOV</sub> | 8                                  |                      |     | 22  | ns   |
| Data out hold time  | t <sub>SOH</sub> | 9                                  | 6                    |     |     | ns   |
| Data access time    | t <sub>H</sub>   | 10                                 | ·                    |     | 22  | ns   |

#### 8.5 Oscillator characteristics

**Table 12: Oscillator** 

| Parameter           | Symbol | Condition       | Min | Тур | Max | Unit    |
|---------------------|--------|-----------------|-----|-----|-----|---------|
| Internal oscillator |        | before trimming | 1.4 | 2.0 | 2.6 | MHz     |
| frequency           |        | after trimming  | 1.9 | 2.0 | 2.1 | IVII IZ |



### 8.6 Reference voltage generation and temperature supervision

Table 13: Reference voltage generation and temperature supervision

| Parameter                  | Symbol                     | Conditions | Min     | Тур | Max  | Unit |
|----------------------------|----------------------------|------------|---------|-----|------|------|
| Reference voltage          | VREF Pin                   |            | -1.25 % | 1.2 | +1 % | V    |
| VREF decoupling capacitor  |                            |            |         | 100 |      | nF   |
| Reference current resistor | IREF Pin                   |            | -1 %    | 200 | +1%  | kΩ   |
| Thermal shutdown           | T <sub>OVER</sub>          |            | 125     | 140 | 155  | °С   |
| Charge current reduction   | T <sub>CHARGELOW</sub>     |            | 75      | 90  | 115  | °C   |
| Charge suspend             | T <sub>CHARGESUSPEND</sub> |            | 105     | 120 | 135  | °С   |
| Hysteresis                 |                            |            |         | 10  |      | °С   |

### 8.7 LDO voltage regulators

#### 8.7.1 LDO1

Table 14: LDO1

| Parameter               | Symbol               | Conditions                                                                                                            | Min          | Тур    | Max                                  | Unit |
|-------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|--------|--------------------------------------|------|
| Input voltage           | VDD                  | (power stage, if supplied from buck)                                                                                  | 2.0<br>(1.5) |        | V <sub>DD_ОUT</sub> + 0.3 V 5 V max. | V    |
| Output voltage          | VLD01                | $I_{OUT} = I_{MAX}$                                                                                                   | 0.6          | Note 1 | 1.8                                  | V    |
| Output accuracy         |                      | $I_{OUT} = I_{MAX}$                                                                                                   | -3           | Note 2 | +3                                   | %    |
| Stabilisation capacitor | Соит                 | including voltage and temperature coefficient @ configured VLD01                                                      | -55 %        | 1.0    | +35 %                                | μF   |
| ESR of capacitor        |                      | f > 1 MHz                                                                                                             |              |        | 0.1                                  | Ω    |
| Maximum output current  | I <sub>MAX</sub>     | VDD ≥ 1.8 V                                                                                                           | 40           | Note 3 |                                      | mA   |
| Short circuit current   | I <sub>SHORT</sub>   |                                                                                                                       |              | 80     |                                      | mA   |
| Dropout voltage         | V <sub>DROPOUT</sub> | VDD > 2.15 V I <sub>OUT</sub> = I <sub>MAX</sub>                                                                      |              | 200    | 350                                  | mV   |
|                         |                      | (VDD = 2.0 V I <sub>OUT</sub> = 0.4 * I <sub>MAX</sub> or VDD = 1.5 V I <sub>OUT</sub> = 0.25 * I <sub>MAX</sub> )    |              | 100    | 150                                  |      |
| Static line regulation  | VS <sub>LINE</sub>   | VDD = 3.0 V to 5.0 V<br>I <sub>OUT</sub> = I <sub>MAX</sub>                                                           |              | 5      | 20                                   | mV   |
| Static load regulation  | VS <sub>LOAD</sub>   | $I_{OUT} = 1 \text{ mA to } I_{MAX}$                                                                                  |              | 5      | 20                                   | mV   |
| Line transient response | VTR <sub>LINE</sub>  | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{MAX} t_r = t_f = 10  \mu\text{s}$                               |              | 5      | 20                                   | mV   |
| Load transient response | VTR <sub>LOAD</sub>  | $\begin{aligned} VDD &= 3.6 \text{ V I}_{OUT} = 1 \text{ mA to} \\ I_{MAX} t_r &= t_f = 1  \mu\text{s} \end{aligned}$ |              | 15     | 50                                   | mV   |
| PSRR                    | PSRR                 | f = 10 Hz to 10 kHz<br>VDD = 3.6 V                                                                                    | 50           | 60     |                                      | dB   |



| Parameter                        | Symbol            | Conditions                                                 | Min | Тур                                  | Max | Unit  |
|----------------------------------|-------------------|------------------------------------------------------------|-----|--------------------------------------|-----|-------|
| Output noise                     | N                 | f = 10 Hz to 100 kHz                                       |     | 80                                   |     | μVrms |
|                                  |                   | $VDD = 3.6 \text{ V } I_{OUT} = 5 \text{ mA to}$ $I_{MAX}$ |     |                                      |     |       |
| Quiescent current in ON mode     | IQ <sub>ON</sub>  | Note 4                                                     |     | 8 +<br>1.25 %<br>of I <sub>OUT</sub> |     | μА    |
| Quiescent current in OFF mode    | IQ <sub>OFF</sub> |                                                            |     |                                      | 1   | μΑ    |
| Turn on time                     | T <sub>ON</sub>   | 10 % to 90 %                                               |     |                                      | 300 | μs    |
| Turn off time                    | T <sub>OFF</sub>  | 90 % to 10 %                                               |     |                                      | 10  | ms    |
| Pull down resistance in OFF mode | R <sub>OFF</sub>  | Can be switched off via LD01_PD_DIS                        |     | 100                                  |     | Ω     |

- **Note 1** Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD dropout voltage.
- Note 2 Sourced from LDOCORE band gap.
- Note 3 Max. current is 10 mA if supplied from VDD\_REF.
- Note 4 Internal regulator current flowing to ground.

#### 8.7.2 LDO3

Table 15: LDO3

| Parameter               | Symbol               | Conditions                                                                      | Min          | Тур    | Max                        | Unit |
|-------------------------|----------------------|---------------------------------------------------------------------------------|--------------|--------|----------------------------|------|
| Input voltage           | VDD                  | (if supplied from buck)                                                         | 2.8<br>(1.9) |        | VDD_OUT +<br>0.3 V 5 V max | V    |
| Output voltage          | VLD03                | I <sub>OUT</sub> = I <sub>MAX</sub>                                             | 1.725        | Note 1 | 3.3                        | V    |
| Output accuracy         |                      | $I_{OUT} = I_{MAX}$                                                             | -3           |        | +3                         | %    |
| Stabilisation capacitor | Соит                 | (including voltage and<br>temperature coefficient<br>@ configured VLD03)        | -55 %        | 2.2    | +35 %                      | μF   |
| ESR of capacitor        |                      | f > 1MHz                                                                        |              |        | 0.1                        | Ω    |
| Maximum output current  | I <sub>MAX</sub>     |                                                                                 |              |        | 200                        | mA   |
| Short circuit current   | I <sub>SHORT</sub>   |                                                                                 |              | 400    |                            | mA   |
| Dropout voltage         | V <sub>DROPOUT</sub> | $I_{OUT} = I_{MAX}$ (for VDD = 1.9 V $I_{OUT} = I_{MAX} *2/3$ )                 | 100          |        | 150                        | mV   |
| Static line regulation  | VS <sub>LINE</sub>   | VDD = 3.0 V to 5.0 V<br>I <sub>OUT</sub> = I <sub>MAX</sub>                     |              | 5      | 20                         | mV   |
| Static load regulation  | VS <sub>LOAD</sub>   | $I_{OUT} = 1$ mA to $I_{MAX}$                                                   |              | 5      | 20                         | mV   |
| Line transient response | VTR <sub>LINE</sub>  | VDD = 3.0 V to 3.6 V<br>$I_{OUT} = I_{MAX} t_r = t_f = 10 \mu s$                |              | 5      | 20                         | mV   |
| Load transient response | VTR <sub>LOAD</sub>  | $VDD = 3.6 V$ $I_{OUT} = 1 \text{ mA to } I_{MAX}$ $t_r = t_f = 1  \mu\text{s}$ |              | 20     | 50                         | mV   |



| Parameter                              | Symbol            | Conditions                         | Min | Тур                                | Max | Unit |
|----------------------------------------|-------------------|------------------------------------|-----|------------------------------------|-----|------|
| PSRR                                   | PSRR              | f = 10 Hz to 10 kHz<br>VDD = 3.6 V | 40  | 60                                 |     | dB   |
| Quiescent current in ON mode           | IQ <sub>ON</sub>  | Note 2                             |     | 8<br>+0.3 %<br>of I <sub>OUT</sub> |     | μΑ   |
| Quiescent current in OFF mode          | IQ <sub>OFF</sub> |                                    |     |                                    | 1   | μА   |
| Turn on time                           | T <sub>ON</sub>   | 10 % to 90 %                       |     |                                    | 300 | μs   |
| Turn off time                          | T <sub>OFF</sub>  | 90 % to 10 %                       |     |                                    | 10  | ms   |
| Pull down<br>resistance in OFF<br>mode | R <sub>OFF</sub>  |                                    |     | 100                                |     | Ω    |

Note 1 Programmable in 50 mV voltage steps, maximum output voltage is determined by V<sub>DD</sub> – V D<sub>ROPOUT</sub>.

Note 2 Internal regulator current flowing to ground

#### 8.7.3 LDO7

Table 16: LDO7

| Parameter               | Symbol               | Conditions                                                                                | Min          | Тур    | Max                                 | Unit |
|-------------------------|----------------------|-------------------------------------------------------------------------------------------|--------------|--------|-------------------------------------|------|
| Input voltage           | VDD                  | (if supplied from buck)                                                                   | 2.8<br>(1.5) |        | V <sub>DD_OUT</sub> + 0.3 V 5 V max | V    |
| Output voltage          | VLD07                | I <sub>OUT</sub> = I <sub>MAX</sub>                                                       | 1.2          | Note 1 |                                     | V    |
| Output accuracy         |                      | $I_{OUT} = I_{MAX}$                                                                       | -3           |        | +3                                  | %    |
| Stabilisation capacitor | Соит                 | (including voltage and<br>temperature coefficient<br>@ configured output<br>voltage)      | -55 %        | 2.2    | +35 %                               | μF   |
| ESR of capacitor        |                      | f > 1 MHz                                                                                 |              |        | 0.1                                 | Ω    |
| Maximum output current  | I <sub>MAX</sub>     | VDD ≥ 1.8 V                                                                               | 200          |        |                                     | mA   |
| Short circuit current   | I <sub>SHORT</sub>   |                                                                                           |              | 400    |                                     | mA   |
| Dropout voltage         | V <sub>DROPOUT</sub> | $I_{OUT} = I_{MAX}$<br>(for VDD = 1.5 V $I_{OUT} = I_{MAX}/3$ )                           |              | 100    | 150                                 | mV   |
| Static line regulation  | VS <sub>LINE</sub>   | $VDD = 3.0 \text{ V to } 5.0 \text{ V}$ $I_{OUT} = I_{MAX}$                               |              | 5      | 20                                  | mV   |
| Static load regulation  | VS <sub>LOAD</sub>   | I <sub>OUT</sub> = 1 mA to I <sub>MAX</sub>                                               |              | 5      | 20                                  | mV   |
| Line transient response | VTR <sub>LINE</sub>  | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{MAX}$ $t_r = t_f = 10  \mu\text{s}$ |              | 5      | 20                                  | mV   |
| Load transient response | VTR <sub>LOAD</sub>  | $VDD = 3.6 V$ $I_{OUT} = 1 \text{ mA to } I_{MAX}$ $t_r = t_f = 1  \mu \text{s}$          |              | 20     | 50                                  | mV   |



| Parameter                              | Symbol            | Conditions                                                                   | Min | Тур                                | Max | Unit  |
|----------------------------------------|-------------------|------------------------------------------------------------------------------|-----|------------------------------------|-----|-------|
| PSRR                                   | PSRR              | f = 10 Hz to 10 kHz<br>VDD = 3.6 V<br>I <sub>OUT</sub> = I <sub>MAX</sub> /2 | 60  | 70                                 |     | dB    |
| Output noise                           | N                 | f = 10 Hz to 100 kHz<br>VDD = 3.6 V<br>$I_{OUT} = 5$ mA to $I_{MAX}$         |     | 80                                 |     | μVrms |
| Quiescent current in ON mode           | IQ <sub>ON</sub>  | Note 2                                                                       |     | 8<br>+0.4 %<br>of I <sub>OUT</sub> |     | μA    |
| Quiescent current in OFF mode          | IQ <sub>OFF</sub> |                                                                              |     |                                    | 1   | μΑ    |
| Turn on time                           | T <sub>ON</sub>   | 10 % to 90 %                                                                 |     |                                    | 600 | μs    |
| Turn off time                          | T <sub>OFF</sub>  | 90 % to 10 %                                                                 |     |                                    | 10  | ms    |
| Pull down<br>resistance in OFF<br>mode | R <sub>OFF</sub>  |                                                                              |     | 100                                |     | Ω     |

Note 1 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD – V<sub>DROPOUT</sub>.

Note 2 Internal regulator current flowing to ground

#### 8.7.4 LDO9

**Table 17: LDO9** 

| Parameter               | Symbol               | Conditions                                                                                | Min   | Тур    | Max                         | Unit |
|-------------------------|----------------------|-------------------------------------------------------------------------------------------|-------|--------|-----------------------------|------|
| Input voltage           | VDD                  |                                                                                           | 2.8   |        | V <sub>DD_OUT</sub> + 0.3 V | V    |
|                         |                      | (if supplied from buck)                                                                   | (1.5) |        | 5 V max                     |      |
| Output voltage          | VLD09                | $I_{OUT} = I_{MAX}$                                                                       | 1.25  | Note 1 | 3.6                         | V    |
| Output accuracy         |                      | $I_{OUT} = I_{MAX}$                                                                       | -1    |        | +1                          | %    |
| Stabilisation capacitor | Соит                 | (including voltage and<br>temperature coefficient<br>@ configured VLD09)                  | -55 % | 1.0    | +35 %                       | μF   |
| ESR of capacitor        |                      | f > 1 MHz                                                                                 |       |        | 0.1                         | Ω    |
| Maximum output current  | I <sub>MAX</sub>     | VDD ≥ 1.8 V                                                                               | 100   |        |                             | mA   |
| Short circuit current   | I <sub>SHORT</sub>   |                                                                                           |       | 200    |                             | mA   |
| Dropout voltage         | V <sub>DROPOUT</sub> | $I_{OUT} = I_{MAX}$ (for VDD = 1.5 V $I_{OUT} = I_{MAX}/3$ )                              |       | 100    | 150                         | mV   |
| Static line regulation  | VS <sub>LINE</sub>   | $VDD = 3.0 \text{ V to } 5.0 \text{ V}$ $I_{OUT} = I_{MAX}$                               |       | 5      | 20                          | mV   |
| Static load regulation  | VS <sub>LOAD</sub>   | I <sub>OUT</sub> = 1 mA to I <sub>MAX</sub>                                               |       | 5      | 20                          | mV   |
| Line transient response | VTR <sub>LINE</sub>  | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{MAX}$ $t_r = t_f = 10  \mu\text{s}$ |       | 5      | 20                          | mV   |
| Load transient response | VTR <sub>LOAD</sub>  | $VDD = 3.6 V$ $I_{OUT} = 1 \text{ mA to } I_{MAX}$ $t_r = t_f = 1  \mu\text{s}$           |       | 15     | 50                          | mV   |



| Parameter                              | Symbol            | Conditions                                                                      | Min | Тур                                | Max | Unit      |
|----------------------------------------|-------------------|---------------------------------------------------------------------------------|-----|------------------------------------|-----|-----------|
| PSRR                                   | PSRR              | f = 10 Hz to 10 kHz<br>VDD = 3.6 V<br>I <sub>OUT</sub> = I <sub>MAX</sub> /2    | 60  | 70                                 |     | dB        |
| Output noise                           | N                 | f = 10  Hz to  100  kHz<br>VDD = 3.6  V<br>$I_{OUT} = 5 \text{ mA to } I_{MAX}$ |     | 80                                 |     | μVrm<br>s |
| Quiescent current in ON mode           | IQ <sub>ON</sub>  | Note 2                                                                          |     | 8<br>+0.7 %<br>of I <sub>OUT</sub> |     | μА        |
| Quiescent current in OFF mode          | IQ <sub>OFF</sub> |                                                                                 |     |                                    | 1   | μΑ        |
| Turn on time                           | T <sub>ON</sub>   | 10 % to 90 %                                                                    |     |                                    | 200 | μs        |
| Turn off time                          | T <sub>OFF</sub>  | 90 % to 10 %                                                                    |     |                                    | 10  | ms        |
| Pull down<br>resistance in OFF<br>mode | R <sub>OFF</sub>  |                                                                                 |     | 100                                |     | Ω         |

Note 1 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - V<sub>DROPOUT</sub>.

#### 8.7.5 LDO10

#### **Table 18: LDO10**

| Parameter               | Symbol               | Conditions                                                                                | Min          | Тур    | Max                                       | Unit |
|-------------------------|----------------------|-------------------------------------------------------------------------------------------|--------------|--------|-------------------------------------------|------|
| Input voltage           | VDD                  | (if supplied from buck)                                                                   | 2.8<br>(1.5) |        | V <sub>DD_ОUT</sub> +<br>0.3 V<br>5 V max | V    |
| Output voltage          | VLD010               | $I_{OUT} = I_{MAX}$                                                                       | 1.2          | Note 1 | 3.6                                       | V    |
| Output accuracy         |                      | $I_{OUT} = I_{MAX}$                                                                       | -3           |        | +3                                        | %    |
| Stabilisation capacitor | Соит                 | (including voltage and<br>temperature coefficient<br>@ configured VLDO10)                 | -55 %        | 2.2    | +35 %                                     | μF   |
| ESR of capacitor        |                      | f > 1 MHz                                                                                 |              |        | 0.1                                       | Ω    |
| Maximum output current  | I <sub>MAX</sub>     | VDD ≥ 1.8 V                                                                               | 250          |        |                                           | mA   |
| Short circuit current   | I <sub>SHORT</sub>   |                                                                                           |              | 500    |                                           | mA   |
| Dropout voltage         | V <sub>DROPOUT</sub> | $I_{OUT} = I_{MAX}$<br>(for VDD < 1.8 V<br>$I_{OUT} = I_{MAX}/3$ )                        |              | 100    | 150                                       | mV   |
| Static line regulation  | VS <sub>LINE</sub>   | $VDD = 3.0 \text{ V to } 5.0 \text{ V}$ $I_{OUT} = I_{MAX}$                               |              | 5      | 20                                        | mV   |
| Static load regulation  | VS <sub>LOAD</sub>   | I <sub>OUT</sub> = 1 mA to I <sub>MAX</sub>                                               |              | 5      | 20                                        | mV   |
| Line transient response | VTR <sub>LINE</sub>  | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{MAX}$ $t_r = t_f = 10  \mu\text{s}$ |              | 5      | 20                                        | mV   |

Note 2 Internal regulator current flowing to ground.



| Parameter                              | Symbol              | Conditions                                                                      | Min | Тур                                | Max | Unit  |
|----------------------------------------|---------------------|---------------------------------------------------------------------------------|-----|------------------------------------|-----|-------|
| Load transient response                | VTR <sub>LOAD</sub> | $VDD = 3.6 V$ $I_{OUT} = 1 \text{ mA to } I_{MAX}$ $t_r = t_f = 1  \mu\text{s}$ |     | 30                                 | 50  | mV    |
| PSRR                                   | PSRR                | f = 10 Hz to 10 kHz<br>VDD = 3.6 V<br>$I_{OUT} = I_{MAX}/2$                     | 60  | 70                                 |     | dB    |
| Output noise                           | N                   | f = 10 Hz to 100 kHz<br>VDD = 3.6 V<br>$I_{OUT} = 5$ mA to $I_{MAX}$            |     | 80                                 |     | μVrms |
| Quiescent current in ON mode           | IQ <sub>ON</sub>    | Note 2                                                                          |     | 8<br>+0.3 %<br>of I <sub>OUT</sub> |     | μА    |
| Quiescent current in OFF mode          | IQ <sub>OFF</sub>   | Note 2                                                                          |     |                                    | 1   | μΑ    |
| Turn on time                           | T <sub>ON</sub>     | 10 % to 90 %                                                                    |     |                                    | 300 | μs    |
| Turn off time                          | T <sub>OFF</sub>    | 90 % to 10 %                                                                    |     |                                    | 10  | ms    |
| Pull down<br>resistance in OFF<br>mode | R <sub>OFF</sub>    |                                                                                 |     | 100                                |     | Ω     |

Note 1 Programmable in 50 mV steps, maximum output voltage is determined by VDD - VDROPOUT.

#### 8.7.6 LDOCORE

Table 19: LDOCORE ( $T_a = -25$  °C to +85 °C)

| Parameter                 | Symbol               | Conditions                                                                  | Min          | Тур        | Max          | Unit |
|---------------------------|----------------------|-----------------------------------------------------------------------------|--------------|------------|--------------|------|
| Output voltage            | VDDCORE              | I <sub>OUT</sub> = 0 mA to I <sub>MAX</sub><br>(when supplied from<br>VBAT) | 2.45<br>2.15 | 2.5<br>2.2 | 2.55<br>2.25 | V    |
| Decoupling capacitor      | C <sub>IN</sub>      | On VDD_REF                                                                  | -35 %        | 220        | +35 %        | nF   |
| Stabilisation capacitor   | Соит                 | (including voltage and<br>temperature coefficient<br>@ 2.5 V)               | -55 %        | 100        | +35 %        | nF   |
| ESR resistance            |                      | f > 1 MHz                                                                   |              |            | 0.1          | Ω    |
| Dropout voltage           | V <sub>DROPOUT</sub> | I <sub>OUT</sub> < 10 μA ,<br>FOLLOWER mode                                 |              | 0.05       | 0.1          | V    |
| Max output current        | I <sub>MAX</sub>     |                                                                             | 4            |            |              | mA   |
| Maximum quiescent current | IQ                   | POWERDOWN mode:<br>I <sub>OUT</sub> < 20 μA                                 |              | 13         | 17           | μΑ   |

Note 2 Programmable in 25 mV increments with micro voltage ramp step size of 6.25 mV/µs while slewing.



#### 8.8 DC/DC buck converters

#### 8.8.1 BUCKCORE

Table 20: BUCKCORE

| Parameter                                           | Symbol              | Conditions                                                                                       | Min                           | Тур           | Max                          | Unit |
|-----------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|-------------------------------|---------------|------------------------------|------|
| Input voltage                                       | VDD                 |                                                                                                  | VDDOUT<br>-0.3 V<br>2.8 V min |               | VDDOUT +<br>0.3 V<br>5 V max | V    |
| Output capacitor                                    | Соит                |                                                                                                  | -30 %                         | 20            | +30 %                        | μF   |
| Output capacitor<br>ESR                             |                     | f > 100 kHz<br>all caps + track<br>impedance                                                     |                               | 25            | 50                           | mΩ   |
| Inductor value                                      | L <sub>BUCK</sub>   |                                                                                                  | -30 %                         | 2.2 to<br>4.7 | +30 %                        | μH   |
| Inductor resistance                                 | R <sub>ESR</sub>    |                                                                                                  |                               | 100           | 150                          | mΩ   |
| Output voltage                                      | VBCORE              | I <sub>OUT</sub> = I <sub>MAX</sub>                                                              | 0.725                         | Note 1        | 2.075                        | V    |
| Output voltage accuracy                             |                     | incl. static line / load regulation                                                              | -3                            | Note 2        | +3                           | %    |
| Output voltage ripple                               |                     | $I_{OUT} = I_{MAX}$                                                                              |                               | 5             |                              | mV   |
| Load regulation transient                           | VTR <sub>LOAD</sub> | I <sub>OUT</sub> = 0 mA / 500 mA,<br>dI/dt = 50 mA/μs                                            |                               | 15            | 35                           | mV   |
| Line regulation transient                           | VTR <sub>LINE</sub> | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 500 \text{ mA}$ $t_r = t_r = 10  \mu\text{s}$ |                               | 3             | 8                            | mV   |
| Output current                                      | I <sub>MAX</sub>    | During DVC transitions Between DVC transitions                                                   | 700<br>800<br>Note 3          |               |                              | mA   |
| Current limit                                       | I <sub>LIM</sub>    | BUCKCORE_ILIM=00                                                                                 | -20 %                         | 700           | 20 %                         | mA   |
| (programmable)                                      | Note 4              | BUCKCORE_ILIM=01                                                                                 | -20 %                         | 800           | 20 %                         | mA   |
|                                                     |                     | BUCKCORE_ILIM=10                                                                                 | -20 %                         | 1000          | 20 %                         | mA   |
|                                                     |                     | BUCKCORE_ILIM=11                                                                                 | -20 %                         | 1200          | 20 %                         | mA   |
| Quiescent current in OFF mode                       | IQ <sub>OFF</sub>   |                                                                                                  |                               |               | 1                            | μА   |
| Quiescent current in synchronous rectification mode | IQ <sub>ON</sub>    |                                                                                                  |                               | 2.2           |                              | mA   |
| Switching frequency                                 | f                   |                                                                                                  |                               | 2             |                              | MHz  |
| Switching duty cycle                                |                     |                                                                                                  | 10                            |               | 95                           | %    |
| Turn on time                                        | T <sub>ON</sub>     |                                                                                                  |                               |               | 2.2                          | ms   |
| Output pull down resistor                           |                     | @ V <sub>OUT</sub> = 0.5 V, can be<br>switched off via<br>CORE_PD_DIS                            |                               |               | 200                          | Ω    |
| Efficiency                                          | η                   | $I_{OUT} = 30$ mA to $I_{MAX}$<br>VDD < 4.2 V                                                    |                               | 85            |                              | %    |



| Parameter                      | Symbol            | Conditions                                  | Min   | Тур    | Max   | Unit |  |  |
|--------------------------------|-------------------|---------------------------------------------|-------|--------|-------|------|--|--|
| On resistance pMOS             | R <sub>pMOS</sub> | incl. pin and routing                       |       |        | 0.5   | Ω    |  |  |
| On resistance nMOS             | R <sub>nMOS</sub> | incl. pin and routing                       |       |        | 0.3   | Ω    |  |  |
| PFM mode                       | PFM mode          |                                             |       |        |       |      |  |  |
| Output voltage                 | VBCORE            | I <sub>OUT</sub> < 70 mA                    | 0.5   | Note 5 | 2.075 | V    |  |  |
| Typical mode switching current |                   |                                             |       | 40     |       | mA   |  |  |
| Output current                 | I <sub>OUT</sub>  |                                             | 70    |        |       | mA   |  |  |
| Current limit                  | I <sub>LIM</sub>  |                                             | -20 % | 150    | +30 % | mA   |  |  |
| Quiescent current in PFM mode  | IQ <sub>PFM</sub> | I <sub>OUT</sub> = 0 mA                     |       | 25     | 35    | μA   |  |  |
| Frequency of operation         |                   |                                             | 0     |        | 5     | MHz  |  |  |
| Efficiency                     | η                 | $I_{OUT} = 10 \text{ mA to } 70 \text{ mA}$ |       | 80     |       | %    |  |  |
| Mode transition time           |                   |                                             |       | 16     | 18    | μs   |  |  |

- Note 1 Programmable in 25 mV increments with micro voltage ramp step size of 6.25 mV/µs while slewing
- Note 2 Minimum tolerance is +/-30 mV
- Note 3 VDD > 3.0 V, using Coilcraft LPS3015-222ML
- Note 4 The current limits will be automatically doubled when BUCKCORE is merged with BUCKPRO
- Note 5 Max.  $V_{DD} 1.0 V$

#### 8.8.2 BUCKPRO

Table 21: BUCKPRO (DA9021 only)

| Parameter                 | Symbol              | Conditions                                                      | Min                            | Тур           | Max                          | Unit |
|---------------------------|---------------------|-----------------------------------------------------------------|--------------------------------|---------------|------------------------------|------|
| Input voltage             | VDD                 |                                                                 | VDDOUT -<br>0.3 V<br>2.8 V min |               | VDDOUT +<br>0.3 V<br>5 V max | V    |
| Output capacitor          | C <sub>OUT</sub>    |                                                                 | -30 %                          | 20            | +30 %                        | μF   |
| Output capacitor ESR      |                     | f > 100 kHz all caps + track impedance                          |                                | 25            | 50                           | mΩ   |
| Inductor value            | L <sub>виск</sub>   |                                                                 | -30 %                          | 2.2 to<br>4.7 | +30 %                        | μH   |
| Inductor resistance       | R <sub>ESR</sub>    |                                                                 |                                | 100           | 150                          | mΩ   |
| Output voltage            | VBPRO               | I <sub>OUT</sub> = I <sub>MAX</sub>                             | 0.725                          | Note 1        | 2.075                        | V    |
| Output voltage accuracy   |                     | incl. static line / load regulation                             | -3                             | Note 1        | +3                           | %    |
| Output voltage ripple     |                     | I <sub>OUT</sub> = I <sub>MAX</sub>                             |                                | 5             |                              | mV   |
| Load regulation transient | VTR <sub>LOAD</sub> | $I_{OUT} = 0$ mA to 500 mA<br>step,<br>$dI/dt = 50$ mA/ $\mu$ s |                                | 15            | 30                           | mV   |



| Parameter                                           | Symbol              | Conditions                                                                                       | Min                  | Тур          | Max   | Unit |
|-----------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|----------------------|--------------|-------|------|
| Line regulation transient                           | VTR <sub>LINE</sub> | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 500 \text{ mA}$ $t_r = t_f = 10  \mu\text{s}$ |                      | 3            | 8     | mV   |
| Output current                                      | I <sub>MAX</sub>    | During DVC transitions Between DVC transitions                                                   | 700<br>800<br>Note 2 |              |       | mA   |
| Current limit                                       | I <sub>LIM</sub>    | BUCKPRO_ILIM=00                                                                                  | -20 %                | 700          | 20 %  | mA   |
| (programmable)                                      |                     | BUCKPRO_ILIM=01                                                                                  | -20 %                | 800          | 20 %  | mA   |
|                                                     |                     | BUCKPRO_ILIM=10                                                                                  | -20 %                | 1000         | 20 %  | mA   |
|                                                     |                     | BUCKPRO_ILIM=11                                                                                  | -20 %                | 1200         | 20 %  | mA   |
| Quiescent current in OFF mode                       | IQ <sub>OFF</sub>   |                                                                                                  |                      |              | 1     | μA   |
| Quiescent current in synchronous rectification mode | IQ <sub>ON</sub>    |                                                                                                  |                      | 2.2          |       | mA   |
| Switching frequency                                 | f                   |                                                                                                  |                      | 2            |       | MHz  |
| Switching duty cycle                                |                     |                                                                                                  | 10                   |              | 90    | %    |
| Turn on time                                        | T <sub>ON</sub>     |                                                                                                  |                      |              | 2.2   | ms   |
| Output pull down resistor                           |                     | @ V <sub>OUT</sub> = 0.5 V, can be<br>switched off via<br>PRO_PD_DIS                             |                      |              | 200   | Ω    |
| Efficiency                                          | η                   | I <sub>OUT</sub> =30 mA to I <sub>MAX</sub><br>VDD < 4.2 V                                       |                      | 85           |       | %    |
| On resistance pMOS                                  | R <sub>pMOS</sub>   | incl. pin and routing                                                                            |                      |              | 0.5   | Ω    |
| On resistance nMOS                                  | R <sub>nMOS</sub>   | incl. pin and routing                                                                            |                      |              | 0.3   | Ω    |
| PFM mode                                            |                     | •                                                                                                |                      |              |       |      |
| Output voltage                                      | VBPRO               | I <sub>OUT</sub> < 70 mA                                                                         | 0.5                  | Note 3       | 2.075 | V    |
| Typical mode switching current                      |                     |                                                                                                  |                      | 40<br>Note 4 |       | mA   |
| Output current                                      | I <sub>MAX</sub>    |                                                                                                  | 70                   |              |       | mA   |
| Current limit                                       | I <sub>LIM</sub>    |                                                                                                  | -20 %                | 150          | +30 % | mA   |
| Quiescent current in PFM mode                       | IQ <sub>PFM</sub>   | I <sub>OUT</sub> = 0                                                                             |                      | 20           | 35    | μΑ   |
| Frequency of operation                              |                     |                                                                                                  | 0                    |              | 5     | MHz  |
| Efficiency                                          | η                   | I <sub>OUT</sub> = 10 mA to 70 mA                                                                |                      | 80           |       | %    |
| Mode transition time                                |                     |                                                                                                  |                      | 16           | 18    | μs   |

Note 1 Minimum tolerance is +/- 30 mV

Note 2 VDD > 3.0 V using Coilcraft LPS3015-222ML

**Note 3** Max. VDD – 1.0 V

Note 4 Minimum tolerance is +/- 35 mV



#### 8.8.3 BUCKPERI

Table 22: BUCKPERI (DA9022 only)

| Parameter                                           | Symbol                               | Conditions                                                                                           | Min                           | Тур           | Max                                 | Unit |
|-----------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-------------------------------------|------|
| Input voltage                                       | VDD                                  |                                                                                                      | VDDOUT<br>-0.3 V<br>2.8 V min |               | V <sub>DD_OUT</sub> + 0.3 V 5 V max | V    |
| Output capacitor                                    | C <sub>OUT</sub>                     |                                                                                                      | -30 %                         | 10            | +30 %                               | μF   |
| Output capacitor ESR                                |                                      | f > 100 kHz<br>all caps + track<br>impedance                                                         |                               | 25            | 50                                  | mΩ   |
| Inductor value                                      | L <sub>BUCK</sub>                    |                                                                                                      | -30 %                         | 2.2 or<br>4.7 | +30 %                               | μH   |
| Inductor resistance                                 | R <sub>ESR</sub>                     |                                                                                                      |                               | 100           | 150                                 | mΩ   |
| Output voltage                                      | VBPERI                               | $I_{OUT} = I_{MAX}$                                                                                  | 1.8                           | Note 1        | 3.6                                 | V    |
| Output voltage accuracy                             |                                      | incl. static line / load regulation                                                                  | -3                            | Note 2        | +3                                  | %    |
| Output voltage ripple                               |                                      | $I_{OUT} = I_{MAX}$                                                                                  |                               | 10            |                                     | mV   |
| Load regulation transient                           | VTR <sub>LOAD</sub>                  | VDD = 3.6 V, VBPERI < $3.0 \text{ V}$ I <sub>OUT</sub> = 0 mA to 500 mA step, dl/dt = 50 mA/ $\mu$ s |                               | 20            | 40                                  | mV   |
|                                                     | VTR <sub>LOAD</sub>                  | VDD = 3.6 V, VBPERI=<br>3.3 V<br>$I_{OUT}$ = 0 mA to 500 mA<br>step,<br>dl/dt = 50 mA/ $\mu$ s       |                               | 40            | 80                                  | mV   |
| Line regulation transient                           | VTR <sub>LINE</sub>                  | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 300 \text{ mA}$ $t_r = t_f = 10  \mu\text{s}$     |                               | 10            | 20                                  | mV   |
| Output current                                      | I <sub>MAX</sub><br>I <sub>LIM</sub> | During DVC transitions Between DVC transitions VBMEM < 2.1 V                                         | 650<br>750<br>Note 3          |               |                                     | mA   |
|                                                     |                                      | BUCKPERI_ILIM=00                                                                                     | -20 %                         | 700           | 20 %                                | mA   |
| Current limit                                       |                                      | BUCKPERI_ILIM=01                                                                                     | -20 %                         | 800           | 20 %                                | mA   |
| (programmable)                                      |                                      | BUCKPERI_ILIM=10                                                                                     | -20 %                         | 1000          | 20 %                                | mA   |
|                                                     |                                      | BUCKPERI_ILIM=11                                                                                     | -20 %                         | 1200          | 20 %                                | mA   |
| Quiescent current in OFF mode                       | IQ <sub>OFF</sub>                    |                                                                                                      |                               |               | 1                                   | μA   |
| Quiescent current in synchronous rectification mode | IQ <sub>ON</sub>                     |                                                                                                      |                               | 3             |                                     | mA   |
| Switching frequency                                 | f                                    |                                                                                                      |                               | 2             |                                     | MHz  |
| Switching duty cycle                                |                                      |                                                                                                      | 20                            |               | 100                                 | %    |
| Turn on time                                        | T <sub>ON</sub>                      |                                                                                                      |                               |               | 2.2                                 | ms   |



| Parameter                                  | Symbol              | Conditions                                         | Min   | Тур | Max   | Unit |
|--------------------------------------------|---------------------|----------------------------------------------------|-------|-----|-------|------|
| Output pull down resistor                  |                     | @ V <sub>OUT</sub> = 0.5 V                         |       |     | 200   | Ω    |
| Efficiency                                 | η                   | I <sub>OUT</sub> < I <sub>MAX</sub><br>VDD < 4.2 V |       | 80  | 85    | %    |
| Efficiency<br>(half pass device)<br>Note 4 | η <sub>2</sub>      | I <sub>OUT</sub> =50 mA to 300 mA<br>VDD < 4.2 V   |       | 90  | 95    | %    |
| On resistance pMOS                         | R <sub>pMOS</sub>   | incl. pin and routing                              |       |     | 0.25  | Ω    |
| On resistance nMOS                         | R <sub>nMOS</sub>   | incl. pin and routing                              |       |     | 0.3   | Ω    |
| Bypass resistance                          | R <sub>BYPASS</sub> | at VDDPERI=3.6 V                                   |       |     | 1.0   | Ω    |
| PFM mode                                   |                     |                                                    |       |     |       |      |
| Typical mode switching current             |                     |                                                    |       | 40  |       | mA   |
| Output current                             | I <sub>max</sub>    |                                                    | 70    |     |       | mA   |
| Current limit                              | I <sub>LIM</sub>    |                                                    | -20 % | 150 | +30 % | mA   |
| Quiescent current in PFM mode              | IQ <sub>PFM</sub>   | I <sub>OUT</sub> = 0                               |       | 25  | 35    | μА   |
| Frequency of operation                     |                     |                                                    | 0     |     | 5     | MHz  |
| Efficiency                                 | η                   | I <sub>OUT</sub> = 10 mA to 70 mA                  |       | 80  |       | %    |
| Mode transition time                       |                     |                                                    |       | 16  | 18    | μs   |

**Note 1** Programmable in 50 mV increments up to 3 V then in 100 mV increments, maximum output voltage is less than VDD

- Note 2 Minimum tolerance is +/- 35 mV
- Note 3 VDD > 3.0 V using Coilcraft LPS3015-222ML
- Note 4 See control BPERI\_HS

### 8.8.4 BUCKMEM

Table 23: BUCKMEM

| Parameter               | Symbol            | Conditions                                   | Min                            | Тур           | Max                           | Unit |
|-------------------------|-------------------|----------------------------------------------|--------------------------------|---------------|-------------------------------|------|
| Input voltage           | VDD               |                                              | VDDOUT -<br>0.3 V<br>2.8 V min |               | VDDOUT +<br>0.3 V,<br>5 V max | V    |
| Output capacitor        | Соит              |                                              | -30 %                          | 10            | +30 %                         | μF   |
| Output capacitor ESR    |                   | f > 100 kHz<br>all caps + track<br>impedance |                                | 25            | 50                            | mΩ   |
| Inductor value          | L <sub>BUCK</sub> |                                              | -30 %                          | 2.2 to<br>4.7 | +30 %                         | μН   |
| Inductor resistance     | R <sub>ESR</sub>  |                                              |                                | 100           | 150                           | mΩ   |
| Output voltage          | VBMEM             | $I_{OUT} = I_{MAX}$                          | 0.95                           | Note 1        | 2.525                         | V    |
| Output voltage accuracy |                   | incl. static line / load regulation          | -3                             | Note 2        | +3                            | %    |
| Output voltage ripple   |                   | $I_{OUT} = I_{MAX}$                          |                                | 10            |                               | mV   |



| Parameter                                           | Symbol              | Conditions                                                                                       | Min                  | Тур  | Max   | Unit |
|-----------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|----------------------|------|-------|------|
| Load regulation transient                           | VTR <sub>LOAD</sub> | I <sub>OUT</sub> = 0 mA and<br>300 mA step,<br>dI/dt = 30 mA/µs                                  |                      | 20   | 40    | mV   |
| Line regulation transient                           | VTR <sub>LINE</sub> | $VDD = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 300 \text{ mA}$ $t_r = t_f = 10  \mu\text{s}$ |                      | 5    | 10    | mV   |
| Output current                                      | I <sub>MAX</sub>    | During DVC transitions Between DVC transitions < 2.075 V                                         | 650<br>750<br>Note 3 |      |       | mA   |
|                                                     |                     | BUCKMEM_ILIM=00                                                                                  | -20 %                | 700  | 20 %  | mA   |
| Current limit                                       |                     | BUCKMEM_ILIM=01                                                                                  | -20 %                | 800  | 20 %  | mA   |
| (programmable)                                      | I <sub>LIM</sub>    | BUCKMEM_ILIM=10                                                                                  | -20 %                | 1000 | 20 %  | mA   |
|                                                     |                     | BUCKMEM_ILIM=11                                                                                  | -20 %                | 1200 | 20 %  | mA   |
| Quiescent current in OFF mode                       | IQ <sub>OFF</sub>   |                                                                                                  |                      |      | 1     | μΑ   |
| Quiescent current in synchronous rectification mode | IQ <sub>ON</sub>    |                                                                                                  |                      | 2.2  |       | mA   |
| Switching frequency                                 | f                   |                                                                                                  |                      | 2    |       | MHz  |
| Switching duty cycle                                |                     |                                                                                                  | 10                   |      | 90    | %    |
| Turn on time                                        | T <sub>ON</sub>     |                                                                                                  |                      |      | 2.2   | ms   |
| Output pull down resistor                           |                     | @ V <sub>OUT</sub> = 0.5 V, can be<br>switched off via<br>MEM_PD_DIS                             |                      |      | 250   | Ω    |
| Efficiency                                          | η                   | I <sub>OUT</sub> =30 mA to I <sub>MAX</sub><br>VDD < 4.2 V                                       |                      | 85   |       | %    |
| On resistance pMOS                                  | R <sub>pMOS</sub>   | incl. pin and routing                                                                            |                      |      | 0.5   | Ω    |
| On resistance nMOS                                  | R <sub>nMOS</sub>   | incl. pin and routing                                                                            |                      |      | 0.3   | Ω    |
| PFM mode                                            |                     | •                                                                                                | •                    |      |       |      |
| Typical mode switching current                      |                     |                                                                                                  |                      | 40   |       | mA   |
| Output current                                      | I <sub>max</sub>    |                                                                                                  | 70                   |      |       | mA   |
| Current limit                                       | I <sub>LIM</sub>    |                                                                                                  | -20 %                | 150  | + 30% | mA   |
| Quiescent current in PFM mode                       | IQ <sub>PFM</sub>   | I <sub>OUT</sub> = 0                                                                             |                      | 20   | 35    | μΑ   |
| Frequency of operation                              |                     |                                                                                                  | 0                    |      | 5     | MHz  |
| Efficiency                                          | η                   | I <sub>OUT</sub> = 10 mA to 70 mA                                                                | 80                   |      |       | %    |
| Mode transition time                                |                     |                                                                                                  |                      | 16   | 18    | μs   |

- Note 1 Programmable in 25 mV increments with micro voltage ramp step size of 6.25 mV/µs while slewing
- Note 2 Minimum tolerance is +/- 35 mV
- Note 3 VDD > 3.0 V, using Coilcraft LPS3015-222ML



# 8.9 Battery charger

Table 24: Battery charger

| Supply mode                       | Symbol   | Test conditions | Min | Тур       | Max  | Unit |
|-----------------------------------|----------|-----------------|-----|-----------|------|------|
| VBUS                              | VUSB     |                 | 4.4 |           | 5.5  | V    |
| USB2.0 host/hub<br>mode (default) | ISET_USB |                 | 70  | Note<br>1 | 1300 | mA   |

Note 1 Programmable in 10 mA increments from 70 mA to 120 mA and 100 mA increments from 400 mA to 1300 mA

### 8.9.1 Charger buck

Table 25: Charger buck

| Parameter                                           | Symbol              | Test conditions                                                                                          | Min   | Тур           | Max   | Unit |
|-----------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|-------|---------------|-------|------|
| Input voltage                                       | VCENTER             |                                                                                                          | 4.4   |               | 5.6   | V    |
| Output capacitor                                    | Соит                |                                                                                                          | 30    |               |       | μF   |
| ESR of output capacitor                             |                     | f > 100 kHz                                                                                              |       |               | 20    | mΩ   |
| Inductor value                                      | L <sub>BUCK</sub>   |                                                                                                          | -30 % | 4.7           | +30 % | μH   |
| Inductor resistance                                 | R <sub>ESR</sub>    | f = 1 MHz                                                                                                |       | 100           | 150   | mΩ   |
| Output voltage                                      | VDDOUT              | I <sub>OUT</sub> = 1000 mA                                                                               | 3.6   | VBAT + 200 mV |       | V    |
| Ripple voltage                                      |                     | I <sub>OUT</sub> = 1000 mA                                                                               |       | 10            |       | mV   |
| Line regulation transient                           | VTR <sub>LINE</sub> | VBUS_PROT = $4.4 \text{ V}$ - $5.5 \text{ V}$ , $I_{OUT} = 1000 \text{ mA}$ $t_r = t_f = 10 \mu\text{s}$ |       | 10            |       | mV   |
| Output current                                      | I <sub>MAX</sub>    |                                                                                                          | 1300  |               |       | mA   |
| Current limitation                                  | I <sub>LIM</sub>    | 2-wire programmable<br>(different step sizes for<br>different ranges)                                    | 70    |               | 1300  | mA   |
| Quiescent current in OFF mode                       |                     |                                                                                                          |       |               | 1     | μА   |
| Quiescent current in synchronous rectification mode |                     |                                                                                                          |       | 5             |       | mA   |
| F_BUCK<br>Frequency of<br>operation                 |                     |                                                                                                          |       | 2             |       | MHz  |
| Switching duty cycle                                |                     |                                                                                                          | 10    |               | 100   | %    |
| T <sub>on</sub><br>Turn on time                     |                     |                                                                                                          |       |               | 2.2   | m    |
| Efficiency                                          |                     | I <sub>OUT</sub> = 1000 mA<br>VBUS_PROT = 5 V                                                            | 85    | 90            |       | %    |
| R_PMOS<br>PMOS on resistance                        |                     | incl. pin and routing                                                                                    | 0.08  | 0.15          | 0.2   | Ω    |
| R_NMOS<br>NMOS on resistance                        |                     | incl. pin and routing                                                                                    | 0.15  | 0.25          | 0.3   | Ω    |



| Parameter                                              | Symbol                | Test conditions                                                     | Min  | Тур | Max | Unit |
|--------------------------------------------------------|-----------------------|---------------------------------------------------------------------|------|-----|-----|------|
| R_VBUS_PROT internal switch on resistance              |                       | incl pin and routing,<br>VBUS_PROT= 4.8 V                           | 0.05 | 0.1 | 0.2 | Ω    |
| Sleep mode - PFM m                                     | ode                   |                                                                     |      |     |     |      |
| Sleep mode output current                              | I <sub>OUTSLEEP</sub> |                                                                     | 100  |     |     | mA   |
| Current limitation                                     |                       |                                                                     | 300  |     | 550 | mA   |
| IQ_ SLEEP - No<br>load supply current in<br>SLEEP mode |                       | I <sub>OUT</sub> = 0 mA<br>(due to high precision<br>current limit) |      | 80  | 100 | μΑ   |
| F_BUCK<br>Frequency of<br>operation                    |                       |                                                                     | 0    |     | 3   | MHz  |
| Efficiency                                             |                       | I <sub>OUT</sub> = 10 mA to 100 mA                                  | 85   |     |     | %    |
| Efficiency                                             |                       | I <sub>OUT</sub> = 1 mA to 50 mA<br>VDD =4.8 V                      | 75   |     |     | %    |
| Mode transition time                                   |                       |                                                                     |      | 16  | 18  | μs   |

# 8.9.2 Voltage levels on VBAT

# Table 26: Voltage levels on VBAT

| Parameter                            | Symbol                 | Test conditions               | Min | Тур | Max | Unit |
|--------------------------------------|------------------------|-------------------------------|-----|-----|-----|------|
| VBAT_FAULT                           | V <sub>BAT_FAULT</sub> |                               |     | 2.9 |     | V    |
| ICHG_BAT<br>(ICHG_PRE over-<br>ride) | ICHG_BAT               | VBAT < V <sub>BAT_FAULT</sub> | 20  | 40  | 60  | mA   |

## 8.9.3 Charging modes

# Table 27: Charging modes

| Supply mode Symbol         |  | Test conditions                  | Min  | Тур | Max   | Unit |
|----------------------------|--|----------------------------------|------|-----|-------|------|
| CC mode output current     |  | 6 bits ICHG_BAT<br>(20 mA steps) | 0    | 200 | 1260  | mA   |
| CC absolute accuracy       |  | ICHG_BAT < 100 mA                | -10  |     | +10   | mA   |
| CC absolute accuracy       |  | ICHG_BAT > 100 mA                | -10  |     | +10   | %    |
| CV mode output voltage     |  | VCHG_BAT<br>(25 mV steps)        | 3.65 | 4.2 | 4.425 | V    |
| CV output voltage accuracy |  | VCHG_BAT                         | -25  |     | +25   | mV   |



## 8.9.4 Charger detection circuit

Table 28: Charger detection circuit

| Supply mode                               | Symbol       | Test conditions         | Min  | Тур  | Max  | Unit |
|-------------------------------------------|--------------|-------------------------|------|------|------|------|
| Charger detect threshold                  | VCH_DET      |                         | 4.25 | 4.35 | 4.4  | V    |
| Charger current limit reduction threshold |              | VCHG_THR (configurable) | 3.7  | 3.8  | 4.35 | V    |
| Charger insertion debounce time           | VCHG_INS_DEB |                         |      | 10   |      | ms   |
| VBUS, excess voltage threshold            | VCHG_EXCESS  |                         | 5.5  | 5.6  | 5.8  | V    |

### 8.9.5 VBUS charge control

Table 29: VBUS charge control

| Supply mode                               | Symbol                    | Test conditions                                                                                         | Min | Тур | Max | Unit |
|-------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| VBUS load in low<br>power SUSPEND<br>mode | I <sub>VBUS_SUSPEND</sub> | $0 \text{ V} \le \text{VBUS} \le 5.25 \text{ V}$ $T_{AVG} = <1 \text{ s, no spikes higher}$ than 100 mA |     |     | 500 | μΑ   |

### 8.9.6 Charge timer

Table 30: Charge timer

| Supply mode                            | Symbol   | Test conditions                                                                                                                                                                                                                                                                                                                        | Min | Тур | Max | Unit |
|----------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Total charging timer setting           | TCTR     | Total charge time is defined as the total charge time from when the charger was enabled (both for LINEAR and PRE-CHARGE mode charging). If the timer expires, the CHG_TO flag is set in the EVENT register, an IRQ issued and the charging is disabled. The default TCTR setting is 0x0A. Setting the TCTR to 0x00 disables the timer. | 0   | 30  | 450 | min  |
| Read back<br>of current<br>timer value | CHG_TIME | This register can be used to read back the current value of the charge time counter, counting down from the value loaded by the TCTR                                                                                                                                                                                                   | 0   | 2   | 510 | min  |

### 8.9.7 DCCC and active-diode

Table 31: DCCC and active-diode

| Supply mode                | Symbol            | Test conditions                          | Min | Тур  | Max | Unit |
|----------------------------|-------------------|------------------------------------------|-----|------|-----|------|
| Active diode on resistance | R <sub>ON</sub>   | VBAT=3.6 V I=500 mA incl pin and routing |     | 0.14 |     | Ω    |
| Circuit activation voltage |                   | VBAT - VDDOUT                            | 10  | 20   | 40  | mV   |
| Maximum diode current      | ID <sub>MAX</sub> |                                          |     | 2.2  |     | Α    |



### 8.10 Oscillator

Table 32: Oscillator (T<sub>A</sub> = -25 °C to +85 °C)

| Supply mode                   | Symbol | Test conditions | Min | Тур | Max | Unit   |
|-------------------------------|--------|-----------------|-----|-----|-----|--------|
| Internal oscillator frequency |        | before trimming | 1.4 | 2.0 | 2.6 | MHz    |
|                               |        | after trimming  | 1.9 | 2.0 | 2.1 | IVITIZ |

# 8.11 Reference voltage generation and temperature supervision

Table 33: Reference voltage generation and temperature supervision (T<sub>A</sub> = -25 °C to +85 °C)

| Supply mode                  | Symbol                      | Test conditions | Min  | Тур | Max  | Unit |
|------------------------------|-----------------------------|-----------------|------|-----|------|------|
| Reference voltage            | VDD_REF_Pin                 |                 | -1 % | 1.2 | +1 % | V    |
| VDD_REF decoupling capacitor |                             |                 |      | 100 |      | nF   |
| Reference current resistor   | IREF Pin                    |                 | -1 % | 200 | +1 % | kΩ   |
| Thermal shutdown             | T <sub>OVER</sub>           |                 | 125  | 140 | 155  | ٥C   |
| Charge current reduction     | T <sub>CHARGELOW</sub>      |                 | 75   | 90  | 115  | °C   |
| Charge suspend               | T <sub>CHARGE_SUSPEND</sub> |                 | 105  | 120 | 135  | ٥C   |
| Hysteresis                   |                             |                 |      | 10  |      | ٥C   |



### 9 Real time clock and 32 kHz oscillator

The real time clock (RTC) block keeps track of the RTC clock counter and alarm function. The RTC block will operate from the LDO\_CORE power supply.

#### 9.1 32 kHz oscillator

The clock oscillator cell is used to drive the RTC counter. It works with an external piezoelectric oscillator crystal at 32.768 kHz.

In order to achieve the desired crystal frequency connect an external capacitor (10 pF to 20 pF, depending on the parasitic capacitance of the board) to ground from each of the crystal pins. The start-up time of the oscillator is typically 0.5 s over the voltage range. When the crystal is not mounted, ground the unpopulated crystal pins. The 32 kHz clock signal is made available at the OUT\_32K pin and the buffer can be disabled from the sequencer during POWERDOWN mode.

The timekeeping error from the frequency variance of crystal oscillators (typ. +/- 20 ppm) can be trimmed individually by +/- 242 ppm with a resolution of 1.9 ppm (1/(32768 \* 16)). More advanced solutions will be able to dynamically correct the temperature related oscillator frequency drift (> 100 ppm) by using a periodic temperature measurement located close to the crystal. The timekeeping correction will be applied only towards the on-chip RTC block. To avoid potential clock jitter issues, the 32 kHz clock signal at the OUT\_32K pin provides the original frequency of the crystal.

#### 9.2 RTC counter and alarm

The RTC counter can count the number of 32 kHz clock periods, providing a seconds, minutes, hours, day, month and year output, up to 63 years. Year 0 corresponds to 2000. The value of the RTC calendar shall be read-/write-able via the power manager communication. The calendar is reset to zero when VDDCORE is lost.

There is an alarm register containing minutes, hours, day, month and year. When the RTC counter register value corresponds to the value set in the alarm an interrupt request (IRQ) event and a wakeup (if DA9021/22 is in POWERDOWN mode) will be triggered. The trigger will also set a bit in an event register to notify that an alarm has occurred. The alarm can alternatively be asserted from a periodic tick signal that, depending on control TICK\_TYPE, is either asserted every second or minute. In the case the host has enabled both alarms it can determine from the status of ALARM\_TYPE whether the IRQ/wakeup was caused by the timer or the tick.

#### NOTE

The oscillator inputs can withstand a leakage current, corresponding to at least a 10 M $\Omega$  connected between the pin and any signal level between VDDOUT and GND.

The power manager registers ALARM\_ON and TICK\_ON enable/disable the alarm/tick. The power manager register bit MONITOR is set to '0' each time the RTC is powered up. The software sets this bit to '1' when setting the time and date, which allows the software to detect a subsequent loss of the clock.

#### NOTE

Values written into the RTC calendar and alarm registers must be within the allowed range (see register description, for example maximum 60 for seconds or minutes).

The RTC seconds registers define a 32-bit seconds counter (approximately 136 years), that can only be reset via the nPOR and starts counting seconds after nPOR is released. Using the RTC input clock the output port GPO10 can be toggled with a configurable periodic pulse. In this mode GPO10 offers blinking LED drivers that are able to run in POWERDOWN mode.



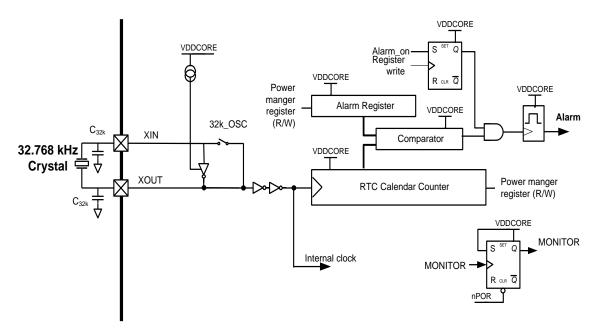
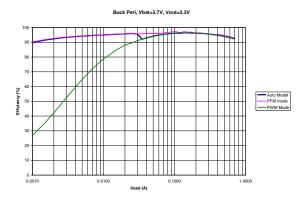




Figure 6: Schematics of the RTC oscillator and counter functionality



## 10 Typical characteristics

### 10.1 Buck regulator performance



Buck Core, Vbat=3.2V, Vout=2.075\

Figure 7: BUCKPERI efficiency curves

Figure 8: BUCKCORE efficiency curves

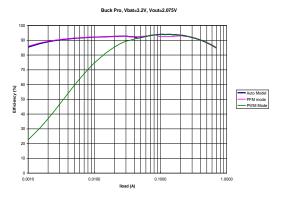







Figure 10: BUCKMEM efficiency curves

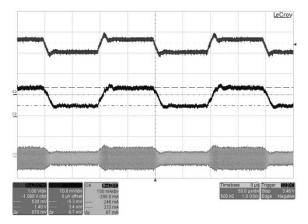



Figure 11: Typical buck line transient

Note 1 Ch2: VBAT, Ch3:  $V_{OUT}$ , Ch4:  $I_{COIL}$   $V_{OUT} = 2.5 \text{ V}$ , no load, VBAT = 3.0 V to 3.6 V step,  $t\_rise = t\_fall = \sim 10 \text{ µs}$ 

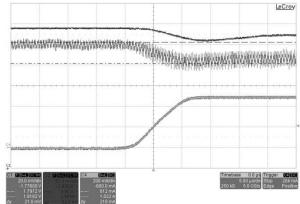



Figure 12: Typical buck load transient

Note 1 Ch1:  $I_{COIL}$ , Ch2:  $V_{OUT}$ , Ch4:  $I_{LOAD}$   $V_{OUT} = 1.8$  V, VBAT = 4 V,  $I_{LOAD} = 0$  V to 500 mA, dl/dt~50 mA/ $\mu$ s, rising



### 10.2 Linear regulator performance

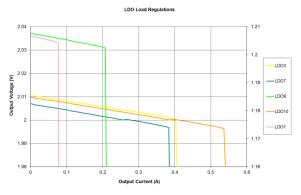
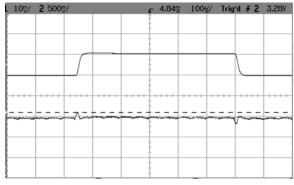






Figure 13: Typical LDO load regulation

Figure 14: Typical LDO drop-out voltage



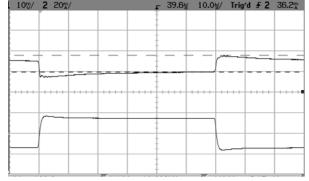



Figure 15: Typical LDO line transient

Figure 16: LDO load transient

(Transient of 3.6 V to 4.2 V at VBAT). Top trace = VBAT, bottom trace = VLD01 (1 mA to  $I_{MAX}$  of 40 mA) VLDO = 1.2 V Top trace = VLD01, bottom trace = Load

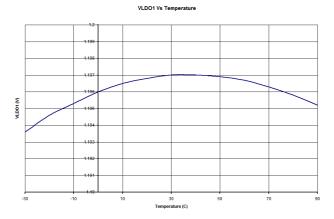



Figure 17: Typical LDO voltage vs temperature



### 10.3 ADC performance

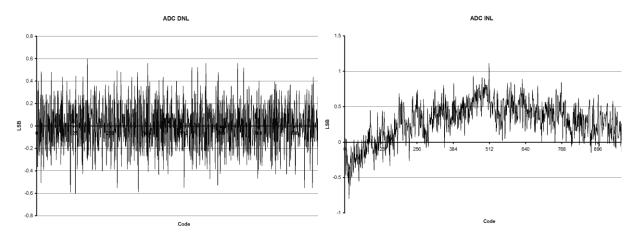



Figure 18: ADC DNL performance

Figure 19: ADC INL performance

### 10.4 Power path performance

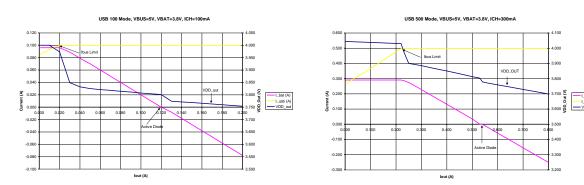



Figure 20 Power path behaviour USB100 mode

Figure 21 Power path behaviour USB500 mode

Figures 20 and 21 show increasing load current supplied from VBUS, power path loop reduces ICH until active diode turns on which then allows current from battery to supply system load current via VDDOUT.

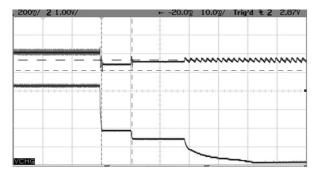



Figure 22: Transitioning supply from USB 5 V (via VBUS) to VBAT

Top trace = VDDOUT, bottom trace = VBUS



# 11 Functional description

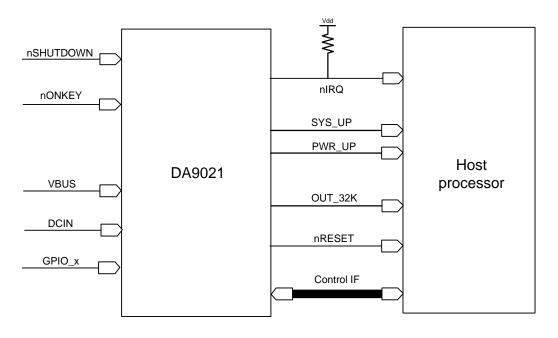



Figure 23: Control ports and interface

#### 11.1 Power manager IO ports

The power manager input ports are supplied either from the internal rail VDDCORE or VDD\_IO, selected via PM\_I\_V. The output ports are supplied from VDD\_IO. During the initial start-up sequence the power manager IO ports are in tri-state mode until being configured from OTP when leaving RESET mode, except nRESET, nIRQ, PWR\_UP/GP\_FB2. Output ports are push-pull type except for nRESET and nIRQ, which can also be configured to open drain.

### 11.2 On/off (nONKEY)

The nONKEY signal is a level active low wakeup interrupt/event intended to switch-on the DA9021/22 supplied application. nONKEY is always enabled during POWERDOWN mode, so that the application can be also switched-on with a disabled GPIO extender. The wakeup event can be disabled via the interrupt mask M\_nONKEY.

### 11.3 Hardware reset (nSHUTDOWN, nONKEY, GPIO14 & GPIO15)

A user-initiated hard reset at the DA9021/22 nSHUTDOWN is an active low input initiated typically by a push button switch or an asserted error detection line from a host processor. The sequencer then powers down all domains in reverse order down to step 0 and all supplies of DA9021/22 except LDOCORE are switched off.

DA9021/22 includes a second hardware reset that follows the nONKEY after being asserted for a period of 5 s  $\pm$  30 %. The same can be achieved by a parallel connection of GPI14 and GPI15 to ground for 5 s  $\pm$  30 %.

This feature provides the ability to emergency turn-off the application in the event of a software lockup without the need for a dedicated RESET hardware switch or removing the battery.

After a minimum time-out of 500 ms DA9021/22 will start to power up again. It will wait for a valid wakeup event (for example key press) or will start the power sequencer automatically. By asserting EXT\_WAKEUP it can request the host processor to control the subsequent start-up. Alternatively the power up sequence can be performed autonomously by the PMIC following OTP pre-configurations.



A detection of a hard reset forces the assertion of nRESET to low when the sequencer returns from POWERDOWN mode to RESET mode.

This type of reset is typically used only for severe or unrecoverable hardware or software problems, because it completely resets the processor and can result in data loss.

### 11.4 Reset output (nRESET)

The nRESET signal is an active-low output signal from DA9021/22 to the host processor, which tells the host to enter the hardware-reset state. nRESET is always asserted at the beginning of a DA9021/22 cold start from NO-POWER mode and when the DA9021/22 returns to RESET mode. nRESET can also be asserted as a soft reset after the sequencer finishes powering down without progressing to RESET-mode.

The reset timer trigger signal can be configured to be EXT\_WAKEUP, SYS\_UP or PWR\_UP. After being asserted nRESET remains low until the reset timer is started from the selected trigger signal and expires. The expiry time can be configured from 1 ms to 1024 ms.

### 11.5 System enable (SYS EN)

SYS\_EN is an input signal from the host processor to DA9021/22 (or can be default enabled via OTP settings), which initiates enabling the system power supplies. The control SYS\_EN will be initialised from OTP if the related port is configured as GPI or GPO. The register bit SYS\_EN can be read and changed via the control interfaces. DA9021/22 will not accept any power mode transition commands until the sequencer has stopped processing IDs. De-asserting SYS\_EN informs the DA9021/22 that the host processor is going into a standby/hibernate mode. When the port is changing from active to passive state there is no IRQ or wakeup event trigger. With the exception of supplies that are configured in ACTIVE mode with a voltage preset before powering down, all regulators and buck converters in power domain POWER1, POWER and SYSTEM will be sequentially disabled in reverse order.

### 11.6 Power enable (PWR\_EN)

PWR\_EN is an input signal from the host processor to DA9021/22 (or is configured via OTP or host commands). Initialisation, IRQ assertion and register bit PWR\_EN control is similar to SYS\_EN. To ensure the correct sequencing SYS\_EN has to be active before asserting PWR\_EN. When deasserting SYS\_EN the sequencer will sequentially power down POWER1, POWER and SYSTEM domains respectively.

### 11.7 Power1 enable (PWR1 EN)

PWR1\_EN is an input signal from a host to DA9021/22 and is configured via OTP or host commands. Initialisation, IRQ assertion and register bit PWR1\_EN control is similar to SYS\_EN. The domain POWER1 is a sub power domain for general purpose.

### 11.8 General purpose feedback signal 1 (GP FB1: EXT WAKEUP/READY)

The feedback GP\_FB1 supports two different modes. If configured as EXT\_WAKEUP it is an active high output signal to the host processor that indicates a valid wakeup event during POWERDOWN mode. External signals that are causing wakeup events are debounced before DA9021/22 asserts the EXT\_WAKEUP signal. EXT\_WAKEUP is released when entering the ACTIVE mode. If configured as READY signal it indicates ongoing DVC or power sequencer activities. The signal is active low and is asserted from DA9021/22 as long as the power sequencer processes IDs or DVC voltage transitions are ongoing.



### 11.9 Power domain status (PWR\_UP/GP\_FB2)

The power domain status indicators are active high and assigned after the sequencer has processed all IDs of a power domain (all assigned supplies are up). When domains are disabled during power mode transitions the status indicator is released before the DA9021/22 sequencer processes the last step of a domain.

PWR\_UP is one mode of the general purpose indicator GP\_FB2 that can also be used as a configurable feedback signal that is level/time controlled from the power sequencer.

### 11.10 Supply rail fault (nVDD\_FAULT)

nVDD\_FAULT is an active low output signal to the host processor to indicate a VDDOUT low status. The assertion of nVDD\_FAULT indicates that the main battery and the supply input voltage is low and therefore informs the host processor that the power will shut down very soon. After that the processor may operate for a limited time from the backup battery, which can provide power to the processor for a few cycles. In the event of nVDD\_FAULT assertion the processor may be programmed to enter an emergency mode, for example external memory data refresh is no longer performed.

### 11.11 Interrupt request (nIRQ)

The nIRQ is an active low output signal which indicates that an interrupt causing event has occurred and that the event and status information is available in the related registers. Such information can be temperature and voltage of the PMIC, fault conditions, charging status, status changes at GPI ports, and others. The event registers hold information about the events that have occurred. Events are triggered by a status change at the monitored signals. When an event bit is set the nIRQ signal is asserted (unless this interrupt is masked by a bit in the IRQ mask register). The nIRQ will not be released until the event registers have been cleared.

#### 11.12 Real time clock output (OUT 32K)

The OUT\_32K is an output signal that generates a buffered signal of the DA9021/22 32 kHz oscillator. The 32 kHz oscillator will always run on the DA9021/22 following the initial start-up from NO-POWER mode until the device has reached NO-POWER mode again. The signal output buffer can be disabled during POWERDOWN mode with bit OUT\_32K\_PD.

### 11.13 IO\_supply voltage (VDD\_IO)

VDD\_IO is an independent IO supply rail input of DA9021/22 that can be assigned to the power manager interface, power manager IOs and GPIOs. The rail assignment determines the IO voltage levels and logic. The selection of the supply rail for GPIOs is also partially used for their alternate functions. GPOs configured in open drain mode have to use the VDD\_IO rail if an internal pull-up resistor is required.



### 12 Control interfaces

The DA9021/22 is completely software controlled from the host by registers. DA9021/22 offers two independent serial control interfaces to access these registers. The communication via the main power manager interface is selectable to be either a 2-wire or a 4-wire connection (I<sup>2</sup>C or SPI compliant). The alternate interface is fixed towards a 2-wire bus. Data is shifted in to or out from DA9021/22 under the control of the host processor that also provides the serial clock.

### 12.1 Power manager interface (4-wire and 2-wire control bus)

This is the dedicated power control interface from the primary host processor. In 4-wire mode the interface uses a chip-select line (nCS/nSS), a clock line (SK), data input (SI) and data output line (SO).

#### 12.2 4-wire communication

In 4-wire mode the DA9021/22 register map is split into two pages with each page containing up to 128 registers. The register at address zero on each page is used as a page control register. The default active page after reset includes registers R1 to R127. Writing to the page control register changes the active page for all subsequent read/write operations. After modifying the active page it is recommended to read back the page control register to ensure that future data exchange is accessing the intended registers.

The 4-wire interface features a half-duplex operation (data can be transmitted and received within a single 16-bit frame) at enhanced clock speed (up to 14 MHz). It operates at the provided host clock frequencies.

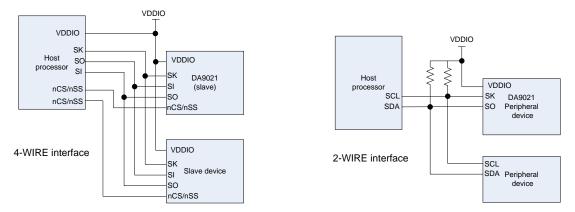



Figure 24: Schematic of 4-wire and 2-wire power manager bus

A transmission begins when initiated by the host. Reading and writing is accomplished by the use of an 8-bit command, which is sent by the host prior to the exchanged 8-bit data. The byte from the host begins shifting in on the SI pin under the control of the serial clock SK provided from the host. The first 7 bits specify the register address (0 to 127, decimal) which will be written or read by the host. The register address is automatically decoded after receiving the seventh address bit. The command word ends with an R/W bit, which specifies the direction of the following data exchange.

During register writing the host continues sending out data during the following 8 SK clocks. For reading the host stops transmitting and the 8-bit register is clocked out of DA9021/22 during the consecutive eight SK clocks of the frame. Address and data are transmitted with MSB first. nCS resets the interface when inactive and it has to be released between successive cycles.

The SO output from DA9021/22 is normally in high-impedance state and active only during the second half of read cycles. A pull-up or pull-down resistor may be needed at the SO line if a floating logic signal is causing unintended current consumption inside other circuits.



Table 34: 4-wire clock configurations

| CPOL clock polarity | CPHA clock phase | Output data is updated at SK edge | Input data is registered at SK edge |
|---------------------|------------------|-----------------------------------|-------------------------------------|
| 0 (idle low)        | 0                | falling                           | rising                              |
| 0 (idle low)        | 1                | rising                            | falling                             |
| 1 (idle high)       | 0                | rising                            | falling                             |
| 1 (idle high)       | 1                | falling                           | rising                              |

The DA9021/22 4-wire interface offers two further configuration bits. Clock polarity (CPOL) and clock phase (CPHA) define when the interface will latch the serial data bits. CPOL determines whether SK idles high (CPOL = 1) or low (CPOL = 0). CPHA determines on which SK edge data is shifted in and out. With CPOL = 0 and CPHA = 0 setting DA9021/22 latches data on the SK rising edge.

If the CPHA is set to '1' the data is latched on the SK falling edge. CPOL and CPHA states allow four different combinations of clock polarity and phase; each setting is incompatible with the other three. The host and DA9021/22 must be set to the same CPOL and CPHA states to communicate with each other.

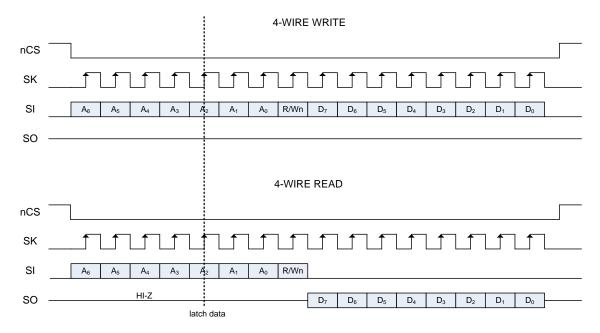



Figure 25: 4-wire host write and read timing (nCS\_POL = '0', CPOL = '0', CPHA = '0')



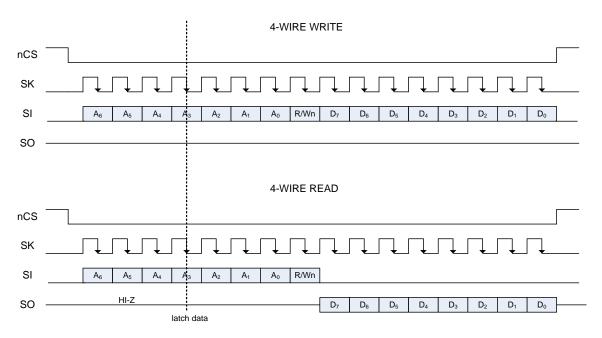



Figure 26: 4-wire host write and read timing (nCS\_POL = '0', CPOL = '0', CPHA = '1')

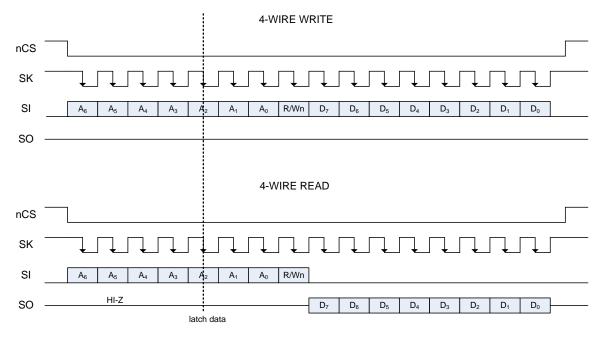



Figure 27: 4-wire host write and read timing (nCS\_POL = '0', CPOL = '1', CPHA = '0')



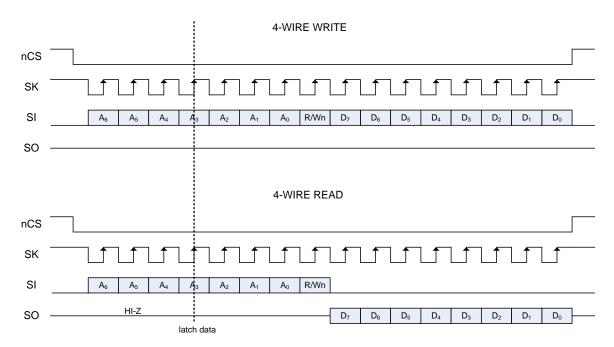



Figure 28: 4-wire host write and read timing (nCS\_POL = '0', CPOL = '1', CPHA = '1')

Table 35: 4-wire interface summary

| PARAMETER      |                           |                                             |  |  |  |  |
|----------------|---------------------------|---------------------------------------------|--|--|--|--|
| Signal lines   | nCS                       | Chip select                                 |  |  |  |  |
|                | SI Serial input data      | Master out Slave in                         |  |  |  |  |
|                | SO Serial output data     | Master in Slave out                         |  |  |  |  |
|                | SK                        | Transmission clock                          |  |  |  |  |
| Interface      | Push-pull with tristate   |                                             |  |  |  |  |
| Supply voltage | VDD_IO                    | 1.6 V to 3.3 V                              |  |  |  |  |
| Data rate      | Effective read/write data | Up to 7 Mbps                                |  |  |  |  |
| Transmission   | Half-duplex               | MSB first                                   |  |  |  |  |
|                | 16-bit cycles             | 7-bit address, 1-bit read/write, 8-bit data |  |  |  |  |
| Configuration  | CPOL                      | Clock polarity                              |  |  |  |  |
|                | СРНА                      | Clock phase                                 |  |  |  |  |
|                |                           | NCS is active low/high                      |  |  |  |  |

#### NOTE

Reading the same register at high clock rates directly after writing it does not guarantee a correct value. It is recommended to keep a delay of one frame until re-accessing a register that has just been written (for example by writing/reading another register address in between).



#### 12.3 2-wire communication

The power manager interface can be configured for a 2-wire serial data exchange. It has a configurable SLAVE write address (default: 0x90) and a configurable SLAVE read address (default: 0x91).

SK provides the 2-wire clock and SO carries all the power manager bidirectional 2-wire data. The 2-wire interface is open-drain supporting multiple devices on a single line. The bus lines have to be pulled HIGH by external pull-up resistors (2 k $\Omega$  to 20 k $\Omega$  range). The attached devices only drive the bus lines LOW by connecting them to ground. As a result two devices cannot conflict, if they drive the bus simultaneously. In standard/fast mode the highest frequency of the bus is 400 kHz. The exact frequency can be determined by the application and does not have any relation to the DA9021/22 internal clock signals. DA9021/22 will follow the host clock speed within the described limitations and does not initiate any clock arbitration or slow down.

In high speed mode the maximum frequency of the bus can be increased up to 1.7 MHz. This mode is supported if the SK line is driven with a push-pull stage from the host and if the host enables an external 3 mA pull-up at the SO pin to decrease the rise time of the data. In this mode the SO line on DA9021/22 is able to sink up to 12 mA. In all other respects the high speed mode behaves as the standard/fast mode.

Communication on the 2-wire bus always takes place between two devices, one acting as the master and the other as the slave. The DA9021/22 will only operate as a slave. As opposed to the 4-wire mode the 2-wire interface has direct (linear) access to the whole DA9021/22 register space (except R0/R128). This is achieved by using the MSB of the 2-wire, 8-bit register address as a selector of the register page (this does not modify the page control register R0/R128 that is accessible only in 4-wire mode).

### 12.3.1 2-wire control bus protocol

All data is transmitted across the 2-wire bus in groups of 8 bits. To send a bit the SO line is driven towards the independent state while the SK is LOW (a low on SO indicates a zero bit). Once the SO has settled the SK line is brought HIGH and then LOW. This pulse on SK clocks the SO bit into the receivers shift register.

A two byte serial protocol is used containing one byte for address and one byte for data. Data and address transfer is MSB transmitted first for both read and write operations. All transmission begins with the START condition from the master during the bus is in IDLE state (the bus is free). It is initiated by a high to low transition on the SO line while the SK is in the HIGH state (a STOP condition is indicated by a low to high transition on the SO line while the SK is in the HIGH state).

The 2-wire bus will be monitored by DA9021/22 for a valid SLAVE address whenever the interface is enabled. It responds immediately when it receives its own slave address. These acknowledge is done by pulling the SO line low during the following clock cycle (white blocks marked with "A" in Figure 29 to Figure 33).

The protocol for a register write from master to slave consists of a start condition, a slave address with read/write bit and the 8-bit register address followed by 8 bits of data terminated by a STOP condition (all bytes responded by DA9021/22 with Acknowledge):



Figure 29: Timing of 2-wire START and STOP condition



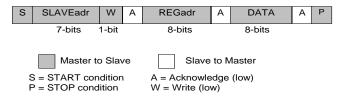



Figure 30: 2-wire byte write (SO/DATA line)

When the host reads data from a register it first has to write access DA9021/22 with the target register address and then read access DA9021/22 with a Repeated START or alternatively a second START condition. After receiving the data the host sends Not Acknowledge and terminates the transmission with a STOP condition:

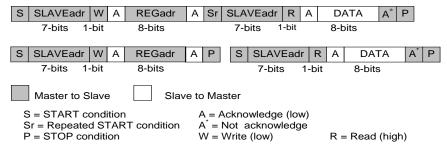



Figure 31: Examples of 2-wire byte read (SO/DATA line)

#### **NOTE**

The slave address after the Repeated START condition must be the same as the previous slave address.

Consecutive (page) write mode is supported if the master sends several data bytes following a slave register address. The 2-wire control block then increments the address pointer to the next 2-wire address, stores the received data and sends an Acknowledge until the master sends the STOP condition.

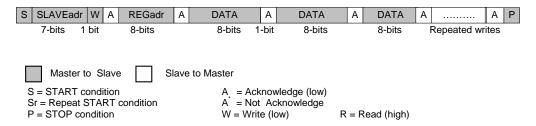



Figure 32: 2-wire page write (SO/DATA line)

An alternate write mode receiving alternated register address and data can be configured to support host repeated write operations that access several but non-consecutive registers.

Data will be stored at the previously received register address:

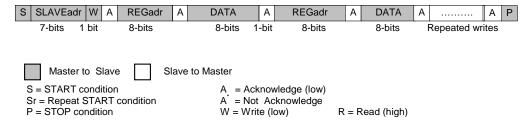



Figure 33: 2-wire repeated write (SO/DATA line)

If a new START or STOP condition occurs within a message, the bus will return to IDLE mode.



### 12.3.2 Alternative high speed 2-wire interface

The high speed 2-wire (HS-2-wire) interface is the alternative serial control bus, which consists of a DATA (data line) and a CLK (clock line) that can be used as an independent control interface for data transactions between DA9021/22 and a second host processor. The DA9021/22 HS-2-wire interface has a configurable 8-bit SLAVE write address (default: 0x92) and a configurable SLAVE read address (default: 0x93).

The interface is enabled if DATA was selected via configuration GPIO14\_PIN. The bus lines have to be pulled HIGH by external pull-up resistors (2 k $\Omega$  to 20 k $\Omega$  range). GPIO15\_TYPE defines the supply rail of the interface (used for input logic levels and the internal pull-up resistors). The controls GPIO15\_PIN and GPIO15\_ MODE are disabled when the interface was enabled via GPIO14\_PIN. Whenever the interface receives a READ or WRITE command that includes a matching slave address it is able to trigger the assertion of an nIRQ including an optional wakeup event (enabled via GPIO14\_ MODE).

#### NOTE

If the nIRQ assertion from interface access is enabled it may by masked as long as the HS-2-wire is in use (this nIRQ cannot be cleared via the HS-2\_wire interface because every interface access will trigger a re-assertion).

With the exception of the interface base address and the optional wakeup, the characteristics of the HS-2-wire interface are identical to the power manager 2-wire interface (see above).

#### **NOTE**

By connecting TP to VDDCORE the DA9021/22 (POWER COMMANDER mode) will load the register default values via the HS 2-wire interface instead of from OTP cells. In this mode the interface will be supplied from VDDCORE (independent to the settings at GPIO15\_TYPE).



## 13 DA9021 operating modes

#### 13.1 ACTIVE mode

A running application is typically in ACTIVE mode. In addition to PMIC core functions (for example LDOCORE, Binary Coded Decimal (BCD) counter and internal oscillator) in ACTIVE mode a set of supplies and peripheral features like the battery charger and GP-ADC are usually enabled. If required in ACTIVE mode the host processor can take over the control of the automatic battery charging block and is able to respond to any faults that have been detected. Status information can be read from the host processor via the power manager bus and DA9021/22 can flag interrupt requests to the host via a dedicated interrupt port (nIRQ). Temperature and voltages inside and outside the DA9021/22 can be monitored and any fault conditions are flagged to the host processor.

#### 13.2 POWERDOWN mode

DA9021/22 is in POWERDOWN mode whenever the power domain SYSTEM is disabled (even partially). This can be achieved when progressing from RESET mode or by returning from ACTIVE mode. A return from ACTIVE mode is initiated by low power mode instructions from the host or occurs as an interim state during an application shutdown to RESET mode.

During POWERDOWN mode the LDOCORE, the bandgap, the nONKEY and the BCD counter are active. Dedicated power supplies can be enabled during POWERDOWN mode if power down voltages have been pre-configured during ACTIVE mode. In addition GPIO-ports, the GP-ADC, battery charger and the control interfaces remain enabled if not disabled via register PD\_DIS.

Disabling blocks during POWERDOWN mode will save quiescent current especially if all blocks are disabled that require an oscillator clock. If the host will no longer communicate during POWERDOWN mode the control interfaces may be temporarily disabled (see controls PM-IF\_PD/HS-2-wire\_PD.). Dedicated power supplies can be enabled in POWER-DOWN mode if power down voltages has been pre-configured during ACTIVE mode.

The internal oscillator (2 MHz) will only run on demand (for example for a running GP-ADC or enabled bucks that are not forced to PFM mode). The digital control logic of disabled features (regulators, bucks, chargers, GP-ADC, and others) will be disconnected from the clock tree by clock gating, so that the device offers an optimised dissipation power in POWERDOWN mode.

Following the next wakeup event all supplies are re-configured with their default voltage values from OTP and the sequencer timers are set to their default OTP values. If the POWERDOWN mode was caused by releasing SYS\_EN the sequencer pointer is located at position 0 allowing default enabling / disabling of supplies (beside LDOCORE).

#### 13.3 RESET mode

DA9021/22 is in RESET mode whenever a complete application reset is required. The RESET mode happens after cold start when progressing from NO-POWER mode or can be forced by the user via a pressed reset switch that is connected to port nSHUTDOWN, a long press of nONKEY (if the RESET feature was enabled) or a long parallel assertion of GPIO14 and GPIO15 (if this RESET feature was enabled), from the host processor by asserting port nSHUTDOWN or via an error detection from DA9021/22.

DA9021/22 error conditions that force a RESET mode:

- An under-voltage detected at VDDOUT (VDDOUT < VDD\_FAULT\_LOWER)</li>
- An internal die over-temperature detected
- An over voltage or over current at the boost

In order to allow the host to determine the reason for the RESET a FAULTLOG register records the cause.

When returning from POWERDOWN mode the RESET mode will be achieved after powering down domain SYSTEM completely and continue towards a state with absolute minimum current consumption, with the only active circuits being LDOCORE, the BCD counter, the band gap and the



VDD\_REF, VBUS, ACC\_ID\_DET and VDDOUT comparators. Except LDO1, if correctly configured, other supplies and blocks on DA9021/22 are automatically disabled to avoid draining the battery. During DA9021/22 RESET mode the host processor can be held in a RESET state via port nRESET which is always asserted to low when DA9021/22 progresses from RESET mode (for example after cold start from NO-POWER mode) and can be asserted (depending on configuration of sequencer step 0) when the sequencer has finished powering down domain SYSTEM (even partially).

Except E\_B\_FAULT and E\_ALARM, all asserted events will automatically be cleared and the DA9021/22 register configuration will be re-loaded from OTP when leaving RESET mode (with the exception of AUTO\_BOOT in case of emergency charging).

#### NOTE

FAULT\_LOG and other non OTP loaded registers, for example the RTC calendar and alarm, will not be changed when leaving RESET mode.

Some RESET conditions such as the SHUTDOWN via register bit, will automatically expire overtemperature. Other conditions like asserting the port nSHUTDOWN need to be released to enable a progress from RESET to POWERDOWN mode. If the RESET was initiated by a hardware reset from user keys or port nSHUTDOWN a 500 ms time out will be inserted before trying to power up again. When the RESET condition has disappeared DA9021/22 requires either a connected good main battery (VDDOUT > VDD\_FAULT\_UPPER) or a detected supply (VBUS > VCH\_THR) that is able to provide enough power to VDDOUT (VDDOUT > VDDOUT MIN) to start-up to POWERDOWN mode.

#### 13.4 NO-POWER mode

DA9021/22 will enter the NO-POWER mode when VDDCORE drops below VPOR\_LOWER (for example during continued discharge of main battery). As long as VDDCORE is now lower than VPOR\_UPPER the core supply LDOCORE, the 32 kHz oscillator and the BCD counter are switched off, an internal power-on-reset (nPOR) is asserted and only the VDDCORE comparator is active and checks for a condition that allows DA9021/22 to turn on again. When DA9021/22 detects either a good main battery or a connected supply charger which rises VDDCORE > VPOR\_UPPER it will reset the BCD counter and FAULT\_LOG register and progress to RESET mode.

#### 13.5 POWER COMMANDER mode

This is a special mode for evaluation and configuration. In POWER COMMANDER mode DA9021/22 is configured to load the control register default values from the HS 2-wire interface instead of from the OTP cells so that un-programmed DA9021 samples will power up and allow a PC running the Power Commander software to load all the configuration registers. POWER COMMANDER mode is enabled by connecting TP to VDDCORE.

In RESET-mode DA9021/22 will do an initial OTP read to setup the trim values. However, if the OTP values loaded into these registers are not as required they can be updated during the subsequent POWER COMMANDER mode programming sequences.

#### **NOTE**

In POWER COMMANDER mode GPI14/15 will be configured for HS-2-wire interface operation (with VDDCORE as the supply) and GPO13 will be configured as an output for nVDD\_FAULT. Any register writes or OTP loads which can change this configuration are ignored until DA9021/22 has exited from POWER COMMANDER mode.

After the initial OTP read has completed, DA9021/22 informs the system that it is waiting for a programming sequence by driving nVDD\_FAULT low. The software running on the PC monitors nVDD\_FAULT and responds by downloading the values into the configuration registers within DA9021/22. nVDD FAULT is automatically released after the release register is loaded.

There are two programming sequences performed in POWER COMMANDER mode. The first takes place between RESET and POWERDOWN mode and the second takes place between POWERDOWN and SYSTEM mode. Two release registers are used support these two programming sequences:



- a write to register R106 will end the first programming sequence
- a write to register R61 will end the second programming sequence

During these programming sequences any registers can be written to in any order The sequence will terminate after the appropriate release register has been written to.

#### NOTE

To correctly configure DA9021/22 registers, R10 to R105 should be programmed during the first sequence and FAULT LOG register (R9) bit VDD\_FAULT has to be cleared by writing a '1'. Registers R14 and R43 to R61 should be programmed during the second sequence.

The host can determine whether DA9021/22 is in the first or second programming sequence by reading the FAULT LOG register. If a read of the FAULT LOG register bit VDD\_FAULT returns a zero, then the DA9021/22 is in the second programming sequence otherwise it is in the first.

After the first programming sequence has been completed DA9021/22 will be in POWERDOWN mode. Progression from this mode is determined by the values programmed for SYS\_EN and AUTO\_BOOT.

If DA9021/22 has been directed to progress from POWERDOWN mode then it will drive pin nVDD\_FAULT low for a second time to request that the software performs the second programming sequence.

Once the second programming sequence has completed, the progress of the power-up sequence will be controlled by the values loaded during the programming sequence.

The programmed configuration can be identified by reading the fuse register CONFIG\_ID.

#### NOTE

During POWER COMMANDER mode the fault detection status bit VDD\_FAULT and the level at the related pin nVDD-FAULT do not match and do not indicate a low voltage level at VDDOUT. An enabled shutdown from the 5 s assertion of GPIO14/15 will be ignored during POWER COMMANDER mode.

### 13.6 Start up from NO POWER mode

#### 13.6.1 Power-On-Reset (nPOR)

To guarantee the correct start-up of DA9021/22 an internal power-on-reset nPOR (active low) is generated for the initial connection of either a supply or a good battery following a phase of not being supplied with sufficient power. To allow DA9021/22 to start up even if the main battery is completely discharged an internal VDDREF rail is used to supply the charger blocks, comparators and the control logic. If no charger is present VDD\_REF is switched to the main battery

While VDDCORE < VPOR\_UPPER the internal nPOR is asserted and DA9021/22 will not switch on (NO-POWER mode). When VDDCORE rises above VPOR\_UPPER the nPOR is negated, LDOCORE will be switched on, the BCD counter and FAULT\_LOG register is reset and DA9021/22 progresses to RESET mode.

When an external charger is detected (rising edge on VBUS\_DET) having no or only a deep discharged main battery connected to DA9021/22 the internal charger, oscillator and bandgap are enabled and the whole OTP trim block is read and stored to the register bank. If the supply voltage is below the charger detection threshold (VCH\_THR) after a debouncing period of tdelay (10 ms to allow for de-bouncing of the input signal and the bandgap reference to settle) the device returns to RESET mode.

If the external charger is still present and the CHG\_ATT comparator flags a minimum of 100 mV head room from charger input VCENTER to VDDOUT, DA9021/22 starts up the charger buck to supply VDDOUT at the default current limit (loaded from OTP) and starts supplying power to VDDOUT, which enables an application start-up also with a flat battery. When VDDOUT rises above VDDOUT\_MIN DA9021/22 enters the POWERDOWN mode. If this does not happen within 128 ms it will return to RESET mode.



From POWERDOWN mode DA9021/22 will continue with powering up supplies if the power domain SYSTEM was asserted via input port (or set via OTP settings) and AUTO\_BOOT was enabled (or a valid wakeup event has happened). The simplified flow diagram (Figure 34) shows the start-up events and an example of a typical initial sequence.

If DA9021/22 causes a RESET from an under voltage detected within 10 s after releasing nRESET (the start-up initiating supply is not strong enough to supply the application) DA9021/22 will assert VDD\_START inside the FAULTLOG register and temporarily disable AUTO\_BOOT for the consecutive start-up (enabling only the battery charger and start waiting for a valid wakeup event).

Only events generated from user inputs (GPIs or nONKEY) trigger a wakeup during this emergency charging but a flashing LED connected to GPIO 10 or 11 can be automatically enabled via control BLINK\_FRQ. AUTO\_BOOT is set back to its default value when the battery voltage VBAT > VCHG\_BAT - VCHG\_DROP.

A similar start-up to POWERDOWN mode will be performed when a pre-charged battery is inserted (VDDOUT>VDD\_FAULT\_UPPER) following a state where DA9021/22 has not been provided with any supply voltage as shown in Figure 37

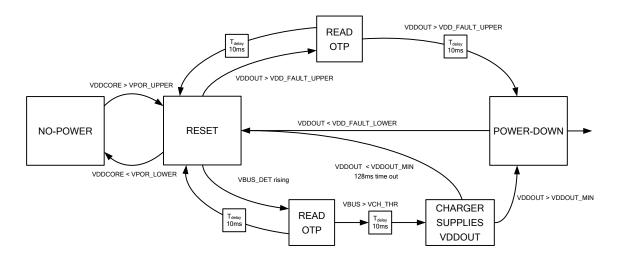



Figure 34: Start-up from NO-POWER to POWERDOWN mode

### 13.6.2 Application wakeup

A valid wakeup event (for example nONKEY, SYS\_EN, RTC-alarm or a trigger from GPIOs) initiates an application power up from POWERDOWN mode. The wakeup from GPIOs (or selected alternative features that use a shared GPI event) has to be enabled via GPIx\_MODE and can be masked in addition with the related nIRQ mask. After a wakeup condition is detected the OTP values for registers R14 and R43 to R61are read. These values re-configure the supplies and the sequencer timer.

If the POWERDOWN mode was reached by progressing from RESET mode the power sequencer can also be started without waiting for a wakeup event if AUTO\_BOOT was asserted. DA9021/22 will assert the EXT\_WAKEUP signal toward the host processor and if the power domains are not preenabled by OTP the host processor has to control the further application start-up (for example via the power domain enable lines). Alternatively DA9021/22 continues stand-alone powering up the OTP enabled domains via the power domain sequencer. A start-up from RESET mode powers up the application automatically only if SYS\_EN is asserted from the host processor or was default set from OTP.



Table 36: Wakeup events

| Signal / Condition                                                       | Wakeup | User<br>event | System event | IRQ |
|--------------------------------------------------------------------------|--------|---------------|--------------|-----|
| Charger attach: E_VBUS_DET                                               | Х      |               | Х            | Х   |
| Charger removal: E_VBUS_REM                                              | Х      |               | Х            | Х   |
| VDDOUT low prewarning: E_VDD_LOW                                         | Х      |               | Х            | Х   |
| RTC alarm: E_ALARM                                                       | Х      |               | Х            | Х   |
| Sequencing finished: E_SEQ_RDY                                           |        |               | Х            | Х   |
| Voltage comparator: E_COMP_1V2                                           | Х      |               | Х            | Х   |
| Pressed On key: E_nONKEY                                                 | Х      | Х             |              | Х   |
| End of battery charging: E_CHG_END                                       | Х      |               | Х            | Х   |
| Battery temperature: E_TBAT                                              |        |               | Х            | Х   |
| Manual ADC result ready: E_ADC_EOM                                       |        |               | Х            | Х   |
| GPIOs: E_GPIx                                                            | Х      | Х             |              | Х   |
| ADC 4, 5, threshold: via GPI01                                           | Х      |               | Х            | Х   |
| SYS_EN, PWR_EN, PWR1_EN (passive to active transition): via GPIO8, 9, 10 | Х      |               | Х            | Х   |
| HS-2-wire interface: via GPIO14                                          | Х      |               | Х            | Х   |

#### 13.6.3 Power supply sequencer

The start-up of DA9021/22 supplies is performed with a sequencer that contains a programmable step timer, a variable ID array of time slot pointers and four predefined pointers (SYSTEM\_END, POWER\_END, MAX\_COUNT and PART\_DOWN). The sequencer is able to control up to 14 IDs (3 buck converters, 5 LDOs, 4 feedback pin level controls, a Wait ID (GPI10) and a POWERDOWN register), which can be grouped in three power domains. The power domains have configurable size and their borders are described by the location pointers SYSTEM\_END, POWER\_END and MAX COUNT.

The lowest level power domain SYSTEM starts at step one and ends at the step that is described by the location pointer SYSTEM\_END. The second level domain POWER starts at the successive step and ends at POWER\_END. The third level domain POWER1 starts at the consecutive step and ends at MAX\_COUNT. The values of pointers SYSTEM\_END, POWER\_END and MAX\_COUNT are predefined in OTP registers and should be configured to be SYSTEM\_END < POWER\_END < MAX\_COUNT.

The domain SYSTEM by can be understood as a basic set of supplies that are mandatory to maintain the application in (at least) a standby/hibernate mode. If enabled via control OTPREAD\_EN all supplies of DA9021/22 and the sequencer timer (registers R14 and R43 to R61) are configured with the default value from OTP before powering up the domain SYSTEM. This will cause a reconfiguration of all supplies that have been powered down with a preset voltage level.

The second level domain POWER includes additional supplies required to power the main application and to set DA9021/22 in to ACTIVE mode.

POWER1 can be understood as a subdomain of POWER that can be used for additional hardware/software initiated control of supply blocks during ACTIVE mode (for example for a subapplication like WLAN or GSM baseband). Supplies in domain POWER and POWER1 can be voltage pre-configured and by that sequentially changed during powering down, but will not be reset to their default values from OTP unless there is a power-up from domain SYSTEM.

### NOTE

Running applications should be configured to ACTIVE mode (domain POWER is up) and pointer POWER\_END has to be at least one time slot higher than SYSTEM\_END.



All buck converters and five LDOs of DA9021/22 have received a unique sequencer ID. The power-up sequence is then defined by an OTP register bank that contains a series of supplies (and other features) which are pointing towards a sequencer time slot. Several supplies can point in to the same time slot and by that will be enabled by the sequencer in parallel. Time slots that have no IDs pointing towards it are dummy steps that insert a configurable time delay (marked as 'D' in Figure 36). Supplies that are not pointing towards a sequencer time slot (with a step number greater than zero and less than MAX\_COUNT) will not be enabled by the power sequencer and have to be controlled individually by the host (via the power manager bus).

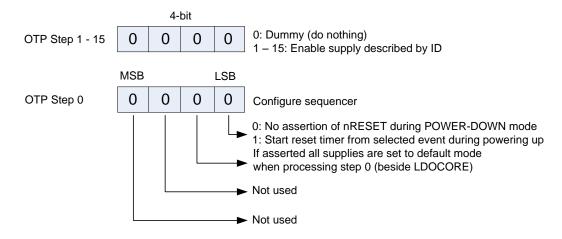



Figure 35: Content of OTP power sequencer register cell

During power-up the sequencer will start at step 0 where the sequencer behaviour is configured. If DEF\_SUPPLY is asserted this includes an optional enabling of supplies (depending on the OTP default settings of the supplies). If SYS\_EN was asserted via port (or OTP) the sequencer will assert the READY signal (if selected for the feedback pin) and continue with step 1 which enables all supplies (features) from the OTP register bank that are pointing towards step 1. The sequencer will progress until it has reached the position of pointer SYSTEM\_END. Now all supplies of the first power domain SYSTEM are enabled and DA9021/22 will release the READY signal and assert the E\_SEQ\_RDY interrupt.

#### **NOTE**

It is recommended that supplies having an asserted ENABLE bit in the OTP are not controlled via IDs of the power sequencer if DEF\_SUPPLY is asserted (IDs of these supplies should point into time slot 0).

Table 37: Power sequencer controlled actions

| Action                            | Sequencer time slot | Comment     |
|-----------------------------------|---------------------|-------------|
| Step 0: Configure power sequencer | ID_0                |             |
| LDO1_EN                           | LDO1_STEP           |             |
| LDO3_EN                           | LDO3_STEP           |             |
| LDO7_EN                           | LDO7_STEP           |             |
| LDO9_EN                           | LDO9_STEP           |             |
| LDO10_EN                          | LDO10_STEP          |             |
| PD_DIS                            | PD_DIS_STEP         |             |
| BCORE_EN                          | BUCKCORE_STEP       |             |
| BPRO_EN                           | BUCKPRO_STEP        | DA9021 only |
| BMEM_EN                           | BUCKMEM_STEP        |             |
| BPERI_EN                          | BUCKPERI_STEP       | DA9021 only |

Datasheet Revision 2.5 17-Feb-2017



| Action                          | Sequencer time slot | Comment |
|---------------------------------|---------------------|---------|
| Assert/Release GP_FB2           | GP_RISE1_STEP       |         |
| Assert/Release GP_FB2           | GP_RISE2_STEP       |         |
| Release/Assert GP_FB2           | GP_FALL1_STEP       |         |
| Release/Assert GP_FB2           | GP_FALL2_STEP       |         |
| Wait for active state at GPI 10 | WAIT_STEP           |         |

#### NOTE

IDs (for example supplies) not controlled by the sequencer should point into step 0.

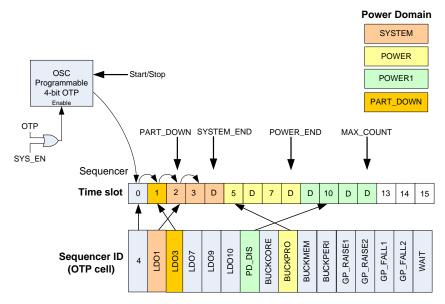



Figure 36: Allocation of supplies (IDs) into to the sequencer time slots

To continue the sequencer checks for PWR\_EN to be asserted (via PWR\_EN port, register write or OTP). When this is available the feedback signal READY will be asserted and supplies of domain POWER will be enabled sequentially. The sequencer stops at step POWER\_END, releases the READY signal, asserts PWR\_UP, asserts the E\_SEQ\_RDY interrupt, starts the ACTIVE mode of DA9021/22 and releases an asserted EXT\_WAKEUP signal.

A third power domain POWER1 can be enabled from PWR1\_EN (asserted via PWR1\_EN port, register write or OTP). It enables all consecutive supplies until step MAX\_COUNT has been reached, asserts PWR1\_UP and asserts the E\_SEQ\_RDY interrupt. The READY signal will be asserted as long as IDs are processed (if enabled). The domain POWER1 offers no dedicated status indicator, but the end of its power-up sequence can be selected to start the RESET timer.

The delay between the steps of a sequence is controlled via a 4-bit OTP programmable timer unit SEQ\_TIME with a default delay of 1285  $\mu$ s per step (minimum 32  $\mu$ s and max. 816 ms). The delay time between individual supplies can be extended by leaving consecutive steps having no IDs pointing to it (dummy supply), which provides an independent delay configured via control SEQ\_DUMMY. The delay timers are configured with their default values from OTP (R43) every time before powering up inside domain SYSTEM.

### NOTE

During entering and leaving a power domain a 32 µs delay will always be inserted.

When DA9021/22 is powering down, the sequencer will disable the supplies in reverse order and timing. Supplies that are configured with a preset value (LDOx\_CONF or BUCKxxx\_CONF bit is set) will not be disabled but configured with their preset voltage when the related time slot/ID is

Datasheet Revision 2.5 17-Feb-2017



processed. If a domain contains at least one supply with an assigned preset, the power domain status indicator (PWR1\_UP, PWR\_UP) will not be released. Otherwise the indicator will be released before the first supply of a power domain is disabled.

If powering down was initiated from releasing PWR\_EN1 the sequencer will stop to modify the supplies where the domain pointer POWER\_END reached. If PWR\_EN was disabled the domain POWER1 will be powered down followed by POWER until the sequencer reaches pointer SYSTEM\_END. If SYS\_EN was disabled the sequencer will process all IDs lower than the actual pointer position down to step 0.

If the low power mode was initiated by asserting the control register DEEP\_SLEEP the sequencer will first power down POWER1 and POWER, then continue with SYSTEM and stop when pointer PART\_DOWN has been reached (PART\_DOWN has to point into domain SYSTEM). If SYS\_EN was disabled the sequencer will process all IDs lower than the actual pointer position down to step 0 (ignoring the PART\_DOWN pointer).

The sequencer asserts the E\_SEQ\_RDY interrupt on reaching the target pointer position. During processing step 0 all supplies (except LDOCORE) can be set to their OTP default state (if bit DEF\_SUPPLY of step 0 is asserted), but the voltage levels are unchanged. Due to the risk of in-rush currents on the battery the default enable of more than a single supply at step 0 is not recommended.

Asserting control register bit SHUTDOWN will first power down to step 0 and then force DA9021/22 to RESET mode. DA9021/22 features (for example the OUT\_32K output buffer or an auto ADC measurement) can be disabled temporarily in POWERDOWN mode via register PD\_DIS. The timing for processing PD\_DIS can be defined by the placement of PD\_DIS inside the sequence. Features asserted in PD\_DIS are re-enabled when PD\_DIS is processed during the next power-up sequence. If the READY signal is enabled, it will be asserted during processing the IDs for powering down.

#### NOTE

Any reconfiguration of supplies from the host in ACTIVE mode will not affect the domain status indicators (SYS\_UP, and PWR\_UP). During sequencing (indicated from DA9021/22 via signal READY or the E\_SEQ\_RDY interrupt) the host is not allowed to send additional power mode transition requests (via power manger interface or power domain enable lines).

A CONDITIONAL mode transition can be achieved using ID WAIT\_STEP. If pointing into the sequence the progress of an initiated mode transition can be synchronised, for example with the state of a host that is indicated via a signal connected to GPI10. Via GPI010\_ MODE a security timeout of 500 ms can be selected, that will trigger a power down to RESET mode (including the assertion of WAIT\_SHUT inside register FAULT\_LOG) if E\_GPI10 was not asserted until then.

#### NOTE

In the case of a shutdown sequence towards RESET mode (or POWERDOWN from fault condition) any waiting from ID WAIT\_STEP will be skipped.

When powering up from NO\_POWER mode ID WAIT\_STEP can alternatively be used as a configurable delay to allow the 32 kHz oscillator to stabilise before the TTL signal is provided at the OUT\_32K output pin (see register WAIT\_CONT).

The configuration at sequencer step 0 (nRES\_MODE) enables the assertion of nRESET at the end of a power down sequence and starts the reset timer during the consecutive powering up.

This is also true for partial POWERDOWN mode, when the sequencer powers down to pointer position PART DOWN.

The reset timer will start to run from the selected event RESET\_EVENT and release the nRESET port after the reset timer has expired (see also description for powering up from NO-POWER/RESET mode.



### NOTE

By connecting TP to VDDCORE DA9021/22 can be configured to load control register default values from the HS 2-wire interface instead from OTP cells. During start-up the power sequencer will then assert pin nVDD\_FAULT (set to zero) and wait until an external device has loaded default values into the control registers R10 to R106 after RESET MODE (if VDD\_FAULT is asserted), R14 and R43 to R61 when leaving POWERDOWN mode (if VDD\_FAULT is not asserted) via HS 2-wire interface. The host has to clear the FAULT\_LOG register after loading R10 to R106. When the last register has been loaded nVDD\_FAULT will be released and the start-up sequence is continued. During this mode the settings of GPI14 and 15 will be ignored (pins are assigned as 2-wire interface supplied from VDDCORE).



# 14 Register page control

**Table 38: Register page control** 

| Register address | Bit | Туре | Label    | Default | Description                                                        |
|------------------|-----|------|----------|---------|--------------------------------------------------------------------|
| R0 to R128       | 6:0 | R    |          | 0000000 |                                                                    |
| PAGE_CON_P0      | 7   | RW   | REG_PAGE | 0       | 0: selects register R1 to R127<br>1: selects register R129 to R255 |

### 14.1 Register page 0

# 14.1.1 Power manager control and monitoring

The STATUS register reports the current value of the various signals at the time that it is read out.

### NOTE

All the status bits have the same polarity as their corresponding signals.

Table 39: STATUS\_A

| Register address | Bit | Туре | Label    | Default | Description                                                               |
|------------------|-----|------|----------|---------|---------------------------------------------------------------------------|
|                  | 0   | R    | nONKEY   | 1       | Current nONKEY state                                                      |
|                  | 4   | R    | VBUS_DET | 0       | VBUS voltage not detected (@ VBUS pin)     VBUS voltage detected          |
| R1 STATUS_A      | 6   | R    | VBUS_SEL | 0       | No valid charger at VBUS (over voltage)     VBUS charger selected         |
|                  | 7   | R    | VDAT_DET | 0       | USB host/hub detected (100 mA)     Dedicated or host/hub charger detected |

Table 40: STATUS\_B

| Register address | Bit | Туре | Label   | Default | Description                                                                                                                         |
|------------------|-----|------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
|                  | 0   | R    | CHG_ATT | 0       | 0: No charger attached (drop from VCENTER to VDDOUT < 100 mV)                                                                       |
|                  |     |      |         |         | 1: Charger attached (drop from VCENTER to VDDOUT > 100 mV)                                                                          |
|                  | 1   | R    | CHG_PRE | 0       | Asserted if charger is in pre-charge mode                                                                                           |
|                  | 2   | R    | CHG_LIM | 0       | 0: Charging as configured                                                                                                           |
|                  |     |      |         |         | Charge current in constant current mode reduced to less than ICHG_THD                                                               |
| R2               | 3   | R    | CHG_END | 0       | 0: Battery charging                                                                                                                 |
| STATUS_B         |     |      |         |         | 1: Battery charging completed                                                                                                       |
|                  |     |      |         |         | cleared automatically when starting charging/re-charging                                                                            |
|                  | 4   | R    | CHG_TO  | 0       | 0: Battery charging timer OK or disabled                                                                                            |
|                  |     |      |         |         | 1: Battery charging timeout caused charging finished cleared automatically when starting charging/re-charging and when loading TCTR |
|                  | 5   | R    | GP_FB2  | 0       | Status of GP_FP2 pin: configured from power sequencer                                                                               |



| Register address | Bit | Туре | Label      | Default | Description                                                         |
|------------------|-----|------|------------|---------|---------------------------------------------------------------------|
|                  | 6   | R    | SEQUENCING | 0       | Sequencer is idle     Sequencer is processing IDs                   |
|                  | 7   | R    | COMP_DET   | 0       | 0: Comparator at ADCIN5 (1.2 V) not asserted 1: Comparator asserted |

Table 41: STATUS\_C

| Register address | BIT | TYPE | LABEL | DEFAUL<br>T | DESCRIPTION                                                               |
|------------------|-----|------|-------|-------------|---------------------------------------------------------------------------|
| R3               | 0   | R    | GPI0  | 0           | GPI0 level or ADCIN4 threshold indicator ('1' when overriding high limit) |
| STATUS_C         | 1   | R    | GPI1  | 0           | GPI1 level or ADCIN5 threshold indicator ('1' when overriding high limit) |

Table 42: STATUS D

| Register address | Bit | Туре | Label | Default | Description                  |
|------------------|-----|------|-------|---------|------------------------------|
| -                | 0   | R    | GPI8  | 0       | GPI8/SYS_EN level            |
|                  | 1   | R    | GPI9  | 0       | GPI9/PWR_EN level            |
|                  | 2   | R    | GPI10 | 0       | GPI10/PWR1_EN level          |
| R4<br>STATUS_D   | 4   | R    | GPI12 | 0       | GPI12/EXT_WAKEUP/READY level |
| 31A103_D         | 5   | R    | GPI13 | 0       | GPI13 level                  |
|                  | 6   | R    | GPI14 | 0       | GPI14 level                  |
|                  | 7   | R    | GPI15 | 0       | GPI15 level                  |

The EVENT registers hold information about events that have occurred in DA9021/22. Events are triggered by a change in the status registers that contains the status of monitored signals. When an EVENT bit is set in the event register the nIRQ signal is asserted (unless the nIRQ is masked by a bit in the IRQ mask register). The nIRQ is also masked during the power-up sequence and will not be released until the event registers have been cleared.

The IRQ triggering event register is cleared from the host by writing a byte containing a '1' at the bit to be reset (bits written containing a '0' will leave the related event register bits unchanged thus avoiding accidentally clearing events that occur after the initial event register read). New events that occur during clearing will be delayed before they are passed to the event register, ensuring that the host controller does not miss them.

Table 43: EVENT\_A

| Register address | Bit | Туре | Label      | Default | Description                                        |
|------------------|-----|------|------------|---------|----------------------------------------------------|
|                  | 1   | R    | E_VBUS_DET | 0       | VBUS 4.4 V detection caused event                  |
| R5               | 3   | R    | E_VBUS_REM | 0       | VBUS removal caused event                          |
|                  | 4   | R    | E_VDD_LOW  | 0       | VDDOUT less than VDDOUT_MON threshold caused event |
| EVENT_A          | 5   | R    | E_ALARM    | 0       | RTC alarm caused event                             |
|                  | 6   | R    | E_SEQ_RDY  | 0       | Sequencer reached stop position caused event       |
|                  | 7   | R    | E_COMP_1V2 | 0       | 1.2 V comparator caused event                      |



# Table 44: EVENT\_B

| Register address | Bit | Туре | Label     | Default | Description                                     |
|------------------|-----|------|-----------|---------|-------------------------------------------------|
| R6<br>EVENT_B    | 0   | R    | E_nONKEY  | 0       | nONKEY caused event                             |
|                  | 3   | R    | E_CHG_END | 0       | Battery charging complete caused event          |
|                  | 4   | R    | E_TBAT    | 0       | Battery over/ under temp caused event           |
|                  | 5   | R    | E_ADC_EOM | 0       | ADC manual conversion result ready caused event |

### Table 45: EVENT\_C

| Register address | Bit | Туре | Label  | Default | Description                                                                                          |
|------------------|-----|------|--------|---------|------------------------------------------------------------------------------------------------------|
| R7               | 0   | R    | E_GPI0 | 0       | GPI event according to active state setting/<br>ADCIN4 high / low threshold exceeded<br>caused event |
| EVENT_C          | 1   | R    | E_GPI1 | 0       | GPI event according to active state setting/<br>ADCIN5 high / low threshold exceeded<br>caused event |

### Table 46: EVENT\_D

| Register address | BIT | TYPE | LABEL   | DEFAULT | DESCRIPTION                                                                                       |
|------------------|-----|------|---------|---------|---------------------------------------------------------------------------------------------------|
|                  | 0   | R    | E_GPI8  | 0       | GPI event according to active state setting/SYS_EN assertion caused event                         |
|                  | 1   | R    | E_GPI9  | 0       | GPI event according to active state setting/PWR_EN assertion caused event                         |
| R8               | 2   | R    | E_GPI10 | 0       | GPI event according to active state setting/PWR1_EN assertion caused event                        |
| EVENT_D          | 4   | R    | E_GPI12 | 0       | GPI event according to active state setting                                                       |
|                  | 5   | R    | E_GPI13 | 0       | GPI event according to active state setting                                                       |
|                  | 6   | R    | E_GPI14 | 0       | GPI event according to active state setting/Event caused from host addressing HS-2-wire interface |
|                  | 7   | R    | E_GPI15 | 0       | GPI event according to active state setting                                                       |



The nIRQ line will be released only when all events have been cleared from the host processor by writing a '1' to each asserted event bit (to prohibit missing events it is recommended to clear event bits individually).

Table 47: FAULT\_LOG

| Register address | Bit | Туре | Label     | Default | Description                                                                 |
|------------------|-----|------|-----------|---------|-----------------------------------------------------------------------------|
|                  | 0   | R    |           |         |                                                                             |
|                  | 1   | R    | VDD_FAULT | 1       | Power down by VDDOUT under voltage detect                                   |
|                  | 2   | R    | VDD_START | 0       | Power down by VDDOUT under voltage detect within 10 s from releasing nRESET |
| R9               | 3   | R    | TEMP_OVER | 0       | Junction over temperature detected                                          |
| FAULT_LOG        | 4   | R    |           |         |                                                                             |
|                  | 5   | R    | KEY_SHUT  | 0       | Power down by a long press of the nONKEY or GPI14 and GPI15 in parallel     |
|                  | 6   | R    | nSD_SHUT  | 0       | Power down by assertion of port nSHUTDOWN                                   |
|                  | 7   | R    | WAIT_SHUT | 0       | Power down by time out of ID WAIT_STEP                                      |

### Table 48: IRQ\_MASK\_A

| Register address | Bit | Туре | Label      | Default | Description                                      |
|------------------|-----|------|------------|---------|--------------------------------------------------|
|                  | 0   | R/W  |            | 1       | RESERVED                                         |
|                  | 1   | R/W  | M_VBUS_VLD | 0       | Mask VBUS 4.4 V detection caused nIRQ            |
|                  | 2   | R/W  |            | 1       | RESERVED                                         |
| R10              | 3   | R/W  | M_VBUS_REM | 0       | Mask VBUS removal caused nIRQ                    |
| IRQ_MASK_A       | 4   | R/W  | M_VDD_LOW  | 0       | Mask VDDOUT low caused nIRQ                      |
|                  | 5   | R/W  | M_ALARM    | 0       | Mask RTC alarm caused nIRQ                       |
|                  | 6   | R/W  | M_SEQ_RDY  | 0       | Mask Sequencer reached stop position caused nIRQ |
|                  | 7   | R/W  | M_COMP_1V2 | 0       | Mask 1.2 V comparator caused nIRQ                |

### Table 49: IRQ\_MASK\_B

| Register address  | Bit | Туре | Label     | Default | Description                                |
|-------------------|-----|------|-----------|---------|--------------------------------------------|
|                   | 0   | R/W  | M_nONKEY  | 0       | Mask nONKEY caused nIRQ                    |
|                   | 1   | R/W  |           | 1       | RESERVED                                   |
|                   | 2   | R/W  |           | 1       | RESERVED                                   |
| R11<br>IRQ_MASK_B | 3   | R/W  | M_CHG_END | 0       | Mask battery charging complete caused nIRQ |
|                   | 4   | R/W  | M_TBAT    | 0       | Mask battery over / under temp caused nIRQ |
|                   | 5   | R/W  | M_ADC_EOM | 0       | Mask ADC manual conversion result          |



| Register address | Bit | Туре | Label | Default | Description       |
|------------------|-----|------|-------|---------|-------------------|
|                  |     |      |       |         | ready caused nIRQ |
|                  | 6   | R/W  |       | 1       | RESERVED          |
|                  | 7   | R/W  |       | 1       | RESERVED          |

### Table 50: IRQ\_MASK\_C

| Register address | Bit | Туре | Label  | Default | Descrition                                                                                         |
|------------------|-----|------|--------|---------|----------------------------------------------------------------------------------------------------|
|                  | 0   | R/W  | M_GPI0 | 0       | Mask GPI caused/ ADCIN4 high / low threshold exceeded caused nIRQ                                  |
|                  | 1   | R/W  | M_GPI1 | 0       | Mask GPI caused/ ADCIN5 high / low threshold exceeded caused nIRQ, assert for LDO hardware control |
| R12              | 2   | R/W  |        | 1       | RESERVED                                                                                           |
| IRQ_MASK_C       | 3   | R/W  |        | 1       | RESERVED                                                                                           |
|                  | 4   | R/W  |        | 1       | RESERVED                                                                                           |
|                  | 5   | R/W  |        | 1       | RESERVED                                                                                           |
|                  | 6   | R/W  |        | 1       | RESERVED                                                                                           |
|                  | 7   | R/W  |        | 1       | RESERVED                                                                                           |

### Table 51: IRQ\_MASK\_D

| Register address | Bit | Туре | Label   | Default | Description                                           |
|------------------|-----|------|---------|---------|-------------------------------------------------------|
|                  | 0   | R/W  | M_GPI8  | 0       | Mask GPI/SYS_EN caused nIRQ                           |
|                  | 1   | R/W  | M_GPI9  | 0       | Mask GPI/PWR_EN caused nIRQ                           |
|                  | 2   | R/W  | M_GPI10 | 0       | Mask GPI/PWR1_EN caused nIRQ                          |
| R13              | 3   | R/W  |         | 1       | RESERVED                                              |
| IRQ_MASK_D       | 4   | R/W  | M_GPI12 | 0       | Mask GPI caused nIRQ, assert for LDO hardware control |
|                  | 5   | R/W  | M_GPI13 | 0       | Mask GPI caused nIRQ                                  |
|                  | 6   | R/W  | M_GPI14 | 0       | Mask GPI/HS-2-wire caused nIRQ                        |
|                  | 7   | R/W  | M_GPI15 | 0       | Mask GPI caused nIRQ                                  |

### Table 52: CONTROL\_A

| Register address | Bit | Туре | Label            | Default | Description                                                                                                                                                      |
|------------------|-----|------|------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R14              | 0   | R/W  | SYS_EN<br>Note 1 | 1       | Target status of power domain<br>SYSTEM:<br>state of GPI8 (OTP default ignored) or<br>configuration from OTP/PM interface<br>(depended on setting at GPIO_8_PIN) |
| CONTROL_A        | 1   | R/W  | PWR_EN<br>Note 2 | 1       | Target status of power domain POWER: state of GPI9 (OTP default ignored) or configuration from OTP/PM interface (depended on setting at GPIO_9_PIN)              |



| Register address | Bit | Туре | Label             | Default | Description                                                                                                                                            |
|------------------|-----|------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 2   | R/W  | PWR1_EN<br>Note 3 | 0       | Target status of power domain POWER1: state of GPI10 (OTP default ignored) or configuration from OTP/PM interface (depended on setting at GPIO_10_PIN) |
|                  | 4   | R/W  | PM_I_V            | 0       | nONKEY, nSHUTDOWN, SYS_EN, PWR_EN, PWR1_EN are supplied from: 0: VDDCORE 1: VDD_IO                                                                     |
|                  | 6   | R/W  | PM_O_TYPE         | 0       | nRESET, nIRQ output are: 0: Push-pull 1: Open drain                                                                                                    |
|                  | 7   | R/W  | GPI_V             | 0       | GPIs (not configured as PM control inputs) are supplied from: 0: VDDCORE 1: VDD_IO                                                                     |

Note 1 SYS\_EN hardware control can be configured as high or low active via GPIO\_8\_TYPE

Note 2 PWR\_EN hardware control can be configured as high or low active via GPIO\_9\_TYPE

Note 3 PWR1\_EN hardware control can be configured as high or low active via GPIO\_10\_TYPE

Table 53: CONTROL\_B

| Register address | Bit | Туре | Label      | Default | Description                                                                                                                                                                    |
|------------------|-----|------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 0   | R/W  | BUCK_MERGE | 0       | Has to be set if the outputs of BUCKCORE and BUCKPRO are merged towards a single coil; the control from BUCKPRO registers is disabled                                          |
|                  | 1   | R/W  | ACT_DIODE  | 0       | Battery provides power  0: through internal active diode path (mandatory, if no external FET connected!)  1: through internal active diode and external power FET              |
| R15<br>CONTROL_B | 2   | R/W  | AUTO_BOOT  | 1       | O: Start-up of power sequencer after progressing from RESET mode requires a valid wakeup event  1: PMIC automatically starts power sequencer after progressing from RESET mode |
|                  | 3   | R/W  | OTPREAD_EN | 1       | O: OTP read after POWERDOWN mode disabled     Power supplies are configured with OTP values when leaving POWERDOWN mode                                                        |
|                  | 5   | R/W  | WRITE_MODE | 1       | 2-wire multiple write mode (setting used for both 2-wire interfaces) 0: Page Write mode 1: Repeated Write mode                                                                 |
|                  | 6   | R/W  | DEEP_SLEEP | 0       | If set to '1' DA9021/22 goes to deep sleep mode (sequencer stops at pointer                                                                                                    |



| Register address | Bit | Туре | Label    | Default | Description                                                                                                                      |
|------------------|-----|------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------|
|                  |     |      |          |         | PART_DOWN). The bit is cleared back to '0' automatically before powering up from POWERDOWN mode                                  |
|                  | 7   | R/W  | SHUTDOWN | 0       | If set to '1' the sequencer powers down to RESET mode The bit is cleared back to '0' automatically before leaving the RESET mode |

# Table 54: CONTROL\_C

| Register address | Bit | Туре | Label      | Default | Description                                                                                                                                                                             |
|------------------|-----|------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R16<br>CONTROL_C | 0   | R/W  | PM_FB1_PIN | 0       | 0: Feedback pin indicates EXT_WAKEUP events (active high)  1: Feedback pin is used as READY indicator, signalling ongoing power mode transitions (power sequencer and DVC) (active low) |
|                  | 1   | R/W  | PM_FB2_PIN | 0       | 0: Feedback pin indicates the status of domain POWER (active high PWR_UP)     1: Feedback pin is used as a configurable GP_FB indicator, that is asserted from the power sequencer      |
|                  | 4:2 | R/W  | DEBOUNCING | 001     | GPI, nONKEY and nSHUTDOWN debounce time 000: no debounce time 001: 10.24 ms 010: 20.48 ms 011: 40.96 ms 100: 102.4 ms 101: 1024 ms 110: 2048 ms 111: 5120 ms                            |
|                  | 6:5 | R/W  | BLINK_FRQ  | 11      | GPO10/GPO11 flashing frequency 00: no blinking 01: every second 10: every two seconds 11: every two seconds enabled during PRE-CHARGE mode and emergency charging                       |
|                  | 7   | R/W  | BLINK_DUR  | 0       | GPO10/GPO11 flashing on-time<br>0:10 ms<br>1:40 ms                                                                                                                                      |



Table 55: CONTROL\_D

| Register address | Bit | Туре     | Label       | Default | Description                                                                                              |
|------------------|-----|----------|-------------|---------|----------------------------------------------------------------------------------------------------------|
| R17<br>CONTROL_D | 2:0 |          |             |         |                                                                                                          |
|                  | 4   | R/W      | nONKEY_SD   | 0       | Disables shutdown via nONKEY     Enables shutdown via nONKEY                                             |
|                  | 5   | R/W      | GPI14_15_SD | 0       | 0: Disables shutdown via parallel assertion of GPI14 and GPI15     1: Enables shutdown via GPI14 & GPI15 |
|                  | 6   | Reserved |             | 0       |                                                                                                          |

### Table 56: PD\_DIS

| Register address | Bit | Туре | Label        | Default | Description                                                                                                                                                                                                          |
|------------------|-----|------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R18<br>PD_DIS    | 0   | R/W  | GPIO_PD      | 0       | 0: GPIO extender enabled during POWERDOWN                                                                                                                                                                            |
|                  |     |      |              |         | 1: Auto-Disable of features configured as GPIO pins during POWERDOWN mode and force the detection of a pending Active state on GPIs by reenabling the pin through a passive state of the related GPI status register |
|                  | 1   | R/W  | GP-ADC_PD    | 1       | 0: ADC/TSI measurements continue during POWERDOWN as configured                                                                                                                                                      |
|                  |     |      |              |         | 1: Auto-Disable auto measurements on A4, A5, A6, A7(TSI) and manual measurement on all channels during POWERDOWN mode; if no auto measurements for charging and on A0 are required switch off the ADC completely     |
|                  | 2   | R/W  | PM-IF_PD     | 1       | 0: Power manager interface not disabled during POWERDOWN                                                                                                                                                             |
|                  |     |      |              |         | Auto-Disable of Power manager interface during POWERDOWN mode                                                                                                                                                        |
|                  | 3   | R/W  | HS-2-wire_PD | 1       | 0: HS-2-wire not disabled during POWERDOWN                                                                                                                                                                           |
|                  |     |      |              |         | Auto-Disable of HS-2-wire interface during POWERDOWN mode                                                                                                                                                            |
|                  | 4   | R/W  | CHG_PD       | 0       | 0: Enables battery charging during POWERDOWN                                                                                                                                                                         |
|                  |     |      |              |         | Auto-Disable battery charging during POWERDOWN mode                                                                                                                                                                  |
|                  | 5   | R/W  |              | 1       | RESERVED                                                                                                                                                                                                             |
|                  | 6   | R/W  | OUT_32K_PD   | 1       | 0: Enables OUT_32K during POWERDOWN                                                                                                                                                                                  |
|                  |     |      |              |         | 1: Auto-Disable OUT_32K output buffer during POWERDOWN mode and auto-enable during power-up from NO-POWER mode when executing this ID                                                                                |
|                  | 7   | R/W  | PM-CONT_PD   | 0       | 0: SYS_EN, PWR_EN, PWR1_EN enabled during POWERDOWN 1: Auto-Disable of SYS_EN, PWR_EN                                                                                                                                |



| Register address | Bit | Туре | Label | Default | Description                                                                                                                                                           |
|------------------|-----|------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |     |      |       |         | and PWR1_EN during POWERDOWN mode and force the detection of a pending Active state by re-enabling the pin through a passive state of the related GPI status register |

# **Table 57: INTERFACE**

| Register address | Bit | Туре | Label        | Default | Description                                                                                                                                                                                                                                                                |
|------------------|-----|------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 0   | R37  | IF_TYPE      | 0       | Power manager interface is 4-wire     Power manager interface is 2-wire                                                                                                                                                                                                    |
|                  | 1   | R    | CPOL         | 0       | <ul><li>4-wire interface clock polarity</li><li>0: SK is low during idle</li><li>1: SK is high during idle</li></ul>                                                                                                                                                       |
|                  | 2   | R    | СРНА         | 0       | 4-wire interface clock phase (see Table 34: 4-wire clock configurations)                                                                                                                                                                                                   |
|                  | 3   | R    | R/W_POL      | 1       | 4-wire: Read/Write bit polarity 0: Host indicates reading access via R/W bit = '0' 1: Host indicates reading access via R/W bit = '1'                                                                                                                                      |
| R19<br>INTERFACE | 4   | R    | nCS_POL      | 1       | <ul><li>4-wire chip select polarity</li><li>0: nCS is low active</li><li>1: nCS is high active</li></ul>                                                                                                                                                                   |
|                  | 7:5 | R    | IF_BASE_ADDR | 100     | 3 MSB of 2-wire control interfaces base address XXX10000 10010000 = 0x90 write address of PM 2-wire interface 10010001 = 0x91 read address of PM 2-wire interface 10010010 = 0x92 write address of HS-2-wire interface 10010011 = 0x93 read address of HS-2-wire interface |



# Table 58: RESET

| Register address | Bit | Туре | Label       | Default | Description                   |
|------------------|-----|------|-------------|---------|-------------------------------|
|                  | 5:0 | R/W  | RESET_TIMER | 000101  | 000000: RESET disabled        |
|                  |     |      |             |         | 000001: 1.024 ms              |
|                  |     |      |             |         | 000010: 2.048 ms              |
|                  |     |      |             |         | 000011: 3.072 ms              |
|                  |     |      |             |         | 000100: 4.096 ms              |
|                  |     |      |             |         | 000101: 5.120 ms              |
|                  |     |      |             |         |                               |
|                  |     |      |             |         | 011110: 30.720 ms             |
|                  |     |      |             |         | 011111: 31.744 ms             |
| Dao              |     |      |             |         | 100000: 32.768 ms             |
| R20<br>RESET     |     |      |             |         | 100001: 65.536 ms             |
| RESET            |     |      |             |         | 100010: 98.304 ms             |
|                  |     |      |             |         |                               |
|                  |     |      |             |         | 111101: 983.040 ms            |
|                  |     |      |             |         | 111110: 1015.808 ms           |
|                  |     |      |             |         | 111111: 1048.576 ms           |
|                  | 7:6 | R/W  | RESET_EVENT | 01      | RESET timer started by        |
|                  |     |      |             |         | 00: EXT_WAKEUP                |
|                  |     |      |             |         | 01: SYS_UP                    |
|                  |     |      |             |         | 10: PWR_UP                    |
|                  |     |      |             |         | 11: PWR1_UP (internal signal) |



#### 15 GPIO Extender

The DA9021/22 includes a GPIO extender that offers VDDOUT-tolerant (5.5 V max) general purpose input/output pins; each controlled by registers from the host.

#### NOTE

The input voltage has to be lower than the VDD\_IO level

The GPIO ports are pin-shared with ports from GP-ADC, HS-2-wire interface and signals from the power manager and can be individually assigned. Configuration settings and events from several GPIx ports are shared with alternative features. If, for example, ADCIN5 was selected overriding the configured thresholds this will trigger a GPI1 event that generates a maskable GPI1 interrupt. The GPI active HIGHLOW setting from GPIOx\_TYPE register and the selection of supply rail (and pull-up resistor) is also valid for the alternative port features selected via GPIOx\_PIN (for example SYS\_EN, PWR\_EN and PWR1\_EN). The same applies to GPIOx\_MODE to enable triggering a wakeup event (ADCIN4, ADCIN5, SYS\_EN, PWR\_EN, PWR1\_EN, HS-2-wire interface) for the alternative features.

In ACTIVE and POWERDOWN modes the GPIO extender can continuously monitor the level of ports that are selected as general purpose inputs. GPIs are supplied from the internal rail VDDCORE or VDD\_IO and can be configured to trigger events in active high or active low mode. The input signals can be debounced or directly change the state of the assigned status register GPIx to high or low. Whenever the status has changed to its configured active state (edge sensitive) the assigned event register is set and the nIRQ signal is asserted (unless this nIRQ is masked inside the nIRQMASK register).

GPI0 13 will generate a system wakeup if debouncing is enabled. In debouncing off mode GPI 12 enables/disables LDO9, the minimum enable time is 100  $\mu$ s. Events on GPI10 can be used to control the progress of the power sequencer. Processing ID WAIT\_STEP will cause the sequencer to wait until GPI 10 changes into active state.

If defined as an output the GPO can be configured as open-drain or push-pull. The supply rail is VDD\_IO. When selecting VDD\_IO in open-drain mode, there is an internal pull-up resistor against this rail, otherwise an external pull-up resistor towards the target voltage level is required. The output state will be assigned as configured by the GPIO register bit GPIOx\_MODE.

GPO 10 is a high power GPO port, where the maximum sink current is rated to be 15 mA and the maximum source current is 4 mA. This enables driving LEDs with optional RTC timer controlled flashing.

GPO 14 and 15 are high power GPO ports able to sink up to 30 mA and include an optional PWM control. The PWM control can also be made to dim the brightness between its current value and a new value at a rate of 32 ms per step.



# 15.1 GPIO control

Table 59: GPIO0 to 1

| Register address | Bit | Туре | Label       | Default | Description                                                                                                                                                                                                                                                           |
|------------------|-----|------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 1:0 | R/W  | GPIO0_PIN   | 00      | PIN assigned to 00: ADCIN4 01: GPI 10: GPO (Open drain) 11: GPO (Push-pull)                                                                                                                                                                                           |
|                  | 2   | R/W  | GPIO0_TYPE  | 0       | O: GPI: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode  1: GPI: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode                                                                                                   |
|                  | 3   | R/W  | GPIO0_ MODE | 1       | O: GPI/ADCIN4: debouncing off GPO: Sets output to low level 1: GPI/ADCIN4: debouncing on and generate wakeup GPO: Sets output to high level                                                                                                                           |
| R21<br>GPIO_0-1  | 5:4 | R/W  | GPIO1_PIN   | 00      | PIN assigned to 00: ADCIN5/1.2 V comparator 01: GPI (LDO4 hardware control) 10: GPO (open drain) 11: GPO (push-pull)                                                                                                                                                  |
|                  | 6   | R/W  | GPIO1_TYPE  | 0       | 0: GPI: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode  1: GPI: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode                                                                                                   |
|                  | 7   | R/W  | GPIO1_ MODE | 1       | O: GPI/ADCIN5: debouncing off, Set LDO4_EN when GPI transfers to active state (reset when GPI gets to passive state) GPO: Sets output to low level 1: GPI: debouncing on, no LDO4_EN control ADCIN5: debouncing on and generate wakeup GPO: Sets output to high level |



# Table 60: RESERVED

| Register address | Bit | Туре | Label | Default  | Description |
|------------------|-----|------|-------|----------|-------------|
| R22, R23, R24    | 7:0 | R/W  |       | 11101110 | RESERVED    |

# Table 61: GPIO8 to 9

| Register address | Bit | Туре | Label       | Default | Description                                                                                                                                                                      |
|------------------|-----|------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 1:0 | R/W  | GPIO8_PIN   | 01      | PIN and status register bit assigned to 00: SYS_EN (requires GPIO8_ MODE = '1') 01: GPI 10: GPO (Open drain) 11: GPO (Push-pull)                                                 |
|                  | 2   | R/W  | GPIO8_TYPE  | 0       | 0: GPI/SYS_EN: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode 1: GPI/SYS_EN: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode |
| R25              | 3   | R/W  | GPIO8_ MODE | 1       | O: GPI: debouncing off GPO: Sets output to low level 1: GPI/SYS_EN: debouncing on and generate wakeup GPO: Sets output to high level                                             |
| GPIO_8-9         | 5:4 | R/W  | GPIO9_PIN   | 01      | PIN and status register bit assigned to 00: PWR_EN (requires GPIO9_ MODE = '1') 01: GPI 10: GPO (Open drain) 11: GPO (Push-pull)                                                 |
|                  | 6   | R/W  | GPIO9_TYPE  | 0       | 0: GPI/PWR_EN: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode 1: GPI/PWR_EN: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode |
|                  | 7   | R/W  | GPIO9_ MODE | 1       | O: GPI: debouncing off GPO: Sets output to low level 1: GPI/PWR_EN debouncing on and generate wakeup GPO: Sets output to high level                                              |



Table 62: GPIO10 to 11

| Register          | Bit | Туре | Label        | Default | Description                                                                                                                                                                                                                                                   |
|-------------------|-----|------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 1:0 | R/W  | GPIO10_PIN   | 01      | PIN and status register bit assigned to 00 : PWR1_EN (requires GPIO10_ MODE = '1') 01 : GPI 10: GPO (Open drain) 11: GPO (Push-pull)                                                                                                                          |
| R26<br>GPIO_10-11 | 2   | R/W  | GPIO10_TYPE  | 0       | 0: GPI/PWR1_EN: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode 1: GPI/PWR1_EN: active high GPO: blinking from RTC counter, supplied from VDD_IO/ external pull-up in open-drain mode                                                |
|                   | 3   | R/W  | GPIO10_ MODE | 1       | O: GPI: debouncing off GPO: Sets output to low level (active low for blinking) Note 1  1: GPI/PWR1_EN: debouncing on and generate wakeup, time out from processing ID WAIT_STEP after 500 ms GPO: Sets output to high level (active high for blinking) Note 1 |
|                   | 7:4 | R/W  |              | 1110    | RESERVED                                                                                                                                                                                                                                                      |

Note 1 Active low/high selection available from BC silicon

**Table 63: GPIO12 to 13** 

| Register address  | Bit | Туре | Label       | Default | Description                                                                                                                                                                                                          |
|-------------------|-----|------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R27<br>GPIO 12-13 | 1:0 | R/W  | GPIO12_PIN  | 11      | PIN and status register bit assigned to 00: GP_FB1 (EXT_WAKEUP/READY) 01: GPI (LDO9 hardware control) 10: GPO (Open drain) 11: GPO (Push-pull)                                                                       |
|                   | 2   | R/W  | GPIO12_TYPE | 0       | 0: GPI: active low GPO/GP_FB1: supplied from VDD_IO/internal pull-up for open-drain 1: GPI: active high GPO/GP_FB1: supplied from VDD_IO/external pull-up in open-drain mode                                         |
|                   | 3   | R/W  | GPIO12_MODE | 0       | O: GPI: debouncing off, Set LDO9_EN when GPI transfers to active state (reset when GPI gets to passive state) GPO: Sets output to low level 1: GPI: debouncing on, no LDO9_EN control GPO: Sets output to high level |
|                   | 5:4 | R/W  | GPIO13_PIN  | 00      | PIN assigned to 00: nVDD_FAULT 01: GPI                                                                                                                                                                               |



| Register address | Bit | Туре | Label        | Default | Description                                                              |
|------------------|-----|------|--------------|---------|--------------------------------------------------------------------------|
|                  |     |      |              |         | 10: GPO (Open drain)                                                     |
|                  |     |      |              |         | 11: GPO (Push-pull)                                                      |
|                  | 6   | R/W  | GPIO13_TYPE  | 0       | 0: GPI: active low                                                       |
|                  |     |      |              |         | GPO/nVDD_FAULT: supplied from VDD_IO/internal pull-up for open-drain     |
|                  |     |      |              |         | 1: GPI: active high                                                      |
|                  |     |      |              |         | GPO/nVDD_FAULT: supplied from VDD_IO/external pull-up in open-drain mode |
|                  | 7   | R/W  | GPIO13_ MODE | 0       | 0: GPI: debouncing off                                                   |
|                  |     |      |              |         | GPO: Sets output to low level                                            |
|                  |     |      |              |         | 1: GPI: debouncing on and generate wakeup                                |
|                  |     |      |              |         | GPO: Sets output to high level                                           |

# **Table 64: GPIO14 to 15**

| Register address  | Bit | Туре | Label        | Default | Description                                                                                                                                                                                                                                                              |
|-------------------|-----|------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 1:0 | R/W  | GPIO14_PIN   | 11      | PIN assigned to 00: DATA (assigns GPIO15_PIN to CLK) 01: GPI 10: GPO (Open drain, PWM control) 11: GPO (Push-pull)                                                                                                                                                       |
|                   | 2   | R/W  | GPIO14_TYPE  | 0       | O: GPI: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode  1: GPI: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode                                                                                                      |
| R28<br>GPIO_14-15 | 3   | R/W  | GPIO14_ MODE | 0       | O: GPI: debouncing off, no wakeup HS-2-wire: no wakeup GPO: Sets output to low level (active low for blinking) 1: GPI:debouncing on and generate wakeup HS-2-wire: generate wakeup when interface was accessed GPO: Sets output to high level (active high for blinking) |
|                   | 5:4 | R/W  | GPIO15_PIN   | 11      | PIN assigned to 00: CLK (see GPIO14_PIN) 01: GPI 10: GPO (Open drain, PWM control) 11: GPO (Push-pull)                                                                                                                                                                   |



| Register address | Bit | Туре | Label        | Default | Description                                                                                                                                                                                                                           |
|------------------|-----|------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 6   | R/W  | GPIO15_TYPE  | 0       | 0: GPI: active low GPO: supplied from VDD_IO/internal pull-up in open-drain mode DATA/CLK supplied from VDD_IO (Note 1): GPI: active high GPO: supplied from VDD_IO/external pull-up in open-drain mode DATA/CLK supplied from VDD_IO |
|                  | 7   | R/W  | GPIO15_ MODE | 0       | 0: GPI: debouncing off GPO: Sets output to low level (active low for blinking) Note 2 1: GPI: debouncing on and generate wakeup GPO: Sets output to high level (active high for blinking) Note 2                                      |

Note 1 In POWER COMMANDER mode the HS-2-wire interface is always supplied from VDDCORE

Note 2 Active low/high selection available from BC silicon



# 16 Power supply sequencer

The start-up of DA9021/22 supplies is performed with a sequencer. The sequencer is able to control up to 14 IDs (3 buck converter, 5 LDOs, 4 feedback pin level controls, a Wait ID and a POWERDOWN register), which can be grouped in three power domains. The power sequences for each domain have configurable size.

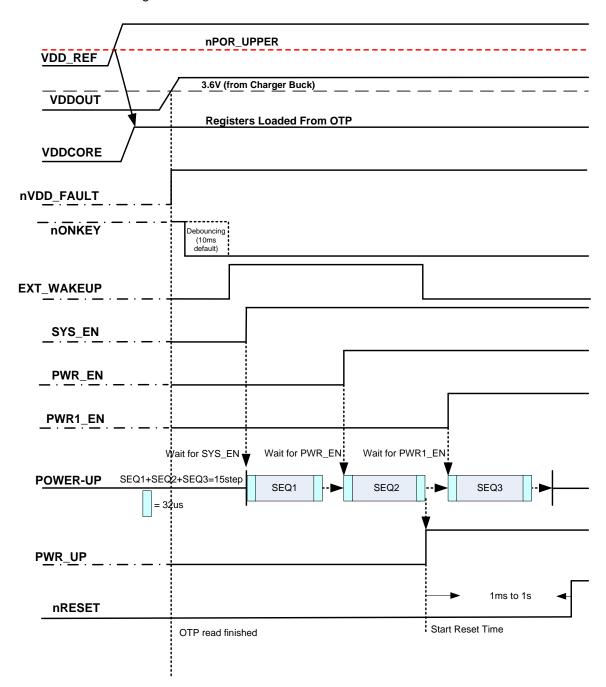



Figure 37: Typical power-up timing



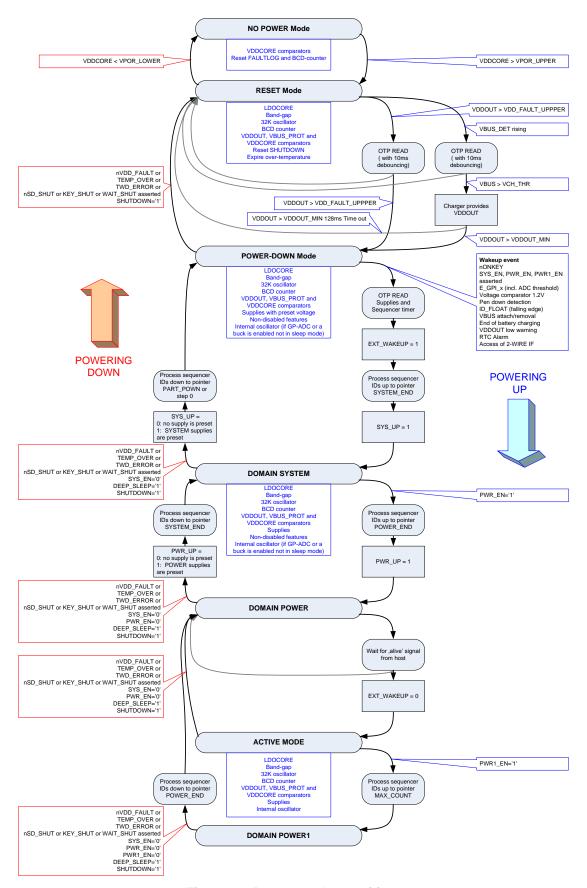



Figure 38: Power mode transitions



# **16.1 Power sequencer**

Table 65: ID 0 to 1

| Register address | Bit | Туре | Label      | Default | Description                                                                              |
|------------------|-----|------|------------|---------|------------------------------------------------------------------------------------------|
|                  | 0   | R/W  | NRES_MODE  | 1       | 0: No assertion of nRESET during POWERDOWN mode                                          |
| R29              |     |      |            |         | Assert nRESETwhen entering     POWERDOWN mode (release after leaving     POWERDOWN mode) |
| ID_0_1           | 1   | R/W  | DEF_SUPPLY | 0       | When asserted all supplies (beside LDOCORE) are enabled/disabled from OTP default mode   |
|                  | 2   | R/W  |            | 0       | RESERVED                                                                                 |
|                  | 7:4 | R/W  | LDO1_STEP  | 1001    | Power sequencer time slot 9                                                              |

#### Table 66: ID 2 to 3

| Register address | Bit | Туре | Label     | Default | Description                 |
|------------------|-----|------|-----------|---------|-----------------------------|
| R30              | 3:0 | R/W  |           | 0000    | RESERVED                    |
| ID_2_3           | 7:4 | R/W  | LDO3_STEP | 1000    | Power sequencer time slot 8 |

#### Table 67: RESERVED

| Register address | Bit | Туре | Label | Default | Description |
|------------------|-----|------|-------|---------|-------------|
| Dod              | 3:0 | R/W  |       | 0000    | RESERVED    |
| R31              | 7:4 | R/W  |       | 0000    | RESERVED    |

#### Table 68: ID 6 to 7

| Register address | Bit | Туре | Label     | Default | Description                       |
|------------------|-----|------|-----------|---------|-----------------------------------|
| R32              | 3:0 | R/W  |           | 0000    | RESERVED                          |
| ID_6_7           | 7:4 | R/W  | LDO7_STEP | 0000    | Not controlled by power sequencer |

#### Table 69: ID 8 to 9

| Register address | Bit | Туре | Label     | Default | Description                       |
|------------------|-----|------|-----------|---------|-----------------------------------|
| R33              | 3:0 | R/W  |           | 0000    | RESERVED                          |
| ID_8_9           | 7:4 | R/W  | LDO9_STEP | 0000    | Not controlled by power sequencer |

# Table 70: ID 10 to 11

| Register address | Bit | Туре | Label       | Default | Description                       |
|------------------|-----|------|-------------|---------|-----------------------------------|
| R34              | 3:0 | R/W  | LDO10_STEP  | 0000    | Not controlled by power sequencer |
| ID_10_11         | 7:4 | R/W  | PD_DIS_STEP | 0101    | Power sequencer time slot 5       |



# Table 71: ID 12 to 13

| Register address | Bit | Туре | Label | Default | Description |
|------------------|-----|------|-------|---------|-------------|
| R35              | 3:0 | R/W  |       | 0000    | RESERVED    |
|                  | 7:4 | R/W  |       | 0000    | RESERVED    |

#### Table 72: ID 14 to 15

| Register address | Bit | Туре | Label         | Default | Description                 |
|------------------|-----|------|---------------|---------|-----------------------------|
| R36              | 3:0 | R/W  | BUCKCORE_STEP | 0001    | Power sequencer time slot 1 |
| ID_14_15         | 7:4 | R/W  | BUCKPRO_STEP  | 0111    | Power sequencer time slot 7 |

#### Table 73: ID 16 to 17

| Register address | Bit | Туре | Label        | Default | Description                       |
|------------------|-----|------|--------------|---------|-----------------------------------|
| R37              | 3:0 | R/W  | BUCKMEM_STEP | 0000    | Not controlled by power sequencer |
| ID_16_17         | 7:4 | R/W  |              | 0000    | RESERVED                          |

#### Table 74: ID 18 to 19

| Register address | Bit | Туре | Label         | Default | Description                       |
|------------------|-----|------|---------------|---------|-----------------------------------|
| R38              | 3:0 | R/W  | GP_RISE1_STEP | 0000    | Not controlled by power sequencer |
| ID_18_19         | 7:4 | R/W  | GP_RISE2_STEP | 0000    | Not controlled by power sequencer |

# Table 75: ID 20 to 21

| Register address | Bit | Туре | Label         | Default | Description                       |
|------------------|-----|------|---------------|---------|-----------------------------------|
| R39              | 3:0 | R/W  | GP_FALL1_STEP | 0000    | Not controlled by power sequencer |
| ID_20_21         | 7:4 | R/W  | GP_FALL2_STEP | 0000    | Not controlled by power sequencer |

# Table 76: SEQ status

| Register address | Bit | Туре | Label       | Default | Description                                            |
|------------------|-----|------|-------------|---------|--------------------------------------------------------|
| R40              | 3:0 | R/W  | WAIT_STEP   | 0000    | Not controlled by power sequencer                      |
| SEQ_STATUS       | 7:4 | R/W  | SEQ_POINTER | 0000    | Actual pointer position (time slot) of power sequencer |

# Table 77: SEQ\_A

| Register address | Bit | Туре | Label      | Default | Description                                 |
|------------------|-----|------|------------|---------|---------------------------------------------|
| R41              | 3:0 | R/W  | SYSTEM_END | 0110    | OTP pointer to last supply of domain SYSTEM |
| SEQ_A            | 7:4 | R/W  | POWER_END  | 1001    | OTP pointer to last supply of domain POWER  |



# Table 78: SEQ\_B

| Register address | Bit | Туре | Label     | Default | Description                                 |
|------------------|-----|------|-----------|---------|---------------------------------------------|
| R42              | 3:0 | R/W  | MAX_COUNT | 1001    | OTP pointer to last supply of domain POWER1 |
| SEQ_B            | 7:4 | R/W  | PART_DOWN | 0100    | OTP pointer for partial POWERDOWN mode      |

# Table 79: SEQ timer

| Register address | Bit | Туре | Label     | Default | Description    |
|------------------|-----|------|-----------|---------|----------------|
|                  | 3:0 | R/W  | SEQ_TIME  | 0011    | 0000: 32 μs    |
|                  |     |      |           |         | 0001: 64 μs    |
|                  |     |      |           |         | 0010: 96 μs    |
|                  |     |      |           |         | 0011: 128 μs   |
|                  |     |      |           |         | 0100: 160 μs   |
|                  |     |      |           |         | 0101: 192 μs   |
|                  |     |      |           |         | 0110: 224 μs   |
|                  |     |      |           |         | 0111: 256 μs   |
|                  |     |      |           |         | 1000: 288 μs   |
|                  |     |      |           |         | 1001: 384 μs   |
|                  |     |      |           |         | 1010: 448 µs   |
|                  |     |      |           |         | 1011: 512 μs   |
|                  |     |      |           |         | 1100: 1.024 ms |
|                  |     |      |           |         | 1101: 2.048 ms |
|                  |     |      |           |         | 1110: 4.096 ms |
| R43              |     |      |           |         | 1111: 8.192 ms |
| SEQ_TIMER        | 7:4 | R/W  | SEQ_DUMMY | 0011    | 0000: 32 μs    |
|                  |     |      |           |         | 0001: 64 μs    |
|                  |     |      |           |         | 0010: 96 μs    |
|                  |     |      |           |         | 0011: 128 μs   |
|                  |     |      |           |         | 0100: 160 μs   |
|                  |     |      |           |         | 0101: 192 μs   |
|                  |     |      |           |         | 0110: 224 µs   |
|                  |     |      |           |         | 0111: 256 μs   |
|                  |     |      |           |         | 1000: 288 μs   |
|                  |     |      |           |         | 1001: 384 μs   |
|                  |     |      |           |         | 1010: 448 µs   |
|                  |     |      |           |         | 1011: 512 μs   |
|                  |     |      |           |         | 1100: 1.024 ms |
|                  |     |      |           |         | 1101: 2.048 ms |
|                  |     |      |           |         | 1110: 4.096 ms |
|                  |     |      |           |         | 1111: 8.192 ms |



# 17 Voltage regulators

Three types of low dropout regulators are integrated on the DA9021/22, each optimised for performance depending on the most critical parameter of the circuitry supplied. For high performance analogue supplies (for example audio) the regulators have been designed to offer high PSRR and low noise, for the digital supplies PSRR is relaxed saving quiescent current and for the PMIC core/RTC supplies quiescent current has been optimised as the most important performance parameters. The regulators employ Dialog Semiconductor's Smart Mirror™ dynamic biasing, removing the need for a low power operating mode and associated software or hardware overhead.

Smart Mirror™ technology guarantees a high phase margin within the regulator control loop and has been designed to offer stable performance with small output capacitances over a wide range of output currents. The circuit technique offers significantly higher gain bandwidth performance than conventional designs, enabling higher power supply rejection performance at higher frequencies. PSRR is also maintained across the full operating current range however quiescent current consumption is scaled to demand giving improved efficiency when current demand is low.

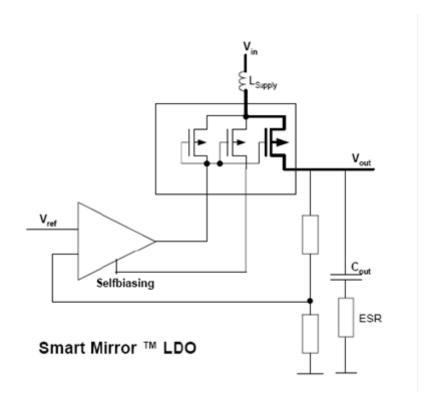



Figure 39: Smart Mirror™ voltage regulator

The regulator output voltages are fully programmable via the control interface allowing optimisation of the complete system for maximum performance and power efficiency. For security reasons the reprogramming of output voltages from the control interfaces can be disabled. The default output voltage is loaded from after start-up from OTP.

A power saving mode is not required for the LDOs due to the use of dynamic biasing in the LDO internal circuitry, so when operating at low current, the quiescent current taken by the regulator is automatically minimised. LDO1 to LDO10 can optionally be supplied from a buck output (VDD < 2.8 V), in this mode some specification parameters will change.

LDO1 to LDO10 can be controlled inside the power manager sequence. If enabled at sequencer step 0 (bit DEF\_SUPPLY) supplies can be default enabled via OTP whenever the sequencer passes step 0 (OTP settings are used). To limit the battery rush current it is recommended that no more than one supply (including bucks) is enabled at step 0

When powering down (for example to POWERDOWN mode) sequencer controlled supplies can be pre-configured with a new target voltage (LDOx\_CONF bit is set). If LDOx\_CONF was asserted in



parallel with LDOx\_EN, the supply enable is deferred until the sequencer is processing the related ID. The previous output voltage and enable state will be kept unchanged until the sequencer processes the related time slot/ID during powering down (ignoring any assertions of VLDOx\_GO while LDOx\_CONF is high).

Before wakeup from POWERDOWN mode (processing time slots from domain SYSTEM) the sequencer will reset the LDOx\_CONF bits and, if enabled via setting OTPREAD\_EN, configure all regulators with their default voltage values from OTP. The regulators can also be enabled/disabled/configured via the power manager and HS-2-wire interface when the DA9021/22 is in the ACTIVE state. Voltage transitions on LDOs including DVC will always be ramped.

#### NOTE

Powering down to RESET mode will automatically disable all regulators except for LDO1.

LDO 3 includes dynamic DVC control to enable power savings on peripheral domains:

- The output voltage is programmable over the power manager bus in 25 mV steps.
- The output voltage ramp step size is 6.25 mV/µs while slewing. If the feedback signal is configured to be READY this line is asserted while slewing.

The DVC control is handled by the following registers:

- Output voltage setting register VLDO3 to configure the new target voltage.
- Activate bit VLDO3\_GO will implement the changes on the LDO output (also used from the sequencer for deferred voltage changes). After being started DA9021/22 will block (not accept any re-programming of) the related voltage setting registers until slewing has been finished.

If selected the READY signal will be asserted during ramping.

LDO9 includes an optional hardware enable/disable via GPIO12 by selecting the GPI feature with debouncing off. After detecting an E\_GPI1, E\_GPI2 or E\_GPI12 event DA9021/22 will configure LDO4\_EN, LDO5\_EN or LDO9\_EN by the status of GPI1, GPI2 or GPI9 and the event bit E\_GPI1, E\_GPI2 or E\_GPI12 is automatically cleared. A parallel write access to LDO4\_EN, LDO5\_EN or LD09\_EN from the control interfaces or the power sequencer is delayed and will later override the hardware configuration.

#### NOTE

It is recommended to assert the IRQ mask bit of GPIOs, which are configured for LDO hardware control, to prevent the host being disturbed by IRQ strobes from the automatically cleared events.

Disabling regulators LDO1, 2 and 5 can switch off their pull down resistor, which is required for usage in parallel to an alternate supply.

#### 17.1 DA9021/22 core regulator LDOCORE

The LDOCORE will be used for running the DA9021/22 internal RTC module, internal state machine, GPIO pins with comparators, bias, reference, GPADC, OTP and power manager registers. It is supplied by the battery switch either from an external supply or VBAT.



#### 18 DC/DC buck converters

DA9021/22 includes three DC-DC buck converters with Dynamic Voltage Control (DVC). DA9022 also includes three DC-DC buck converters, two with DVC and one with fixed output voltage (programmable from OTP). The output voltages are fully programmable via the control interface allowing optimisation of the complete system for maximum performance and power efficiency. For security reasons the reprogramming of output voltages from the control interfaces can be disabled via control V\_LOCK.

#### NOTE

Powering down to RESET mode will automatically disable all buck converters.

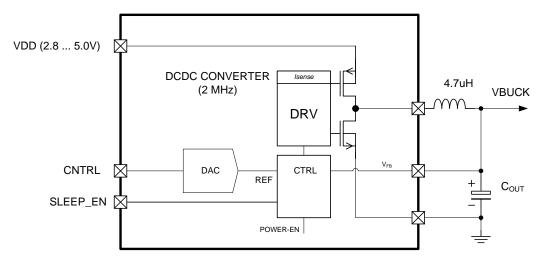



Figure 40: DC-DC buck converter

# 18.1 Converters BUCKCORE, BUCKPRO (DA9021 only) and BUCKMEM with DVC

These converters are high efficiency, synchronous, step down regulators operating at a high frequency (2 MHz) and supplying individual output voltages with  $\pm$  3% accuracy. Default output voltage is loaded from OTP and can be set in 25 mV steps.

DVC allows the following features:

- The buck converter output voltage to be programmable over the power manager bus in 25 mV steps.
- The output voltage ramp step size is 6.25 mV/µs while slewing. If the feedback signal is configured to be READY this line is asserted while slewing.
- Output voltages below 0.725 V will only be supported in Pulse Frequency Modulation (PFM) mode. During a voltage reduction below 0.725 V the slew rate control ends at 0.725 V and the buck mode is automatically changed to sleep mode (with reduced maximum current capability). The timing of voltage transitions between 0.5 V and 0.725 V depends on the load.

The DVC is handled by the following registers:

- Output voltage setting register VBCORE, VBPRO and VBMEM to configure the new target voltage.
- Activate bit VB\_CORE\_GO, VB\_PRO\_GO and VB\_MEM\_GO will implement the changes at the
  buck output (also used from the sequencer for deferred voltage changes). After being started
  DA9021/22 will block (not accept any re-programming of) the related voltage setting registers
  until slewing has been finished. If selected the READY signal will be asserted during ramping.

The supply current during PWM (synchronous rectification) operation is in the order of 2.2 mA (quiescent current and charge/discharge current) and drops to <1µA in shutdown. Switching frequency is chosen to be high enough to allow the use of a small 4.7 µH inductor.

Datasheet Revision 2.5 17-Feb-2017



The operating mode of the buck converter is selected via the buck control register bits. The buck converter can be forced to operate in either SYNCHRONOUS mode or SLEEP mode. Additionally the buck converter has an AUTOMATIC mode where it will switch between SYNCHRONOUS and SLEEP mode depending on the load current.

In SLEEP mode the buck converter works in PFM mode. An internal zero crossing comparator is used to time the turn-off of the NFET, thereby removing the need for an external Schottky diode.

All buck converters can be controlled via an ID from the power manager sequencer. If enabled at sequencer step 0 (bit DEF\_SUPPLY) buck converters can be default enabled via OTP whenever the sequencer passes step 0 (OTP default settings are used). To limit the battery rush current it is recommended that not more than a single supply (including LDOs) is enabled at step 0 During powering down supplies can be pre-configured with a new target value (Bxxx CONF bit is set).

If Bxxx\_CONF is asserted in parallel with BUCKx\_EN, the supply enable is deferred until the sequencer is processing the related ID. The output voltage and enable state will be kept unchanged until the sequencer processes the related time slot/ID during powering down (ignoring any assertions of VB\_xxx\_GO while Bxxx\_CONF is high). When powering up from POWERDOWN mode (processing time slots in domain SYSTEM) the sequencer will configure bucks with their default voltage values from OTP and by that reset the BUCKxxx\_CONF bits. The bucks can also be enabled/disabled/configured via the power manager and HS-2-wire interface when the DA9021/22 is in the ACTIVE state.

Voltage transitions on bucks including DVC will always be ramped. Disabled bucks BUCKCORE, BUCKPRO and BUCKMEM can switch off their pull down resistor (required for usage in parallel to an alternative supply).

#### NOTE

Powering down to RESET mode will automatically disable all buck converters.

The converter BUCKCORE can additionally be merged with BUCKPRO towards a single DC-DC converter with a maximum output current of 1.4 A. The routing of the switcher output pins towards the common inductor has to be symmetrical and the feedback signal VBUCKPRO should be connected to GND (if PRO\_PD\_DIS is asserted BUCKCOREORE can alternatively be connected to VBUCKCORE). The inductor and the output capacitor have to be selected according to the intended increased output current.

#### **NOTE**

The configuration controls of BUCKPRO are automatically disabled by asserting the bit BUCK\_MERGE and the selected current limits of BUCKCORE will be automatically doubled



© 2017 Dialog Semiconductor

# System PMIC with high efficiency USB power manager

.



Figure 41: BUCKCORE merged with BUCKPRO

# 18.2 Converter BUCKPERI with OTP programmable output voltage and bypass mode (DA9022 only)

The BUCKPERI converter is a high efficiency synchronous step down regulator operating at a high frequency (2 MHz). The default output voltage is loaded from OTP and can be set from 1.8 V to 3.6 V in 50 mV steps from 1.8 to 3.0 V and 100 mV steps from 3.0 V to 3.6 V.

#### **NOTE**

Changes to the output voltage have to be executed in disabled mode as this regulator does not offer DVC

The supply current during PWM mode operation is in the order of 3 mA (quiescent current and charge/discharge current) and drops to < 1  $\mu$ A in shutdown. Switching frequency is chosen to be high enough to allow the use of a small 2.2  $\mu$ H to 4.7  $\mu$ H inductor.

The operating mode of the buck converter is selected via the buck control register bits. The buck converter can be forced to operate in either SYNCHRONOUS mode or SLEEP mode. Additionally the buck converter has an AUTOMATIC mode where it will switch between SYNCHRONOUS and SLEEP mode depending on the load current.

In SLEEP mode, the buck converter works in PFM mode.

An internal zero crossing comparator is used to time the turn-off of the NFET, thereby removing the need for an external Schottky diode.

If reduced output power is required for improved efficiency it can run with a smaller pass device. BUCKPERI is able to operate up to a duty cycle of 100%, where a bypass switch across the coil will be enabled to prevent LC oscillations introduced by load-current spikes.



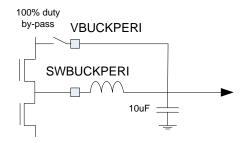



Figure 42: BUCKPERI BYPASS mode

Table 80: Selection of buck current limit from coil parameters

| Min. ISAT (mA) | Frequency (MHz) | Buck current limit (mA) |
|----------------|-----------------|-------------------------|
| 1450           | 2               | 1200                    |
| 1200           | 2               | 1000                    |
| 960            | 2               | 800                     |
| 840            | 2               | 700                     |

# 18.3 Power supplies

Table 81: Buck A

| Register address | Bit | Туре | Label      | Defaul<br>t | Description                                                                                                                                                                                                                                   |
|------------------|-----|------|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 1:0 | R/W  | BCORE_MODE | 01          | 00: BUCKCORE always operates in Sleep mode 01: BUCKCORE operates in Automatic mode 10: BUCKCORE always operates in Synchronous mode 11: BUCKCORE in Automatic forcing to Synchronous mode                                                     |
| R44<br>BUCK_A    | 3:2 | R/W  | BCORE_ILIM | 10          | 00: BUCKCORE current limit 700 mA (1400 mA in merged mode) 01: BUCKCORE current limit 800 mA (1600 mA in merged mode) 10: BUCKCORE current limit 1000 mA (2000 mA in merged mode) 11: BUCKCORE current limit 1200 mA (2400 mA in merged mode) |
|                  | 5:4 | R/W  | BPRO_MODE  | 01          | 00: BUCKPRO always operates in Sleep mode 01: BUCKPRO operates in Automatic mode 10: BUCKPRO always operates in Synchronous mode 11: BUCKPRO in Automatic forcing to Synchronous mode                                                         |
|                  | 7:6 | R/W  | BPRO_ILIM  | 10          | 00 : BUCKPRO current limit 700 mA 01 : BUCKPRO current limit 800 mA 10 : BUCKPRO current limit 1000 mA 11 : BUCKPRO current limit 1200 mA                                                                                                     |



Table 82: Buck B

| Register address | Bit | Туре | Label         | Default | Description                                                                                                                                                                           |
|------------------|-----|------|---------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R45              | 1:0 | R/W  | BMEM_<br>MODE | 01      | 00: BUCKMEM always operates in Sleep mode 01: BUCKMEM operates in Automatic mode 10: BUCKMEM always operates in Synchronous mode 11: BUCKMEM in Automatic forcing to Synchronous mode |
| BUCK_B           | 3:2 | R/W  | BMEM_ILI<br>M | 10      | 00 : BUCKMEM current limit 700 mA 01 : BUCKMEM current limit 800 mA 10 : BUCKMEM current limit 1000 mA 11: BUCKMEM current limit 1200 mA                                              |
|                  | 5:4 | R/W  |               | 00      | RESERVED                                                                                                                                                                              |
|                  | 7:6 | R/W  |               | 00      | RESERVED                                                                                                                                                                              |

# Table 83: BUCKCORE

| Register address | Bit | Туре | Label  | Default | Description     |
|------------------|-----|------|--------|---------|-----------------|
|                  | 5:0 | R/W  | VBCORE | 110100  | 000000: 0.500 V |
|                  |     |      |        |         | 000001: 0.525 V |
|                  |     |      |        |         | 000010: 0.550 V |
|                  |     |      |        |         | 000011: 0.575 V |
|                  |     |      |        |         | 000100: 0.600 V |
|                  |     |      |        |         | 000101: 0.625 V |
|                  |     |      |        |         |                 |
|                  |     |      |        |         | 011011: 1.175 V |
|                  |     |      |        |         | 011100: 1.200 V |
|                  |     |      |        |         | 011101: 1.225 V |
|                  |     |      |        |         | 011110: 1.250 V |
|                  |     |      |        |         | 011111: 1.275 V |
|                  |     |      |        |         | 100000: 1.300 V |
|                  |     |      |        |         | 100001: 1.325 V |
| R46              |     |      |        |         | 100010: 1.350 V |
| BUCKCORE         |     |      |        |         | 100011: 1.375 V |
|                  |     |      |        |         | 100100: 1.400 V |
|                  |     |      |        |         | 100101: 1.425 V |
|                  |     |      |        |         | 100110: 1.450 V |
|                  |     |      |        |         | 100111: 1.475 V |
|                  |     |      |        |         | 101000: 1.500 V |
|                  |     |      |        |         | 101001: 1.525 V |
|                  |     |      |        |         | 101010: 1.550 V |
|                  |     |      |        |         | 101011: 1.575 V |
|                  |     |      |        |         | 101100: 1.600 V |
|                  |     |      |        |         | 101101: 1.625 V |
|                  |     |      |        |         | 101110: 1.650 V |
|                  |     |      |        |         | 101111: 1.675 V |
|                  |     |      |        |         | 110000: 1.700 V |
|                  |     |      |        |         | 110001: 1.725 V |



| Register address | Bit | Туре | Label          | Default | Description                                     |
|------------------|-----|------|----------------|---------|-------------------------------------------------|
|                  |     |      |                |         | 110010: 1.750 V                                 |
|                  |     |      |                |         | 110011: 1.775 V                                 |
|                  |     |      |                |         | 110100: 1.800 V                                 |
|                  |     |      |                |         | 110101: 1.825 V                                 |
|                  |     |      |                |         | 110110: 1.850 V                                 |
|                  |     |      |                |         | 110111: 1.875 V                                 |
|                  |     |      |                |         | 111000: 1.900 V                                 |
|                  |     |      |                |         | 111001: 1.925 V                                 |
|                  |     |      |                |         | 111010: 1.950 V                                 |
|                  |     |      |                |         | 111011: 1.975 V                                 |
|                  |     |      |                |         | 111100: 2.000 V                                 |
|                  |     |      |                |         | 111101: 2.025 V                                 |
|                  |     |      |                |         | 111110: 2.050 V                                 |
|                  |     |      |                |         | 111111: 2.075 V                                 |
|                  | 6   | R/W  | BCORE_E        | 0       | 0: BUCKCORE disabled                            |
|                  |     |      | N              |         | 1: BUCKCORE enabled                             |
|                  | 7   | R/W  | BCORE_C<br>ONF | 0       | 0: Voltage ramped after assertion of VB_CORE_GO |
|                  |     |      |                |         | 1: Supply voltage preset                        |

# Table 84: BUCKPRO

| Register address | Bit | Туре | Label | Default | Description     |
|------------------|-----|------|-------|---------|-----------------|
|                  | 5:0 | R/W  | VBPRO | 011100  | 000000: 0.500 V |
|                  |     |      |       |         | 000001: 0.525 V |
|                  |     |      |       |         | 000010: 0.550 V |
|                  |     |      |       |         | 000011: 0.575 V |
|                  |     |      |       |         | 000100: 0.600 V |
|                  |     |      |       |         | 000101: 0.625 V |
|                  |     |      |       |         |                 |
|                  |     |      |       |         | 011011: 1.175 V |
|                  |     |      |       |         | 011100: 1.200 V |
|                  |     |      |       |         | 011101: 1.225 V |
|                  |     |      |       |         | 011110: 1.250 V |
| R47              |     |      |       |         | 011111: 1.275 V |
| BUCKPRO          |     |      |       |         | 100000: 1.300 V |
| BOOKI KO         |     |      |       |         | 100001: 1.325 V |
|                  |     |      |       |         | 100010: 1.350 V |
|                  |     |      |       |         | 100011: 1.375 V |
|                  |     |      |       |         | 100100: 1.400 V |
|                  |     |      |       |         | 100101: 1.425 V |
|                  |     |      |       |         | 100110: 1.450 V |
|                  |     |      |       |         | 100111: 1.475 V |
|                  |     |      |       |         | 101000: 1.500 V |
|                  |     |      |       |         | 101001: 1.525 V |
|                  |     |      |       |         | 101010: 1.550 V |
|                  |     |      |       |         | 101011: 1.575 V |
|                  |     |      |       |         | 101100: 1.600 V |



| Register address | Bit | Туре | Label   | Default | Description                          |
|------------------|-----|------|---------|---------|--------------------------------------|
|                  |     |      |         |         | 101101: 1.625 V                      |
|                  |     |      |         |         | 101110: 1.650 V                      |
|                  |     |      |         |         | 101111: 1.675 V                      |
|                  |     |      |         |         | 110000: 1.700 V                      |
|                  |     |      |         |         | 110001: 1.725 V                      |
|                  |     |      |         |         | 110010: 1.750 V                      |
|                  |     |      |         |         | 110011: 1.775 V                      |
|                  |     |      |         |         | 110100: 1.800 V                      |
|                  |     |      |         |         | 110101: 1.825 V                      |
|                  |     |      |         |         | 110110: 1.850 V                      |
|                  |     |      |         |         | 110111: 1.875 V                      |
|                  |     |      |         |         | 111000: 1.900 V                      |
|                  |     |      |         |         | 111001: 1.925 V                      |
|                  |     |      |         |         | 111010: 1.950 V                      |
|                  |     |      |         |         | 111011: 1.975 V                      |
|                  |     |      |         |         | 111100: 2.000 V                      |
|                  |     |      |         |         | 111101: 2.025 V                      |
|                  |     |      |         |         | 111110: 2.050 V                      |
|                  |     |      |         |         | 111111: 2.075 V                      |
|                  | 6   | R/W  | BPRO_EN | 0       | 0: BUCKPRO disabled                  |
|                  |     |      | _       |         | 1: BUCK PRO enabled                  |
|                  | 7   | R/W  | BPRO_CO | 0       | 0: Voltage ramped after assertion of |
|                  |     |      | NF      |         | VB_PRO_GO                            |
|                  |     |      |         |         | 1: Supply voltage preset             |

# **Table 85: BUCKMEM**

| Register address | Bit | Туре | Label | Default | Description     |
|------------------|-----|------|-------|---------|-----------------|
|                  | 5:0 | R/W  | VBMEM | 101011  | 000000: 0.950 V |
|                  |     |      |       |         | 000001: 0.975 V |
|                  |     |      |       |         | 000010: 1.000 V |
|                  |     |      |       |         | 000011: 1.025 V |
|                  |     |      |       |         | 000100: 1.050 V |
|                  |     |      |       |         |                 |
|                  |     |      |       |         | 010110: 1.500 V |
|                  |     |      |       |         | 010111: 1.525 V |
|                  |     |      |       |         | 011000: 1.550 V |
| R48              |     |      |       |         | 011001: 1.575 V |
| BUCKMEM          |     |      |       |         | 011010: 1.600 V |
|                  |     |      |       |         | 011011: 1.625 V |
|                  |     |      |       |         | 011100: 1.650 V |
|                  |     |      |       |         | 011101: 1.675 V |
|                  |     |      |       |         | 011110: 1.700 V |
|                  |     |      |       |         | 011111: 1.725 V |
|                  |     |      |       |         | 100000: 1.750 V |
|                  |     |      |       |         | 100001: 1.775 V |
|                  |     |      |       |         | 100010: 1.800 V |
|                  |     |      |       |         | 100011: 1.825 V |



| Register address | Bit | Туре  | Label         | Default | Description                                    |
|------------------|-----|-------|---------------|---------|------------------------------------------------|
|                  |     |       |               |         | 100100: 1.850 V                                |
|                  |     |       |               |         | 100101: 1.875 V                                |
|                  |     |       |               |         | 100110: 1.900 V                                |
|                  |     |       |               |         | 100111: 1.925 V                                |
|                  |     |       |               |         | 101000: 1.950 V                                |
|                  |     |       |               |         | 101001: 1.975 V                                |
|                  |     |       |               |         | 101010: 2.000 V                                |
|                  |     |       |               |         | 101011: 2.025 V                                |
|                  |     |       |               |         | 101100: 2.050 V                                |
|                  |     |       |               |         | 101101: 2.075 V                                |
|                  |     |       |               |         | 101110: 2.100 V                                |
|                  |     |       |               |         | 101111: 2.125 V                                |
|                  |     |       |               |         | 110000: 2.150 V                                |
|                  |     |       |               |         | 110001: 2.175 V                                |
|                  |     |       |               |         | 110010: 2.200 V                                |
|                  |     |       |               |         | 110011: 2.225 V                                |
|                  |     |       |               |         | 110100: 2.250 V                                |
|                  |     |       |               |         | 110101: 2.275 V                                |
|                  |     |       |               |         | 110110: 2.300 V                                |
|                  |     |       |               |         | 110111: 2.325 V                                |
|                  |     |       |               |         | 111000: 2.350 V                                |
|                  |     |       |               |         | 111001: 2.375 V                                |
|                  |     |       |               |         | 111010: 2.400 V                                |
|                  |     |       |               |         | 111011: 2.425 V                                |
|                  |     |       |               |         | 111100: 2.450 V                                |
|                  |     |       |               |         | 111101: 2.475 V                                |
|                  |     |       |               |         | 111110: 2.500 V                                |
|                  |     |       |               |         | 111111: 2.525 V                                |
|                  | 6   | R/W   | BMEM_EN       | 0       | 0: BUCKMEM disabled                            |
|                  |     | 13,77 | DIVILIVI_LI4  |         | 1: BUCKMEM enabled                             |
|                  | 7   | R/W   | BMEM_CO<br>NF | 0       | 0: Voltage ramped after assertion of VB_MEM_GO |
|                  |     |       |               |         | 1: Supply voltage preset                       |

# Table 86: BUCKPERI

| Register address | Bit | Туре | Label  | Default | Description   |
|------------------|-----|------|--------|---------|---------------|
|                  | 4:0 | R/W  | VBPERI | 11011   | 00000: 1.8 V  |
|                  |     |      |        |         | 00001: 1.85 V |
|                  |     |      |        |         | 00010: 1.9 V  |
|                  |     |      |        |         | 00011: 1.95 V |
| R49              |     |      |        |         | 00100: 2.0 V  |
| BUCKPERI         |     |      |        |         | 00101: 2.05 V |
| BUCKPERI         |     |      |        |         | 00110: 2.1 V  |
|                  |     |      |        |         | 00111: 2.15 V |
|                  |     |      |        |         | 01000: 2.2 V  |
|                  |     |      |        |         | 01001: 2.25 V |
|                  |     |      |        |         | 01010: 2.3 V  |



| Register address | Bit | Туре | Label    | Default                                                                         | Description                                |
|------------------|-----|------|----------|---------------------------------------------------------------------------------|--------------------------------------------|
|                  |     |      |          |                                                                                 | 01011: 2.35 V                              |
|                  |     |      |          |                                                                                 | 01100: 2.4 V                               |
|                  |     |      |          |                                                                                 | 01101: 2.45 V                              |
|                  |     |      |          |                                                                                 | 01110: 2.5 V                               |
|                  |     |      |          |                                                                                 | 01111: 2.55 V                              |
|                  |     |      |          |                                                                                 | 10000: 2.6 V                               |
|                  |     |      |          |                                                                                 | 10001: 2.65 V                              |
|                  |     |      |          |                                                                                 | 10010: 2.7 V                               |
|                  |     |      |          |                                                                                 | 10011: 2.75 V                              |
|                  |     |      |          |                                                                                 | 10100: 2.8 V                               |
|                  |     |      |          |                                                                                 | 10101: 2.85 V                              |
|                  |     |      |          |                                                                                 | 10110: 2.9 V                               |
|                  |     |      |          |                                                                                 | 10111: 2.95 V                              |
|                  |     |      |          |                                                                                 | 11000: 3.0 V                               |
|                  |     |      |          |                                                                                 | 11001: 3.1 V                               |
|                  |     |      |          |                                                                                 | 11010: 3.2 V                               |
|                  |     |      |          |                                                                                 | 11011: 3.3 V                               |
|                  |     |      |          |                                                                                 | 11100: 3.4 V                               |
|                  |     |      |          |                                                                                 | 11101: 3.5 V                               |
|                  |     |      |          |                                                                                 | 11110: 3.6 V                               |
|                  |     |      |          |                                                                                 | >11110: 3.6 V                              |
|                  | 5   | R/W  | BPERI_HS | 0                                                                               | 0: BUCK_PERI PMOS pass device is full size |
|                  |     |      |          |                                                                                 | 1: BUCK_PERI PMOS pass device is half size |
|                  | 6   | R/W  | BPERI_EN | 0                                                                               | 0: BUCKPERI disabled                       |
|                  |     |      |          |                                                                                 | 1: BUCKPERI enabled                        |
|                  | 7   | R/W  | BPERI_CO | 0                                                                               | 0: Supply voltage immediate change         |
|                  |     | NF   |          | Supply voltage preset (activated during power down sequence instead of disable) |                                            |

# Table 87: LDO1

| Register address | Bit | Туре | Label | Default | Description    |
|------------------|-----|------|-------|---------|----------------|
|                  | 4:0 | R/W  | VLDO1 | 01100   | 00000: 0.600 V |
|                  |     |      |       |         | 00001: 0.650 V |
|                  |     |      |       |         | 00010: 0.700 V |
|                  |     |      |       |         | 00011: 0.750 V |
|                  |     |      |       |         | 00100: 0.800 V |
|                  |     |      |       |         | 00101: 0.850 V |
| DEO              |     |      |       |         | 00110: 0.900 V |
| R50<br>LDO1      |     |      |       |         | 00111: 0.950 V |
| LDOI             |     |      |       |         | 01000: 1.000 V |
|                  |     |      |       |         | 01001: 1.050 V |
|                  |     |      |       |         | 01010: 1.100 V |
|                  |     |      |       |         | 01011: 1.150 V |
|                  |     |      |       |         | 01100: 1.200 V |
|                  |     |      |       |         | 01101: 1.250 V |
|                  |     |      |       |         | 01110: 1.300 V |



| Register address | Bit | Туре | Label   | Default | Description                                                                     |
|------------------|-----|------|---------|---------|---------------------------------------------------------------------------------|
|                  |     |      |         |         | 01111: 1.350 V                                                                  |
|                  |     |      |         |         | 10000: 1.400 V                                                                  |
|                  |     |      |         |         | 10001: 1.450 V                                                                  |
|                  |     |      |         |         | 10010: 1.500 V                                                                  |
|                  |     |      |         |         | 10011: 1.550 V                                                                  |
|                  |     |      |         |         | 10100: 1.600 V                                                                  |
|                  |     |      |         |         | 10101: 1.650 V                                                                  |
|                  |     |      |         |         | 10110: 1.700 V                                                                  |
|                  |     |      |         |         | 10111: 1.750 V                                                                  |
|                  |     |      |         |         | 11000: 1.800 V                                                                  |
|                  |     |      |         |         | >11000: 1.800 V                                                                 |
|                  | 6   | R/W  | LDO1_EN | 0       | 0: LDO1 disabled                                                                |
|                  |     |      |         |         | 1: LDO1 enabled                                                                 |
|                  | 7   | R/W  | LDO1_CO | 0       | 0: Supply voltage immediate change                                              |
|                  |     |      | NF      |         | Supply voltage preset (activated during power down sequence instead of disable) |

# Table 88: RESERVED

| Register address | Bit | Туре | Label | Default      | Description |
|------------------|-----|------|-------|--------------|-------------|
| R51              | 7:0 | R/W  |       | 0000000<br>0 | RESERVED    |

#### Table 89: LDO3

| Register address | Bit | Туре | Label | Default | Description     |
|------------------|-----|------|-------|---------|-----------------|
|                  | 5:0 | R/W  | VLDO3 | 101101  | 000000: 1.725 V |
|                  |     |      |       |         | 000001: 1.750 V |
|                  |     |      |       |         | 000010: 1.775 V |
|                  |     |      |       |         | 000011: 1.800 V |
|                  |     |      |       |         | 000100: 1.825 V |
|                  |     |      |       |         |                 |
|                  |     |      |       |         | 010110: 2.275 V |
|                  |     |      |       |         | 010111: 2.300 V |
|                  |     |      |       |         | 011000: 2.325 V |
|                  |     |      |       |         | 011001: 2.350 V |
| R52              |     |      |       |         | 011010: 2.375 V |
| LDO3             |     |      |       |         | 011011: 2.400 V |
|                  |     |      |       |         | 011100: 2.425 V |
|                  |     |      |       |         | 011101: 2.450 V |
|                  |     |      |       |         | 011110: 2.475 V |
|                  |     |      |       |         | 011111: 2.500 V |
|                  |     |      |       |         | 100000: 2.525 V |
|                  |     |      |       |         | 100001: 2.550 V |
|                  |     |      |       |         | 100010: 2.575 V |
|                  |     |      |       |         | 100011: 2.600 V |
|                  |     |      |       |         | 100100: 2.625 V |
|                  |     |      |       |         | 100101: 2.650 V |



| Register address | Bit | Туре | Label         | Default | Description                                   |
|------------------|-----|------|---------------|---------|-----------------------------------------------|
|                  |     |      |               |         | 100110: 2.675 V                               |
|                  |     |      |               |         | 100111: 2.700 V                               |
|                  |     |      |               |         | 101000: 2.725 V                               |
|                  |     |      |               |         | 101001: 2.750 V                               |
|                  |     |      |               |         | 101010: 2.775 V                               |
|                  |     |      |               |         | 101011: 2.800 V                               |
|                  |     |      |               |         | 101100: 2.825 V                               |
|                  |     |      |               |         | 101101: 2.850 V                               |
|                  |     |      |               |         | 101110: 2.875 V                               |
|                  |     |      |               |         | 101111: 2.900 V                               |
|                  |     |      |               |         | 110000: 2.925 V                               |
|                  |     |      |               |         | 110001: 2.950 V                               |
|                  |     |      |               |         | 110010: 2.975 V                               |
|                  |     |      |               |         | 110011: 3.000 V                               |
|                  |     |      |               |         | 110100: 3.025 V                               |
|                  |     |      |               |         | 110101: 3.050 V                               |
|                  |     |      |               |         | 110110: 3.075 V                               |
|                  |     |      |               |         | 110111: 3.100 V                               |
|                  |     |      |               |         | 111000: 3.125 V                               |
|                  |     |      |               |         | 111001: 3.150 V                               |
|                  |     |      |               |         | 111010: 3.175 V                               |
|                  |     |      |               |         | 111011: 3.200 V                               |
|                  |     |      |               |         | 111100: 3.225 V                               |
|                  |     |      |               |         | 111101: 3.250 V                               |
|                  |     |      |               |         | 111110: 3.275 V                               |
|                  |     |      |               |         | 111111: 3.300 V                               |
|                  | 6   | R/W  | LDO3_EN       | 0       | 0: LDO3 disabled                              |
|                  |     |      |               |         | 1: LDO3 enabled                               |
|                  | 7   | R/W  | LDO3_CO<br>NF | 0       | 0: Voltage ramped after assertion of VLDO3_GO |
|                  |     |      |               |         | 1: Supply voltage preset                      |

# Table 90: RESERVED

| Register address | Bit | Туре | Label | Default  | Description |
|------------------|-----|------|-------|----------|-------------|
| R53, R54, R55    | 7:0 | R/W  |       | 00000000 | RESERVED    |

# Table 91: LDO7

| Register address | Bit | Туре | Label | Default | Description    |
|------------------|-----|------|-------|---------|----------------|
|                  | 5:0 | R/W  | VLDO7 | 001100  | 000000: 1.20 V |
|                  |     |      |       |         | 000001: 1.25 V |
| R56              |     |      |       |         | 000010: 1.30 V |
| LDO7             |     |      |       |         | 000011: 1.35 V |
| LDO7             |     |      |       |         | 000100: 1.40 V |
|                  |     |      |       |         | 000101: 1.45 V |
|                  |     |      |       |         | 000110: 1.50 V |



| Register address | Bit | Туре | Label   | Default | Description                                |
|------------------|-----|------|---------|---------|--------------------------------------------|
|                  |     |      |         |         | 000111: 1.55 V                             |
|                  |     |      |         |         | 001000: 1.60 V                             |
|                  |     |      |         |         | 001001: 1.65 V                             |
|                  |     |      |         |         | 001010: 1.70 V                             |
|                  |     |      |         |         | 001011: 1.75 V                             |
|                  |     |      |         |         | 001100: 1.80 V                             |
|                  |     |      |         |         | 001101: 1.85 V                             |
|                  |     |      |         |         | 001110: 1.90 V                             |
|                  |     |      |         |         | 001111: 1.95 V                             |
|                  |     |      |         |         | 010000: 2.00 V                             |
|                  |     |      |         |         | 010001: 2.05 V                             |
|                  |     |      |         |         | 010010: 2.10 V                             |
|                  |     |      |         |         | 010011: 2.15 V                             |
|                  |     |      |         |         | 010100: 2.20 V                             |
|                  |     |      |         |         | 010101: 2.25 V                             |
|                  |     |      |         |         | 010110: 2.30 V                             |
|                  |     |      |         |         | 010111: 2.35 V                             |
|                  |     |      |         |         | 011000: 2.40 V                             |
|                  |     |      |         |         | 011001: 2.45 V                             |
|                  |     |      |         |         | 011010: 2.50 V                             |
|                  |     |      |         |         | 011011: 2.55 V                             |
|                  |     |      |         |         | 011100: 2.60 V                             |
|                  |     |      |         |         | 011101: 2.65 V                             |
|                  |     |      |         |         | 011110: 2.70 V                             |
|                  |     |      |         |         | 011111: 2.75 V                             |
|                  |     |      |         |         | 100000: 2.80 V                             |
|                  |     |      |         |         | 100001: 2.85 V                             |
|                  |     |      |         |         | 100010: 2.90 V                             |
|                  |     |      |         |         | 100011: 2.95 V                             |
|                  |     |      |         |         | 100100: 3.00 V                             |
|                  |     |      |         |         | 100101: 3.05 V                             |
|                  |     |      |         |         | 100110: 3.10 V                             |
|                  |     |      |         |         | 100111: 3.15 V                             |
|                  |     |      |         |         | 101000: 3.20 V                             |
|                  |     |      |         |         | 101001: 3.25 V                             |
|                  |     |      |         |         | 101010: 3.30 V                             |
|                  |     |      |         |         | 101011: 3.35 V                             |
|                  |     |      |         |         | 101100: 3.40 V                             |
|                  |     |      |         |         | 101101: 3.45 V                             |
|                  |     |      |         |         | 101110: 3.50 V                             |
|                  |     |      |         |         | 101111: 3.55 V                             |
|                  |     |      |         |         | 110000: 3.60 V                             |
|                  |     |      |         |         | >110000: 3.60 V                            |
|                  | 6   | R/W  | LDO7_EN | 0       | 0: LDO7 disabled                           |
|                  |     |      |         | -       | 1: LDO7 enabled                            |
|                  | 7   | R/W  | LDO7_CO | 0       | 0: Supply voltage immediate change         |
|                  |     |      | NF      |         | 1: Supply voltage preset (activated during |
|                  |     |      |         |         | power down sequence instead of disable)    |



# Table 92: RESERVED

| Register address | Bit | Туре | Label | Default  | Description |
|------------------|-----|------|-------|----------|-------------|
| R57              | 7:0 | R/W  |       | 00000000 | RESERVED    |

# Table 93: LDO9

| Register address | Bit | Туре | Label         | Default | Description                                                                                                         |
|------------------|-----|------|---------------|---------|---------------------------------------------------------------------------------------------------------------------|
|                  | 5:0 | R/W  | VLDO9         | 011001  | 7                                                                                                                   |
| R58              | 6   | R/W  | LDO9_EN       | 0       | 0: LDO9 disabled<br>1: LDO9 enabled                                                                                 |
| LDO9             | 7   | R/W  | LDO9_CO<br>NF | 0       | Supply voltage immediate change     Supply voltage preset (activated during power down sequence instead of disable) |

# **Table 94: LDO10**

| Register | Bit | Туре | Label  | Default | Description    |
|----------|-----|------|--------|---------|----------------|
|          | 5:0 | R/W  | VLDO10 | 100001  | 000000: 1.20 V |
|          |     |      |        |         | 000001: 1.25 V |
|          |     |      |        |         | 000010: 1.30 V |
|          |     |      |        |         | 000011: 1.35 V |
|          |     |      |        |         | 000100: 1.40 V |
|          |     |      |        |         | 000101: 1.45 V |
|          |     |      |        |         | 000110: 1.50 V |
|          |     |      |        |         | 000111: 1.55 V |
|          |     |      |        |         | 001000: 1.60 V |
|          |     |      |        |         | 001001: 1.65 V |
|          |     |      |        |         | 001010: 1.70 V |
|          |     |      |        |         | 001011: 1.75 V |
|          |     |      |        |         | 001100: 1.80 V |
|          |     |      |        |         | 001101: 1.85 V |
|          |     |      |        |         | 001110: 1.90 V |
| R59      |     |      |        |         | 001111: 1.95 V |
| LDO10    |     |      |        |         | 010000: 2.00 V |
|          |     |      |        |         | 010001: 2.05 V |
|          |     |      |        |         | 010010: 2.10 V |
|          |     |      |        |         | 010011: 2.15 V |
|          |     |      |        |         | 010100: 2.20 V |
|          |     |      |        |         | 010101: 2.25 V |
|          |     |      |        |         | 010110: 2.30 V |
|          |     |      |        |         | 010111: 2.35 V |
|          |     |      |        |         | 011000: 2.40 V |
|          |     |      |        |         | 011001: 2.45 V |
|          |     |      |        |         | 011010: 2.50 V |
|          |     |      |        |         | 011011: 2.55 V |
|          |     |      |        |         | 011100: 2.60 V |
|          |     |      |        |         | 011101: 2.65 V |
|          |     |      |        |         | 011110: 2.70 V |
|          |     |      |        |         | 011111: 2.75 V |



| Register | Bit | Туре | Label    | Default | Description                                                                     |
|----------|-----|------|----------|---------|---------------------------------------------------------------------------------|
|          |     |      |          |         | 100000: 2.80 V                                                                  |
|          |     |      |          |         | 100001: 2.85 V                                                                  |
|          |     |      |          |         | 100010: 2.90 V                                                                  |
|          |     |      |          |         | 100011: 2.95 V                                                                  |
|          |     |      |          |         | 100100: 3.00 V                                                                  |
|          |     |      |          |         | 100101: 3.05 V                                                                  |
|          |     |      |          |         | 100110: 3.10 V                                                                  |
|          |     |      |          |         | 100111: 3.15 V                                                                  |
|          |     |      |          |         | 101000: 3.20 V                                                                  |
|          |     |      |          |         | 101001: 3.25 V                                                                  |
|          |     |      |          |         | 101010: 3.30 V                                                                  |
|          |     |      |          |         | 101011: 3.35 V                                                                  |
|          |     |      |          |         | 101100: 3.40 V                                                                  |
|          |     |      |          |         | 101101: 3.45 V                                                                  |
|          |     |      |          |         | 101110: 3.50 V                                                                  |
|          |     |      |          |         | 101111: 3.55 V                                                                  |
|          |     |      |          |         | 110000: 3.60 V                                                                  |
|          |     |      |          |         | >110000: 3.60 V                                                                 |
|          | 6   | R/W  | LDO10_EN | 0       | 0: LDO10 disabled                                                               |
|          |     |      |          |         | 1: LDO10 enabled                                                                |
|          | 7   | R/W  | LDO10_CO | 0       | 0: Supply voltage immediate change                                              |
|          |     |      | NF       |         | Supply voltage preset (activated during power down sequence instead of disable) |

Table 95: SUPPLY

| Register address | Bit | Туре | Label          | Default | Description                                                                                                                                                                                                                                                      |  |
|------------------|-----|------|----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | 0   | R/W  | VB_CORE<br>_GO | 0       | O: Hold VBUCKCORE at current setting.  1: Ramp BUCKCORE to configured voltage. While the voltage is ramping, write access is blocked to BUCKPRO register. VBUCKCORE_GO is cleared when the target voltage is reached. While ramping, the buck is forced into PWM |  |
| R60<br>SUPPLY    | 1   | R/W  | VB_PRO_<br>GO  | 0       | 0: Hold VBUCKPRO at current setting. 1: Ramp BUCKPRO to configured voltage. While the voltage is ramping, write access is blocked to BUCKPRO register. VBUCKPRO_GO is cleared when the target voltage is reached. While ramping, the buck is forced into PWM     |  |
|                  | 2   | R/W  | VB_MEM_<br>GO  | 0       | 0: Hold VBUCKMEM at current setting 1: Ramp BUCKMEM to configured voltage. While the voltage is ramping, write access is blocked to BUCKMEM register. VBUCKMEM_GO is cleared when the target voltage is reached. While ramping, the buck is forced into PWM.     |  |
|                  | 3   | R/W  |                | 0       | RESERVED                                                                                                                                                                                                                                                         |  |
|                  | 4   | R/W  | VLDO3_G<br>O   | 0       | 0: Hold VLDO3 at current setting. 1: Ramp VLDO3 to configured voltage. While                                                                                                                                                                                     |  |



| Register address | Bit | Туре | Label  | Default | Description                                                                                                                                                                                                 |
|------------------|-----|------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |     |      |        |         | the voltage is ramping, write access is blocked to LDO3 register. VLDO3_GO is cleared when the target voltage is reached (ignored if LDO3_CONF was asserted)                                                |
|                  | 5   | R/W  |        | 0       | RESERVED                                                                                                                                                                                                    |
|                  | 6   | R/W  |        | 0       | RESERVED                                                                                                                                                                                                    |
|                  | 7   | R/W  | V_LOCK | 0       | O: Allows writing new values into buck and LDO voltage registers  1: Disables voltage re-programming from the host (enable/disable, DVC ramping, power sequencing including deferred update still possible) |

# **Table 96: PULLDOWN**

| Register address | Bit | Туре | Label           | Default | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------|-----|------|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| R61<br>PULLDOWN  | 0   | R/W  | CORE_PD<br>_DIS | 0       | C: Enable pull down resistor     No pull down resistor in disabled mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                  | 1   | R/W  | PRO_PD_<br>DIS  | 0       | Control of the c |  |
|                  | 2   | R/W  | MEM_PD_<br>DIS  | 0       | Control of the c |  |
|                  | 3   | R/W  | LDO1_PD<br>_DIS | 0       | Control of the c |  |
|                  | 7:4 | R/W  |                 | 0000    | RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |



# 19 Programmable battery charger

The system power and charger control block contains the following functions:

- 2-way power path switch with automatic selection of the system power source (VDDOUT) from either VBUS or VBAT. Battery disconnection switch to allow Instant-On system start-up with discharged main battery
- Embedded active diode and external active diode controller provide a low loss power path seamless switching in whenever input power is limited or unavailable
- VBAT tracking switching regulator supplying system power out of USB port with an efficiency > 85 % @ 1000 mA load current
- Full featured autonomous Li-Ion/Polymer battery charger with pre-configurable current limits and programmable EOC voltages (4.1 V to 4.4 V), current monitoring (always active when charger is on) and OTP programmable EOC currents. Integrated control over battery pre-charge (including battery pack wakeup), Constant-Current and Constant-Voltage charging phases
- Automatic charge current reduction via Dynamic Charger Current Control (DCCC), maintaining VDDOUT system power at minimum 3.5 V without exceeding the supply current limits. Individual programmable current limits for the USB supply input
- Automatic USB Battery Charging, Specification Rev.1.0 compliant charger type detection, USB SUSPEND mode support
- Battery temperature qualified charging (using GP-ADC) with default threshold settings loaded from OTP
- Battery charging termination by current (using GP-ADC) with default threshold setting loaded from OTP
- Extended battery life by protection against continuous top charging (configurable re-charge hysteresis)
- Thermal limiting of charge current by IC temperature (using GP-ADC)
- Programmable charge termination by timer for safety



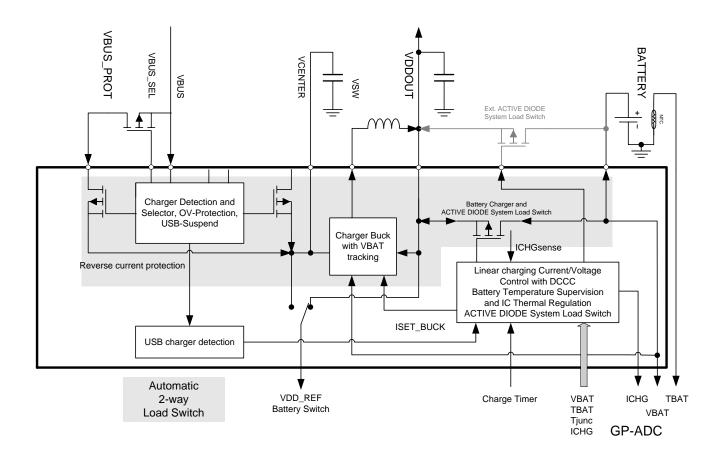



Figure 43: Charger block diagram

#### 19.1 High efficiency charger DC-DC buck converter

In order to minimise the total system power loss at high input currents, DA9021/22's main system power VDDOUT is supplied out of a high efficient DC-DC converter, which is able to track VBAT+200 mV (with minimum VDDOUT = 3.6 V).

When powering up VDDOUT the DC-DC converter provides a soft-start circuitry and the current limit is implemented to meet the USB 2.0 specification for currents spikes where charge peaks are always less than an equivalent bypass capacitive load of 10  $\mu$ F. An integrated over voltage protection and supply selection controls the behaviour of these power paths.

The buck converter operates at a high frequency (2 MHz). This switching frequency is chosen to be high enough to allow the use of a small 4.7  $\mu$ H inductor. To guarantee high efficiency at high load currents the series resistance of the coil is limited to 100 m $\Omega$  (at 1000 mA). Under light load conditions the buck converter can be forced by the host to a low current PFM mode.

#### 19.2 Charger supply detection/VBUS monitoring

DA9021/22 provides a charger input VBUS, which can be supplied either from a USB host/hub, a USB type host/hub charger or a dedicated wall charger. To protect DA9021/22 against destruction from invalid supplies an overvoltage protection circuitry will disconnect every charger that supplies more than 5.6 V.



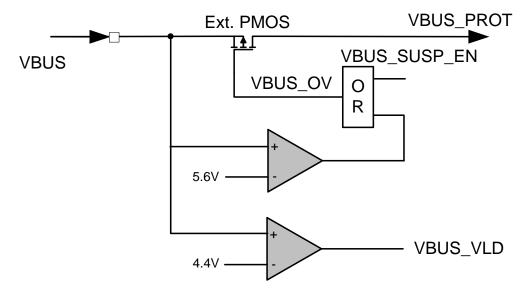



Figure 44: Charger detection

The charger initial insertion is detected when the voltage comparators indicate that VBUS\_PROT is still present after a debounce time of 10 ms. At this time the charger buck converter will be enabled via a soft start up to the appropriate current limitation (see above) if the chargers attach comparator flags with enough voltage headroom from VDDOUT to VCENTER to allow the buck converter to operate. The battery is disconnected from VDDOUT as the charger supply takes over. This is done by enabling an active diode function as part of the battery P-FET, giving a clean transfer of power.

The differential charger attach comparator (CHG\_ATT) detects a typical drop of 100 mV across VCENTER to VDDOUT and acts together with the charge detection comparators as an under voltage lock out, which is performed in two phases. In the first phase a falling voltage at the charger input towards VCH\_THR will force the charger buck state machine to reduce the charger buck current limitation step by step down to its minimum value. If the input voltage will not recover and the CHG\_ATT comparator flags a voltage drop from VCENTER to VDDOUT is below 85 mV, the charger buck is disabled as soon the current limit reaches its minimum value. If the input voltage recovers, the state machine starts increasing the current limit again until it reaches its programmed value using a slow attach time.

If during normal operation the CHG\_DET signals a valid input voltage, but the CHG\_ATT comparator flags a low drop across VCENTER to VDDOUT, the buck current limit is ramped down in the same way as mentioned before. The charger buck will be disabled if the voltage drop across VCENTER to VDDOUT does not rise towards a minimum of 100 mV.

#### NOTE

CHG\_DET is VBUS\_DET dependant.

#### 19.3 VBUS overvoltage protection and USB suspend

DA9021/22 includes an overvoltage protection circuit that disconnects VBUS from the VBUS\_PROT input via the external PFETs whenever the VBUS voltage is above the VCHG\_EXCESS threshold. This circuit supports a USB low power SUSPEND mode, enabled via the control bit VBUS\_SUSP, where the VBUS\_PROT path is switched off and the VDDOUT main supply is switched to the battery disabling charging (similar to removing the VBUS supply).VBUS\_SUSP is cleared when the USB charger is removed.

The charger buck supports a BUS powered low current mode which is enabled via control bit CHG\_BUCK\_LP. In this mode the charger buck is forced to a PFM mode to ensure the system is backed up with minimum power dissipation when being supplied from an external supply. Charging will be suspended, but with appropriate configurations of the regulators, power to for example, an idle USB PHY can be supplied.

Datasheet Revision 2.5 17-Feb-2017



#### NOTE

USB high power suspend mode allows max. 2.5 mA

Monitoring of the VBUS voltage is always provided, allowing the host processor to detect a removal of the VBUS, including in suspend mode (see VBUS status bit). The removal of supplies will issue E\_VBUS\_REM interrupt requests and trigger a wakeup in POWER-DOWN mode if is still present after a debounce time of 10 ms. Removing VBUS will clear VBUS\_SUSP and when removing the active supply CHG\_BUCK\_LP is cleared.

### 19.4 Battery pre-charge mode

Battery PRE-CHARGE mode is started and controlled automatically by DA9021/22. This is needed to ensure that a completely empty battery can be charged without the intervention of the host processor. In the event of a heavily discharged battery the battery is disconnected from the VDDOUT supply so that the system may be started. The charger then powers the VDDOUT rail from one of the supply paths as described above, allowing the LDOs and buck converter to be switched on.

PRE-CHARGE mode is started when a charger has been detected and the VDDOUT voltage is greater than VBAT + 200 mV (or > 3.6 V). The PRE-CHARGE mode also handles the re-enable of a battery pack which has an internal safety switch been opened (from deep discharge). The safety switch will be reset by applying a current through the diode in the safety switch, charging the battery cell up to about 2.8 V where the switch will be closed again. DA9021/22 can optionally drive a flashing LED at GPIO 10 that will indicate the invisible battery charging until the application is able to power up.

Charging is suspended by writing 0 mA to ICHG\_PRE in PRE-CHARGE mode.



# 19.5 Fast linear-charge mode

Battery LINEAR-CHARGE mode is initiated automatically once the battery voltage has exceeded the  $V_{BAT\ FAULT}$  threshold for a minimum of 40 ms (to allow a battery safety switch to close).

The linear charge mode has two phases of operation:

- Constant Current (CC) mode
- Constant Voltage (CV) mode

If the battery voltage (VBAT) is less than the target voltage, the charging starts in CC mode.

Temperature supervision of the battery by the GP-ADC channel 2 is started and charging is only allowed if the battery temperature is in the correct range. If a TBAT fault condition is detected while charging the battery, charging will be suspended until the battery temperature is back in the correct range, except in the case that the charging end point has been reached.

The CC mode has 64 possible current settings ranging from 20 mA to 1260 mA, controllable by the host processor via the power manager bus. When the battery voltage approaches the target regulation voltage level the charger control loop changes over to CV mode. Note that the CC and CV mode operate in parallel, with the CC loop limiting the charging current and the CV loop limiting the charging voltage.

The charging current will be measured automatically by the GP-ADC, generating an average current reading over 10 s period that will be used to determine the charging end point detection. This allows for flexibility in determining when to automatically stop charging for different sizes and types of battery.

### 19.6 Thermal charge current control

During charging the temperature of DA9021/22 (T<sub>JUNC</sub>) is continuously supervised by the GP-ADC against overheating. A thermal supervision circuit reduces the charge current via a current/temperature control whenever the die temperature attempts to rise above a preset value of TCHARGELOW (90°C). It completely suspends charging when TCHARGESUSPEND (120°C) has been reached. This protects DA9021/22 from excessive temperature but allows the application to push the limits of the power handling capability of a given circuit board without risk of damage. Another benefit of the thermal limit is that the charge current can be set according to typical, not worst-case, ambient temperatures for a given application with the assurance that the charger will automatically reduce the current in worst-case conditions.

Whenever the junction temperature (T<sub>JUNC</sub>), see section 20 Monitoring ADC and touch screen interface, overrides a threshold from below table the thermal control will raise the (internal) temperature class and reduce the battery charge current limit towards the related value. It will increase the charge current limit only if the temperature drops below the threshold of the actual Class 1. This prohibits a continuous change of the charging current around a temperature threshold.

The thermal charge current control can be disabled but this will increase the risk for a complete thermal shutdown from the internal temperature supervision inside high power applications.

Table 97: Thermal charge current control

| T <sub>JUNC</sub> (°C) | Class | Charge current limit (mA) | ICHG_BAT (Register value) |
|------------------------|-------|---------------------------|---------------------------|
| <90                    | 0     | 1260                      | 111111                    |
| >90                    | 1     | 1100                      | 110111                    |
| >95                    | 2     | 900                       | 101101                    |
| >100                   | 3     | 700                       | 100011                    |
| >105                   | 4     | 500                       | 011001                    |
| >110                   | 5     | 300                       | 001111                    |
| >115                   | 6     | Charging suspended        | 000000                    |



# 19.7 Dynamic charging current control (DCCC) and active-diode

If the combination of the system load plus the battery charging current (pre-charge or fast linear charging) exceeds the charger buck output current (which is limited by the current limitation of the buck) into the VDDOUT node, then the output voltage on VDDOUT will start to drop down to VBAT (which automatically reduces the charging current).

When the VDDOUT voltage drops to 3.6 V, and the charger buck is still in current limit, the charging current to the battery will be reduced until it reaches zero or the buck runs below its current limit. Once the VDDOUT is > 3.6 V or the buck runs below its current limit, the charging will be increased until it reaches the programmed setting.

The battery charging control includes an active-diode circuit that will automatically provide current to the system if the VDDOUT voltage falls below the VBAT voltage. If large currents or very low resistance in series with the battery output is required the path can be extended by an external power FET using the external active-diode controller.

# Example of DCCC & active diode operation in USB high power mode

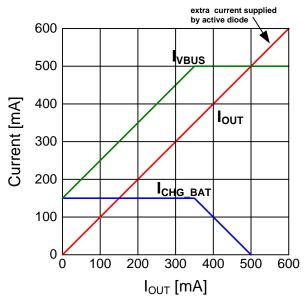



Figure 45: DCCC & active diode operation

# 19.8 Programmable charge termination by time

The battery charger block will provide a safety timer controlling the maximum time allowed for battery charging. The charge timer is programmable through the power manager bus. The total charge time is defined as the time from when the battery charging was enabled (both for FAST and PRE-CHARGE mode charging).

During FAST charge mode the time is dynamically extended whenever the current into the battery is automatically reduced from DCCC or thermal regulation towards less than (for example) 50 % of the configured maximum charge current. This change in charge time is inversely proportional to the change in charge current. The dynamic safety timer is limited to eight times the programmed clock period and can alternatively be configured towards a fixed timer. If the timer expires (reaches zero) an interrupt request is issued and charging is disabled.



## 19.8.1 Battery charger

Table 98: CHG\_BUCK

| Register address | Bit | Туре | Label       | Default | Description                                                                                                                                                                                                              |
|------------------|-----|------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 3:0 | R/W  | ISET_BUCK   | 0010    | 0000: 80 mA                                                                                                                                                                                                              |
|                  |     |      |             | Note 1  | 0001: 90 mA                                                                                                                                                                                                              |
|                  |     |      |             |         | 0010: 100 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 0011: 110 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 0100: 120 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 0101: 130 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 0110: 400 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 0111: 450 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 1000: 500 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 1001: 550 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 1010: 600 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 1011: 650 mA                                                                                                                                                                                                             |
|                  |     |      |             |         | 1100: 700 mA                                                                                                                                                                                                             |
| R62              |     |      |             |         | 1101: 900 mA                                                                                                                                                                                                             |
| CHG_BUCK         |     |      |             |         | 1110: 1100 mA                                                                                                                                                                                                            |
|                  |     |      |             |         | 1111: 1300 mA                                                                                                                                                                                                            |
|                  | 4   | R/W  | CHG_BUCK_EN | 1       | This bit is controlled by the charger state machine. If reset by the host only a charger removal and re-attach starts automatic charger control again. If set to 1 the automatic charger control is started immediately. |
|                  | 5   | R/W  | CHG_BUCK_LP | 0       | When set to 1 the charger buck is forced to the PFM (SLEEP) mode and charging will be suspended. Automatically cleared when starting charging/re-charging                                                                |
|                  | 6   | R/W  |             | 0       | RESERVED                                                                                                                                                                                                                 |
|                  | 7   | R/W  | CHG_TEMP    | 1       | 0: Thermal charging control disabled                                                                                                                                                                                     |
|                  |     |      |             |         | 1: Thermal charging control enabled                                                                                                                                                                                      |

Note 1 The OTP value is used during manufacturing to trim the max. 100 mA current limit (USB default charge current)

Table 99: WAIT\_CONT

| Register address | Bit | Туре | Label      | Default | Description   |
|------------------|-----|------|------------|---------|---------------|
|                  | 3:0 | R/W  | DELAY_TIME | 1011    | 0000: 0 μsec  |
|                  |     |      |            |         | 0001: 540 μs  |
|                  |     |      |            |         | 0010: 1.0 ms  |
|                  |     |      |            |         | 0011: 2.0 ms  |
| R63              |     |      |            |         | 0100: 4.1 ms  |
| WAIT_CONT        |     |      |            |         | 0101: 8.2 ms  |
| WAIT_CONT        |     |      |            |         | 0110: 16.4 ms |
|                  |     |      |            |         | 0111: 32.8 ms |
|                  |     |      |            |         | 1000: 65.5 ms |
|                  |     |      |            |         | 1001: 131 ms  |
|                  |     |      |            |         | 1010: 262 ms  |



| Register address | Bit | Туре | Label     | Default | Description                                              |
|------------------|-----|------|-----------|---------|----------------------------------------------------------|
|                  |     |      |           |         | 1011: 524 ms                                             |
|                  |     |      |           |         | 1100: 1.0 s                                              |
|                  |     |      |           |         | 1101: 2.1 s                                              |
|                  |     |      |           |         | 1110: 4.2 s                                              |
|                  |     |      |           |         | 1111: for future use (8.4 s)                             |
|                  | 4   | R/W  | EN_32KOUT | 0       | 0: OUT_32K output buffer disabled.                       |
|                  |     |      |           |         | 1: OUT_32K output buffer enabled                         |
|                  | 5   | R/W  | WAIT_MODE | 1       | 0: Wait for GPIO10 to be active                          |
|                  |     |      |           |         | 1: Delay timer mode (start timer and wait for expire)    |
|                  | 6   | R/W  | RTC_CLOCK | 1       | 0: No gating of RTC calendar clock                       |
|                  |     |      |           |         | Clock to RTC counter is gated until     WAIT is asserted |
|                  | 7   | R/W  | WAIT_DIR  | 0       | 0: Wait during power-up sequence                         |
|                  |     |      |           |         | 1: Wait during power-up and power-down sequence          |

### Table 100: ISET

| Register address | Bit | Туре | Label    | Default | Description   |
|------------------|-----|------|----------|---------|---------------|
|                  | 3:0 | R/W  | ISET_USB | 1000    | 0000: 80 mA   |
|                  |     |      |          | Note 1  | 0001: 90 mA   |
|                  |     |      |          |         | 0010: 100 mA  |
|                  |     |      |          |         | 0011: 110 mA  |
|                  |     |      |          |         | 0100: 120 mA  |
|                  |     |      |          |         | 0101: 130 mA  |
|                  |     |      |          |         | 0110: 400 mA  |
| DOA              |     |      |          |         | 0111: 450 mA  |
| R64              |     |      |          |         | 1000: 500 mA  |
| ISET             |     |      |          |         | 1001: 550 mA  |
|                  |     |      |          |         | 1010: 600 mA  |
|                  |     |      |          |         | 1011: 650 mA  |
|                  |     |      |          |         | 1100: 700 mA  |
|                  |     |      |          |         | 1101: 900 mA  |
|                  |     |      |          |         | 1110: 1100 mA |
|                  |     |      |          |         | 1111: 1300 mA |
|                  | 7:4 |      |          | 0000    |               |

Note 1 Typical OTP value for an activated USB charger detection, see setting at CHG\_USB\_ILIM



Table 101: BAT\_CHG

| Register address | Bit | Туре | Label    | Default | Description                        |
|------------------|-----|------|----------|---------|------------------------------------|
|                  | 5:0 | R/W  | ICHG_BAT | 001010  | Battery charger current limit (CC) |
|                  |     |      | Note 1   |         | 000000: 0 mA (charging suspended)  |
|                  |     |      |          |         | 000001: 20 mA                      |
|                  |     |      |          |         | 000010: 40 mA                      |
|                  |     |      |          |         | 000011: 60 mA                      |
|                  |     |      |          |         | 000100: 80 mA                      |
|                  |     |      |          |         | 000101: 100 mA                     |
|                  |     |      |          |         | 000110: 120 mA                     |
|                  |     |      |          |         | 000111: 140 mA                     |
|                  |     |      |          |         | 001000: 160 mA                     |
| R65              |     |      |          |         | 001001: 180 mA                     |
|                  |     |      |          |         | 001010: 200 mA                     |
| BAT_CHG          |     |      |          |         | 001011: 220 mA                     |
|                  |     |      |          |         |                                    |
|                  |     |      |          |         | 110111: 1100 mA                    |
|                  |     |      |          |         | 111000: 1120 mA                    |
|                  |     |      |          |         | 111001: 1140 mA                    |
|                  |     |      |          |         | 111010: 1160 mA                    |
|                  |     |      |          |         | 111011: 1180 mA                    |
|                  |     |      |          |         | 111100: 1200 mA                    |
|                  |     |      |          |         | 111101: 1220 mA                    |
|                  |     |      |          |         | 111110: 1240 mA                    |
|                  |     |      |          |         | 111111: 1260 mA                    |
|                  | 7:6 | R/W  | ICHG_PRE | 10      | Battery pre-charge current limit   |
|                  |     |      |          |         | 00: 0 mA (charging suspended)      |
|                  |     |      |          |         | 01: 20 mA                          |
|                  |     |      |          |         | 10: 40 mA                          |
|                  |     |      |          |         | 11: 60 mA                          |

Note 1 3-bit trimming are used to tweak the absolute value via OTP

## Table 102: CHG\_CONT

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                                                                                                                        |
|---------------------|-----|------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R66<br>CHG_CONT     | 2:0 | R/W  | VCH_THR  | 001     | Charger buck reduces the actual current limit if external supply voltage drops below: 000: 3.7 V 001: 3.8 V 010: 3.9 V 011: 4.0 V 100: 4.1 V 101: 4.2 V 110: 4.3 V |
|                     |     |      |          |         | 111: 4.35 V (detection threshold)                                                                                                                                  |
|                     | 7:3 | R/W  | VCHG_BAT | 10110   | Battery charger voltage limit (CV)                                                                                                                                 |
|                     |     |      |          |         | 00000: 3.650 V                                                                                                                                                     |
|                     |     |      |          |         | 00001: 3.675 V                                                                                                                                                     |



| Register<br>Address | Bit | Туре | Label | Default | Description                 |
|---------------------|-----|------|-------|---------|-----------------------------|
|                     |     |      |       |         | 00010: 3.700 V              |
|                     |     |      |       |         | 00011: 3.725 V              |
|                     |     |      |       |         | 00100: 3.750 V              |
|                     |     |      |       |         | 00101: 3.775 V              |
|                     |     |      |       |         | 00110: 3.800 V              |
|                     |     |      |       |         | 00111: 3.825 V              |
|                     |     |      |       |         | 01000: 3.850 V              |
|                     |     |      |       |         | 01001: 3.875 V              |
|                     |     |      |       |         | 01010: 3.900 V              |
|                     |     |      |       |         | 01011: 3.925 V              |
|                     |     |      |       |         | 01100: 3.950 V              |
|                     |     |      |       |         | 01101: 3.975 V              |
|                     |     |      |       |         | 01110: 4.000 V              |
|                     |     |      |       |         | 01111: 4.025 V              |
|                     |     |      |       |         | 10000: 4.050 V              |
|                     |     |      |       |         | 10001: 4.075 V              |
|                     |     |      |       |         | 10010: 4.100 V (Li-Polymer) |
|                     |     |      |       |         | 10011: 4.125 V              |
|                     |     |      |       |         | 10100: 4.150 V              |
|                     |     |      |       |         | 10101: 4.175 V              |
|                     |     |      |       |         | 10110: 4.200 V (Li-Ion)     |
|                     |     |      |       |         | 10111: 4.225 V              |
|                     |     |      |       |         | 11000: 4.250 V              |
|                     |     |      |       |         | 11001: 4.275 V              |
|                     |     |      |       |         | 11010: 4.300 V              |
|                     |     |      |       |         | 11011: 4.3250 V             |
|                     |     |      |       |         | 11100: 4.350 V              |
|                     |     |      |       |         | 11101: 4.375 V              |
|                     |     |      |       |         | 11110: 4.400 V              |
|                     |     |      |       |         | 11111: 4.425 V              |

## Table 103: INPUT\_CONT

| Register<br>Address | Bit | Туре | Label          | Default | Description                                                                                                                                                                     |
|---------------------|-----|------|----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R67<br>INPUT_CONT   | 3:0 | R/W  | TCTR<br>Note 1 | 1010    | 0000: Charge time out disabled 0001: 30 mins remaining 0010: 60 mins remaining 0011: 90 mins remaining 1010: 300 mins remaining 1111: 450 mins remaining                        |
|                     | 4   | R/W  | VBUS_SUSP      | 0       | When set to 1, the USB charger path is set into suspend mode, where the power path from VBUS_PROT to VCENTER is switched off.  Automatically cleared when USB supply is removed |



| Register<br>Address | Bit | Туре | Label     | Default | Description                                                                                                   |
|---------------------|-----|------|-----------|---------|---------------------------------------------------------------------------------------------------------------|
|                     | 6   | R/W  | VCHG_DROP | 0       | Charger re-enabled if VBAT drops below VCHG_BAT minus 0: 100 mV 1: 200 mV                                     |
|                     | 7   | R/W  | TCTR_MODE | 0       | O: Total charge time is extended during periods with reduced charge current     1: Total charge time is fixed |

Note 1 Changing the value of TCTR sets the timer to the new value. The timer is paused whenever the ICHG\_BAT=0 mA. The current timer value can be read from the CHG\_TIME register. The timer counts down from the loaded value.

### Table 104: CHG\_TIME

| Register address | Bit | Туре | Label    | Default  | Description                                                                                                                                           |
|------------------|-----|------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| R68<br>CHG_TIME  | 7:0 | R    | CHG_TIME | 00000000 | Remaining minutes until charging time out 00000000: Charging ended 00000001: 2 mins remaining 00000010: 4 mins remaining 11111111: 510 mins remaining |



## 20 Monitoring ADC and touch screen interface

#### 20.1 ADC overview

The DA9021/22 provides an Analogue to Digital Converter (ADC) with 10-bit resolution and track and hold circuitry combined with an analogue input multiplexer. The analogue input multiplexer allows conversion of up to 10 different inputs. The track and hold circuit ensures stable input voltages at the input of the ADC during the conversion.

The ADC is used to measure the following inputs:

- Channel 0: VDDOUT measurement of the system voltage
- Channel 1: ICH internal battery charger current measurement
- Channel 2: TBAT output from the battery NTC
- Channel 3: VBAT measurement of the battery voltage
- Channel 4: ADC IN4 high impedance input (0 2.5 V)
- Channel 5: ADC\_IN5 high impedance input (0 2.5 V)
- Channel 8: Internal T<sub>JUNC</sub>.-sense (internal temp. sensor)

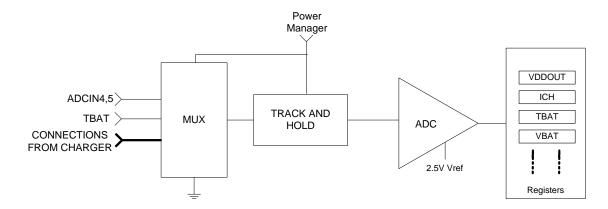



Figure 46: ADC block diagram

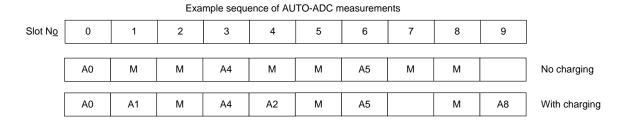
### **20.1.1** Input MUX

The MUX selects from and isolates the inputs and presents the channel to be measured to the ADC input. When selected, an input amplifier on the VDDOUT (and VBAT) channel subtracts the VDDCORE reference voltage and scales the signal to the correct value for the ADC.

#### 20.1.2 ADC

The ADC uses a sample and hold successive approximation switched capacitor architecture. It is supplied from internal core supply rail VDDCORE (2.5 V). It can be used either a HIGH SPEED mode with measurements sequences repeated every 1 ms or in ECONOMY mode with sequences performed every 10 ms.

#### 20.2 MANUAL CONVERSION mode


For manual measurements the ADC powers up, one conversion is done on the specified channel and the 10-bit result is stored. After the conversion is completed, the ADC powers down again and an IRQ event flag is set (end of manual conversion). The generation of this IRQ can be masked by the IRQ mask.



#### 20.3 Automatic measurements scheduler

The automatic measurement scheduler allows monitoring of the system voltage VDDOUT, the charging current ICH, the battery temperature TBAT and the touch screen interface XY. Additionally, the auxiliary channels ADCIN4 to ADCIN6 are able to be automatically monitored with upper and lower thresholds set by power manager registers to give an nIRQ event if a measurement is outside these levels. All measurements are handled by the scheduler system detailed below.

The scheduler performs a sequence of 10 slots continually repeated according to the configured mode. If the TSI is enabled the first half slot performs either an automatic or a manual conversion. The second half slot performs TSI actions and measurements. If the TSI measurement is disabled there is no split of the slot and only the first conversion is performed. A slot requires 100 µs. The pattern of measurements over the 10 slots depends upon the charging mode. Automatic measurements of VDDOUT, ICH and TBAT are made during charging. These cease when not charging. When automatic measurements are disabled, the manual measurements are made immediately and unused automatic measurements will handle manual conversion requests.



Each Slot allows 1 automatic or manual measurement and 1 TSI measurement to be made

A0 - Automatic measurement of VDDOUT (mux channel 0)

A1 - Automatic measurement of ICH (mux channel 1)

A2 - Automatic measurement of TBAT (mux channel 2)

A4 - Automatic measurement of ADCIN4 (mux channel 4)

A5 - Automatic measurement of ADCIN5 (mux channel 5) A8 - Automatic measurement of Tjunc with gain 3 (mux channel 8)

M indicates time slots when a Manual measurement can be made

Figure 47: ADC sequence

#### 20.3.1 A0: VDDOUT low voltage nIRQ measurement mode

VDDOUT is measured and compared with a threshold. If the reading is below this level for three consecutive readings an error event is generated. After an nIRQ assertion, the automatic measurement of channel VDDOUT is paused for reading. The host must clear the associated event flag (the event causing value is kept inside the result register) to re-enable the supervision of VDDOUT. If no action is taken to restore the VDDOUT voltage (discharging the battery is continued) the host may consider to switch off. Optional Always On blocks (backup battery charger or supplies, that are not disabled when powering down to RESET mode) to save energy later on. The multiple reading provides a debouncing of the VDDOUT voltage before issuing a nIRQ. The assertion of nIRQ can be masked by IRQ mask.

#### 20.3.2 A1: ICH (and ICH\_BAT average) measurement mode

When the battery is being charged in FAST CHARGE mode the ICH current is measured automatically every 1 or 10 ms and an average value is determined by adding the result to an 18-bit accumulator and latching the top 8 bits every 1024 samples (during high speed mode nine measurements are ignored before performing an update). This provides an average charging current value every 10.24 s, as long as the system load current is less than the maximum current provided from the external supply. When the ICH\_BAT falls below the value set (and the other requirements for charging end detection is met), an IRQ will be flagged. The IRQ can be masked.



#### 20.3.3 A2: TBAT and battery temperature warning nIRQ measurement mode

When the battery is being charged, the TBAT voltage is measured automatically. During this measurement, a 50  $\mu$ A current is sourced to the battery temperature sense resistor from the TBAT pin. The TBAT high and low thresholds are programmed into the OTP. The measurement result is used to protect the battery pack from damage during charging at too high temperatures. Temperature is flagged by three threshold levels held in the threshold registers (loaded from OTP at start-up). If three consecutive readings of TBAT are outside the configured range, then charging is disabled, an event flag is set and an interrupt is generated. The processor can then either service the IRQ and turn off charging or do nothing. If nothing is done, the FAST CHARGE block will start charging again as soon as the temperature readings are inside the programmed range. The generation of this IRQ can be masked.

### 20.3.4 A4, A5: automatic measurement and high/low threshold warning nIRQ mode

The automatic measurement result of channel ADC\_IN4 is stored. If a reading of ADC\_IN4 is outside the programmed range then an event flag is set. If nIRQ was asserted the automatic measurement of channel ADC\_IN4 is paused until the host has cleared the associated event flag (the event causing value is kept inside the result register). If debouncing is selected the event will only be asserted if two consecutive measurements override the same threshold. The assertion of nIRQ can be masked by IRQ mask.

The same functionality is available at ADC\_IN5 .In addition it is possible to use ADCIN4 with a 15 µA current source that allows automatic measurement of a resistor value. During automatic measurements the enabled current source is dynamically switched off at the end of the conversion and switched on one slot prior to the next ADC\_IN4 measurement (to enable minimum current consumption, and allow external capacitance to settle), otherwise its status is static.

#### 20.3.5 A8: automatic measurement of internal temperature

Selection of channel 8 ( $T_{JUNC}$ ) will be used to measure the output of the internal temperature sensor generated out of a PTAT current from the BGR. The channel 8 measures the output of the temperature sensor with a gain of 3. An offset register can be used for a one point calibration of the temperature sensor.

#### 20.3.6 A3, A9: manual measurement VBAT and VBBAT

Channel 3 will be used to manually measure the main battery voltage and channel 9 can be used to measure the voltage of the backup battery.

### 20.4 Fixed threshold comparator

A comparator with a threshold of VREF (1.2 V) is connected to the input of channel 5. The comparator is asserted whenever the input voltage is in excess of or drops below 1.2 V for at least 10 ms (debouncing) when being enabled via COMP1V2\_EN. A status flag COMP\_DET indicates the actual state and a maskable interrupt request E\_COMP\_v12 is generated at falling and rising edge state transitions. The comparator has to be disabled via COMP1V2\_EN when auto measurements with high resolution are executed on ADCIN5.

#### Table 105: R69 to R78

| Register Address                                    | Bit | Туре | Label | Default  | Description |
|-----------------------------------------------------|-----|------|-------|----------|-------------|
| R69, R70, R71, R72, R73,<br>R74, R75, R76, R77, R78 | 7:0 |      |       | 00000000 | RESERVED    |



## 20.4.1 LED driver

Table 106: LED4\_CONT

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                                    |
|---------------------|-----|------|----------|---------|--------------------------------------------------------------------------------|
|                     | 6:0 | R/W  | LED4_PWM | 0000000 | GPIO14 LED on-time (low level at GPIO 14, period 21 kHz = 95 cycles of 0.5 μs) |
|                     |     |      |          |         | 0000000: off                                                                   |
|                     |     |      |          |         | 0000001: 1 %                                                                   |
|                     |     |      |          |         | 0000010: 2 % (1 μs bursts)                                                     |
|                     |     |      |          |         | 0000011: 3 %                                                                   |
|                     |     |      |          |         | 0000100: 4 %                                                                   |
|                     |     |      |          |         | 0000101: 5 %                                                                   |
|                     |     |      |          |         | 0000110: 6 %                                                                   |
|                     |     |      |          |         | 0000111: 7 %                                                                   |
|                     |     |      |          |         | 0001000: 8 %                                                                   |
| D70                 |     |      |          |         | 0001001: 9 %                                                                   |
| R79                 |     |      |          |         | 0001010: 10 %                                                                  |
| LED4_CONT           |     |      |          |         | 0001011: 11 %                                                                  |
|                     |     |      |          |         | 0001100: 12 %                                                                  |
|                     |     |      |          |         | 0001101: 13 %                                                                  |
|                     |     |      |          |         | 0001110: 14 %                                                                  |
|                     |     |      |          |         | 0001111: 15 %                                                                  |
|                     |     |      |          |         | 0010000: 16 %                                                                  |
|                     |     |      |          |         |                                                                                |
|                     |     |      |          |         | 1011111: 100 %                                                                 |
|                     |     |      |          |         | >1011111: 100 %                                                                |
|                     | 7   | R/W  | LED4_DIM | 0       | 0: LED4 PWM ratio changes instantly                                            |
|                     |     |      |          |         | 1: LED4 ramps between changes in PWM ratio with 40 ms per step                 |

## Table 107: LED5\_CONT

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                                                                                                                                                                                                                    |
|---------------------|-----|------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R80<br>LED5_CONT    | 6:0 | R/W  | LED5_PWM | 0000000 | GPIO15 LED on-time (low level at GPIO 15, requires GPIO15_ MODE = 1, period 21 kHz = 95 cycles) 0000000: off 000001: 1 % 0000010: 2 % (1 μs bursts) 0000101: 3 % 0000101: 5 % 0000111: 7 % 0000101: 7 % 0001000: 8 % 0001010: 10 % 0001011: 11 % 0001100: 12 % |



| Register<br>Address | Bit | Туре | Label    | Default | Description                                                    |
|---------------------|-----|------|----------|---------|----------------------------------------------------------------|
|                     |     |      |          |         | 0001101: 13 %                                                  |
|                     |     |      |          |         | 0001110: 14 %                                                  |
|                     |     |      |          |         | 0001111: 15 %                                                  |
|                     |     |      |          |         | 0010000: 16 %                                                  |
|                     |     |      |          |         |                                                                |
|                     |     |      |          |         | 1011111: 100 %                                                 |
|                     |     |      |          |         | >1011111: 100 %                                                |
|                     | 7   | R/W  | LED5_DIM | 0       | 0: LED5 PWM ratio changes instantly                            |
|                     |     |      |          |         | 1: LED5 ramps between changes in PWM ratio with 40 ms per step |

### 20.4.2 GP-ADC

## Table 108: ADC\_MAN

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                                                                                                                                                                                                       |
|---------------------|-----|------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R81<br>ADC_MAN      | 3:0 | R/W  | MUX_SEL  | 1000    | 0000: VDDOUT pin (channel 0) selected 0001: ICH (channel 1) selected 0010: TBAT pin (channel 2) selected 0011: VBAT pin (channel 3) selected 0100: ADCIN4 selected 0101: ADCIN5 selected 1000: internal T-Sense using gain 1 (channel 8) selected |
|                     | 4   | R/W  | MAN_CONV | 0       | Perform manual conversion. Bit is reset to 0 when conversion is complete.                                                                                                                                                                         |
|                     | 7:5 | R    |          | 000     |                                                                                                                                                                                                                                                   |

## Table 109: ADC\_CONT

| Register<br>Address | Bit | Туре | Label            | Default | Description                                                                                   |
|---------------------|-----|------|------------------|---------|-----------------------------------------------------------------------------------------------|
|                     | 0   | R/W  | AUTO_VDD<br>_EN  | 0       | VDDOUT auto measurements disabled     VDDOUT auto measurements enabled                        |
|                     | 1   | R/W  | AUTO_AD4_<br>EN  | 0       | O: ADCIN4 auto measurements disabled     1: ADCIN4 auto measurements enabled                  |
|                     | 2   | R/W  | AUTO_AD5_<br>EN  | 0       | O: ADCIN5 auto measurements disabled     1: ADCIN5 auto measurements enabled                  |
| R82                 | 3   | R/W  |                  | 0       | RESERVED                                                                                      |
| ADC_CONT            | 4   | R/W  | AD4_ISRC_<br>EN  | 0       | 0: Disable ADCIN4 15 μA current source<br>1: Enable ADCIN4 15 μA current source               |
|                     | 5   | R/W  | TBAT_ISRC<br>_EN | 0       | 0: TBAT 50 µA current source enabled one slot before measurement (disabled after measurement) |
|                     |     |      |                  |         | 1: Enable TBAT 50 μA current source permanently                                               |
|                     | 6   | R/W  | ADC_MODE         | 0       | 0: Measurement sequence interval 10 ms                                                        |



| Register<br>Address | Bit | Туре | Label          | Default | Description                                                      |
|---------------------|-----|------|----------------|---------|------------------------------------------------------------------|
|                     |     |      |                |         | (economy mode)                                                   |
|                     |     |      |                |         | 1: Measurement sequence interval 1 ms (recommended for TSI mode) |
|                     | 7   | R/W  | COMP1V2_<br>EN | 0       | 0: Disable 1.2 V comparator at ADCIN5 1: Enable 1.2 V comparator |

### Table 110: ADC\_RES\_L

| Register<br>Address | Bit | Туре | Label       | Default | Description                              |
|---------------------|-----|------|-------------|---------|------------------------------------------|
| R83<br>ADC_RES_L    | 1:0 | R    | ADC_RES_LSB | 00      | 10-bit manual conversion result (2 LSBs) |

## Table 111: ADC\_RES\_H

| Register<br>Address | Bit | Туре | Label       | Default | Description                              |
|---------------------|-----|------|-------------|---------|------------------------------------------|
| R84                 | 7:0 | R    | ADC_RES_MSB | 000000  | 10-bit manual conversion result (8 MSBs) |
| ADC_RES_H           |     |      |             |         |                                          |

### Table 112: VDD\_RES

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                                                                                     |
|---------------------|-----|------|------------|----------|-----------------------------------------------------------------------------------------------------------------|
| R85<br>VDD_RES      | 7:0 | R    | VDDOUT_RES | 00000000 | 0x00 – 0xFF: Auto VDDOUT conversion result (ADCIN0) 00000000 corresponds to 2.5 V 11111111 corresponds to 4.5 V |

### Table 113: VDD\_MON

| Register<br>Address | Bit | Туре | Label      | Default  | Description                           |
|---------------------|-----|------|------------|----------|---------------------------------------|
| R86                 | 7:0 | R/W  | VDDOUT_MON | 00000000 | VDDOUT_MON threshold setting (8-bit). |
| VDD_MON             |     |      |            |          | 00000000 corresponds to 2.5 V         |
|                     |     |      |            |          | 11111111 corresponds to 4.5 V         |

### Table 114: ICHG\_AV

| Register<br>Address | Bit | Туре | Label   | Default  | Description                                                          |
|---------------------|-----|------|---------|----------|----------------------------------------------------------------------|
| R87<br>ICHG_AV      | 7:0 | R    | ICHG_AV | 00000000 | Charger current average conversion result,                           |
|                     |     |      |         |          | 8 MSBs from an internal 18-bit accumulator, updated every 10.24 sec: |
|                     |     |      |         |          | 00000000 corresponds to 0 mA,                                        |
|                     |     |      |         |          | 11111111 corresponds to 1000 mA                                      |

### Table 115: ICHG\_THD

| Register<br>Address | Bit | Туре | Label    | Default  | Description                      |
|---------------------|-----|------|----------|----------|----------------------------------|
| R88                 | 7:0 | R/W  | ICHG_THD | 01000000 | Reduced battery charging current |



| Register<br>Address | Bit | Туре | Label | Default | Description                                 |
|---------------------|-----|------|-------|---------|---------------------------------------------|
| ICHG_THD            |     |      |       |         | detection threshold (compared with ICHG_AV) |
|                     |     |      |       |         | 00000000 corresponds to 0 mA,               |
|                     |     |      |       |         | 11111111 corresponds to 1000 mA             |

## Table 116: ICHG\_END

| Register<br>Address | Bit | Туре | Label    | Default  | Description                                                                                                                                  |
|---------------------|-----|------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| R89<br>ICHG_END     | 7:0 | R/W  | ICHG_END | 00000110 | Battery charging end point current detection threshold (compared with ICHG_AV) 00000000 corresponds to 0 mA, 11111111 corresponds to 1000 mA |

### Table 117: TBAT\_RES

| Register<br>Address | Bit | Туре | Label    | Default  | Description                                                    |
|---------------------|-----|------|----------|----------|----------------------------------------------------------------|
| R90<br>TBAT_RES     | 7:0 | R    | TBAT_RES | 00000000 | 00000000 – 111111111: Auto ADC TBAT conversion result (ADCIN1) |

### Table 118: TBAT\_HIGHP

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                             |
|---------------------|-----|------|------------|----------|---------------------------------------------------------|
| R91<br>TBAT_HIGHP   | 7:0 | R/W  | TBAT_HIGHP | 00000000 | 00000000 – 11111111: TBAT high<br>temperature threshold |

## Table 119: TBAT\_HIGHN

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                                                                  |
|---------------------|-----|------|------------|----------|----------------------------------------------------------------------------------------------|
| R92<br>TBAT_HIGHN   | 7:0 | R/W  | TBAT_HIGHN | 00000000 | 00000000 – 11111111: TBAT high<br>temperature resume charging threshold<br>(typically 45 °C) |

## Table 120: TBAT\_LOW

| Register<br>Address | Bit | Туре | Label    | Default  | Description                                                             |
|---------------------|-----|------|----------|----------|-------------------------------------------------------------------------|
| R93<br>TBAT_LOW     | 7:0 | R/W  | TBAT_LOW | 11111111 | 00000000 – 11111111: TBAT low<br>temperature threshold (typically 0 °C) |

## Table 121: T\_OFFSET

| Register<br>Address | Bit | Туре | Label    | Default  | Description                                                                                          |
|---------------------|-----|------|----------|----------|------------------------------------------------------------------------------------------------------|
| R94<br>T_OFFSET     | 7:0 | R/W  | T_OFFSET | 00000000 | 10000000 – 01111111: signed two's complement calibration offset for junction temperature measurement |



### Table 122: ADCIN4\_RES

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                               |
|---------------------|-----|------|------------|----------|-----------------------------------------------------------|
| R95<br>ADCIN4_RES   | 7:0 | R    | ADCIN4_RES | 00000000 | 00000000 – 11111111: Auto ADC<br>ADCIN4 conversion result |

### Table 123: AUTO4\_HIGH

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                       |
|---------------------|-----|------|------------|----------|---------------------------------------------------|
| R96<br>AUTO4_HIGH   | 7:0 | R/W  | AUTO4_HIGH | 11111111 | 00000000 – 111111111: ADCIN4 high level threshold |

### Table 124: AUTO4\_LOW

| Register<br>Address | Bit | Туре | Label     | Default  | Description                                      |
|---------------------|-----|------|-----------|----------|--------------------------------------------------|
| R97<br>AUTO4_LOW    | 7:0 | R/W  | AUTO4_LOW | 00000000 | 00000000 - 111111111: ADCIN4 low level threshold |

### Table 125: ADCIN5\_RES

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                               |
|---------------------|-----|------|------------|----------|-----------------------------------------------------------|
| R98<br>ADCIN5_RES   | 7:0 | R    | ADCIN5_RES | 00000000 | 00000000 – 11111111: Auto ADC<br>ADCIN5 conversion result |

## Table 126: AUTO5\_HIGH

| Register<br>Address | Bit | Туре | Label      | Default  | Description                                      |
|---------------------|-----|------|------------|----------|--------------------------------------------------|
| R99<br>AUTO5_HIGH   | 7:0 | R/W  | AUTO5_HIGH | 11111111 | 00000000 – 11111111: ADCIN5 high level threshold |

## Table 127: AUTO5\_LOW

| Register<br>Address | Bit | Туре | Label     | Default  | Description                                      |
|---------------------|-----|------|-----------|----------|--------------------------------------------------|
| R100<br>AUTO5_LOW   | 7:0 | R/W  | AUTO5_LOW | 00000000 | 00000000 – 111111111: ADCIN5 low level threshold |

#### Table 128: R102, R103

| Register<br>Address | Bit | Туре | Label | Default  | Description |
|---------------------|-----|------|-------|----------|-------------|
| R102                | 7:0 |      |       | 11111111 | RESERVED    |
| R103                | 7:0 |      |       | 00000000 | RESERVED    |

### Table 129: TJUNC\_RES

| Register<br>Address | Bit | Туре | Label     | Default  | Description                                                |
|---------------------|-----|------|-----------|----------|------------------------------------------------------------|
| R104<br>TJUNC_RES   | 7:0 | R    | TJUNC_RES | 00000000 | 00000000 – 11111111: Auto TJUNC conversion result (ADCIN8) |



## Table 130: R105, R106

| Register<br>Address | Bit | Туре | Label | Default  | Description |
|---------------------|-----|------|-------|----------|-------------|
| R105                | 7:0 |      |       | 0000001  | RESERVED    |
| R106                | 7:0 |      |       | 00000000 | RESERVED    |

### 20.4.3 RTC calendar and alarm

## Table 131: COUNT\_S

| Register<br>Address | Bit | Туре | Label     | Default | Description                                                                                                                                                     |
|---------------------|-----|------|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R111                | 5:0 | R/W  | COUNT_SEC | 000000  | 0x00 – 0x3B: RTC seconds read-out. A read of this register latches the current RTC calendar count into the registers R111 to R116 (coherent for approx. 0.5 s). |
| COUNT_S             | 6   | R/W  | MONITOR   | 0       | Read-out '0' indicates that the power was lost. Read-out of '1' indicates that the clock is OK Set to '1' when setting time to arm RTC                          |
|                     |     |      |           |         | monitor function.                                                                                                                                               |

#### Table 132: COUNT\_MI

| Register<br>Address | Bit | Туре | Label     | Default | Description                       |
|---------------------|-----|------|-----------|---------|-----------------------------------|
| R112<br>COUNT_MI    | 5:0 | R/W  | COUNT_MIN | 000000  | 0x00 – 0x3B: RTC minutes read-out |

### Table 133: COUNT\_H

| Register<br>Address | Bit | Туре | Label      | Default | Description                     |
|---------------------|-----|------|------------|---------|---------------------------------|
| R113<br>COUNT_H     | 4:0 | R/W  | COUNT_HOUR | 00000   | 0x00 – 0x17: RTC hours read-out |

### Table 134: COUNT\_D

| Register<br>Address | Bit | Туре | Label     | Default | Description                    |
|---------------------|-----|------|-----------|---------|--------------------------------|
| R114                | 4:0 | R/W  | COUNT_DAY | 00001   | 0x01 – 0x1F: RTC days read-out |
| COUNT_D             | 7:5 | R    |           | 000     |                                |

## Table 135: COUNT\_MO

| Register<br>Address | Bit | Туре | Label       | Default | Description                      |
|---------------------|-----|------|-------------|---------|----------------------------------|
| R115<br>COUNT MO    | 3:0 | R/W  | COUNT_MONTH | 0001    | 0x01 – 0x0C: RTC months read-out |



## Table 136: COUNT\_Y

| Register<br>Address | Bit | Туре | Label      | Default | Description                                                                                                                                                   |
|---------------------|-----|------|------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R116<br>COUNT_Y     | 5:0 | R/W  | COUNT_YEAR | 000000  | 0x00 – 0x3F: RTC years read-out (0 corresponds to year 2000). A write to this register latches the registers R111 to R116 into the current RTC calendar count |

### Table 137: ALARM\_MI

| Register<br>Address | Bit | Туре | Label      | Default | Description                                     |
|---------------------|-----|------|------------|---------|-------------------------------------------------|
|                     | 5:0 | R/W  | ALARM_MIN  | 000000  | 0x00 – 0x3B: Alarm minutes setting              |
| R117<br>ALARM MI    | 6   | R    | ALARM_TYPE | 0       | Alarm event caused by: 0: TICK 1: Timer alarm   |
| / LZ/ (I XIVI_IVII  | 7   | R/W  | TICK_TYPE  | 1       | Tick alarm interval is: 0: 1 second 1: 1 minute |

### Table 138: ALARM\_H

| Register<br>Address | Bit | Туре | Label      | Default | Description                      |
|---------------------|-----|------|------------|---------|----------------------------------|
| R118<br>ALARM_H     | 4:0 | R/W  | ALARM_HOUR | 00000   | 0x00 – 0x17: Alarm hours setting |

### Table 139: ALARM\_D

| Register<br>Address | Bit | Туре | Label     | Default | Description                     |
|---------------------|-----|------|-----------|---------|---------------------------------|
| R119                | 4:0 | R/W  | ALARM_DAY | 00001   | 0x01 – 0x1F: Alarm days setting |
| ALARM_D             |     |      |           |         |                                 |

### Table 140: ALARM\_MO

| Register<br>Address | Bit | Туре | Label       | Default | Description                       |
|---------------------|-----|------|-------------|---------|-----------------------------------|
| R120                | 3:0 | R/W  | ALARM_MONTH | 0001    | 0x01 – 0x0C: Alarm months setting |
| ALARM_MO            |     |      |             |         |                                   |

## Table 141: ALARM\_Y

| Register<br>Address | Bit                              | Туре | Label                                                                                                                      | Default | Description                                               |  |  |  |
|---------------------|----------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|--|--|--|
|                     | corresponds to gregister latches |      | 0x00 – 0x3F: Alarm years setting (0 corresponds to year 2000). A write to this register latches the registers R117 to R121 |         |                                                           |  |  |  |
| R121<br>ALARM_Y     | 6                                | R/W  | ALARM_ON                                                                                                                   | 0       | O: Alarm function is disabled     1: Alarm enabled        |  |  |  |
|                     | 7                                | R/W  | TICK_ON                                                                                                                    | 0       | Tick function is disabled     Periodic tick alarm enabled |  |  |  |



### Table 142: SECOND\_A

| Register<br>Address | Bit | Туре | Label     | Default  | Description                                                                                                                                            |
|---------------------|-----|------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| R122<br>SECOND_A    | 7:0 | R    | SECONDS_A | 00000000 | RTC seconds counter A (LSBs). A read of this register latches the current 32-bit counter into the registers R122 to R125 (coherent for approx. 0.5 s). |

### Table 143: SECOND\_B

| Register<br>Address | Bit | Туре | Label     | Default  | Description           |
|---------------------|-----|------|-----------|----------|-----------------------|
| R123<br>SECOND_B    | 7:0 | R    | SECONDS_B | 00000000 | RTC seconds counter B |

### Table 144: SECOND\_C

| Register<br>Address | Bit | Туре | Label     | Default  | Description           |
|---------------------|-----|------|-----------|----------|-----------------------|
| R124<br>SECOND_C    | 7:0 | R    | SECONDS_C | 00000000 | RTC seconds counter C |

#### Table 145: SECOND\_D

| Register<br>Address | Bit | Туре | Label     | Default  | Description                  |
|---------------------|-----|------|-----------|----------|------------------------------|
| R125<br>SECOND_D    | 7:0 | R    | SECONDS_D | 00000000 | RTC seconds counter D (MSBs) |

## 20.5 Register page 1

#### Table 146: PAGE\_CON\_P1

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                        |
|---------------------|-----|------|----------|---------|--------------------------------------------------------------------|
| R128                | 6:0 | R    |          | 0000000 |                                                                    |
| PAGE_CON<br>_P1     | 7   | RW   | REG_PAGE | 0       | 0: Selects Register R1 to R127<br>1: Selects Register R129 to R255 |

### Table 147: CHIP\_ID

| Register<br>Address | Bit | Туре | Label | Default | Description                                                         |
|---------------------|-----|------|-------|---------|---------------------------------------------------------------------|
| R129                | 3:0 | R    | TRC   | Note 1  | Read back of OTP trimming release code (TRC) – starts with a code 0 |
| CHIP_ID             | 7:4 | R    | MRC   | Note 2  | Read back of mask revision code (MRC)  – code 0 for AA release      |

- **Note 1** This register allows read back of the revision. Variants that are shipped with different OTP defaults will be identified via a TRC number (loaded from OTP).
- Note 2 Changes due to mask design changes will increment the MRC number



## Table 148: CONFIG\_ID

| Register<br>Address | Bit | Туре | Label       | Default | Description                                                                                                    |
|---------------------|-----|------|-------------|---------|----------------------------------------------------------------------------------------------------------------|
| R130                | 2:0 | R    | CONF_ID     | 000     | ID for customer variant of start-up voltages and sequencer configuration, written during production of variant |
| CONFIG_ID           | 7:3 | R    | CUSTOMER_ID | 00000   | ID for customer, written during production of variant                                                          |

## 20.5.1 Customer OTP

## Table 149: OTP\_CONT

| Register<br>Address | Bit | Туре | Label         | Default | Description                                                                                                                                                                                                                     |
|---------------------|-----|------|---------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 0   | R/W  | OTP_TRANSFER  | 0       | O: No transfer in progress  1: Writing '1' to this bit initiates the fusing of selected OTP cells with the content from corresponding registers  1: Reading '1' indicates the transfer is still ongoing                         |
|                     | 1   | R/W  | OTP_RP        | 0       | 0: Transfer is Read<br>1: Transfer is Programming                                                                                                                                                                               |
|                     | 2   | R/W  | OTP_GP        | 0       | No action     Transfer includes configuration registers R132 to R142 (plus GP_WRITE_DIS and OTP_GP_LOCK)                                                                                                                        |
| R131                | 3   | R/W  | OTP_CONF      | 0       | No action     Transfer includes configuration R10 to R106 (plus OTP_CONF_LOCK)                                                                                                                                                  |
| OTP_CONT            | 4   | R    |               | 0       |                                                                                                                                                                                                                                 |
|                     | 5   | R    | OTP_GP_LOCK   | 0       | O: OTP not locked after programming     O: OTP will be locked during programming (no further fusing possible)  Note 1                                                                                                           |
|                     | 6   | R/W  | OTP_CONF_LOCK | 1       | O: OTP registers R10 to R106 not locked after programming (only for unmarked evaluation samples)  1: OTP registers R10 to R106 will be locked during programming (set for all marked parts, no further fusing possible)  Note 1 |
|                     | 7   | R/W  | GP_WRITE_DIS  | 0       | O: Enables write access to GP_ID registers     1: GP_ID registers are read only     Note 1                                                                                                                                      |

Note 1 Write access for fusing only, control state is loaded from OTP defaults after POR



## Table 150: OSC\_TRIM

| Register<br>Address | Bit | Туре | Label    | Default | Description                                                                                                                                                        |
|---------------------|-----|------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R132<br>OSC_TRIM    | 7:0 | R/W  | TRIM_32K | 0000000 | Bits for correction of the 32 kHz oscillator frequency: 10000000: -244.1 ppm 11111111: -1.9 ppm 00000000: off 00000001: 1.9 ppm (1/(32768*16)) 01111111: 242.2 ppm |



**Company confidential** 

# 21 Register Map

Table 151: Register map

| Register  | Function                 | 7              | 6              | 5              | 4          | 3              | 2         | 1              | 0              |
|-----------|--------------------------|----------------|----------------|----------------|------------|----------------|-----------|----------------|----------------|
| PAGE 0    |                          |                |                |                |            |                |           |                |                |
| System co | ntrol and event register | rs (SYSMON)    |                |                |            |                |           |                |                |
| R0        | PAGE_CON                 | REG_PAGE       | Not used       | Not used       | Not used   | Not used       | Not used  | Not used       | Not used       |
| R1        | STATUS_A                 | VDAT_DET       | VBUS_SEL       |                | VBUS_DET   |                |           |                | nONKEY         |
| R2        | STATUS_B                 | COMP_DET       | SEQUENCIN<br>G | GP_FB2         | CHG_TO     | CHG_END        | CHG_LIM   | CHG_PRE        | CHG_ATT        |
| R3        | STATUS_C                 |                |                |                |            |                |           | GPI1           | GPI0           |
| R4        | STATUS_D                 | GPI15          | GPI14          | GPI13          | GPI12      |                | GPI10     | GPI9           | GPI8           |
| R5        | EVENT_A                  | M_COMP_1V      | M_SEQ_RDY      | E_ALARM        | E_VDD_LOW  | E_VBUS_RE<br>M |           | E_VBUS_DET     | Reserved       |
| R6        | EVENT_B                  |                |                | E_ADC_EOM      | E_TBAT     | E_CHG_END      |           |                | E_nONKEY       |
| R7        | EVENT_C                  |                |                |                |            |                |           | E_GPI1         | E_GPI0         |
| R8        | EVENT_D                  | E_GPI15        | E_GPI14        | E_GPI13        | E_GPI12    |                | E_GPI10   | E_GPI9         | E_GPI8         |
| R9        | FAULT_LOG                | WAIT_SHUT      | nSD_SHUT       | KEY_SHUT       | Not used   | TEMP_OVER      | VDD_START | VDD_FAULT      |                |
| R10       | IRQ_MASK_A               | M_COMP_1V<br>2 | M_SEQ_RDY      | M_ALARM        | M_VDD_LOW  | M_VBUS_RE<br>M |           | M_VBUS_VL<br>D | Reserved       |
| R11       | IRQ_MASK_B               |                |                | M_ADC_EOM      | M_TBAT     | M_CHG_END      |           |                | M_nONKEY       |
| R12       | IRQ_MASK_C               |                |                |                |            |                |           | M_GPI1         | M_GPI0         |
| R13       | IRQ_MASK_D               | M_GPI15        | M_GPI14        | M_GPI13        | M_GPI12    |                | M_GPI10   | M_GPI9         | M_GPI8         |
| R14       | CONTROL_A                | GPI_V          | PM_O_TYPE      |                | PM_I_V     |                | PWR1_EN   | PWR_EN         | SYS_EN         |
| R15       | CONTROL_B                | SHUTDOWN       | DEEP_SLEEP     | WRITE_MOD<br>E |            | OTPREAD_E<br>N | AUTO_BOOT | ACT_DIODE      | BUCK_MERG<br>E |
| R16       | CONTROL_C                | BLINK_DUR      | BLINK_FRQ      | DEBOUNCIN<br>G | PM_FB2_PIN | PM_FB1_PIN     |           |                |                |



## **Company confidential**

| Register  | Function               | 7                | 6               | 5           | 4         | 3               | 2               | 1             | 0         |
|-----------|------------------------|------------------|-----------------|-------------|-----------|-----------------|-----------------|---------------|-----------|
| R17       | CONTROL_D              |                  | 0 - Reserved    | GPI14_15_SD | nONKEY_SD |                 |                 |               |           |
| R18       | PD_DIS                 | PM-<br>CONT_PD   | OUT_32K_PD      |             | CHG_PD    | HS-2-wire_PD    | PM-IF_PD        | GP-ADC_PD     | GPIO_PD   |
| R19       | INTERFACE              | IF_BASE_AD<br>DR | nCS_POL         | R/W_POL     | СРНА      | CPOL            | IF_TYPE         |               |           |
| R20       | RESET                  | RESET_EVE<br>NT  | RESET_TIME<br>R |             |           |                 |                 |               |           |
| GPIO cont | rol registers (GPIO)   |                  |                 |             |           |                 |                 |               |           |
| R21       | GPIO_0-1               | GPIO1_<br>MODE   | GPIO1_TYPE      | GPIO        | 1_PIN     | GPIO0_<br>MODE  | GPIO0_TYPE      | GPIO          | 0_PIN     |
| R22       |                        | 1- Reserved      | 1 - Reserved    | 10 - Re     | eserved   | 1 - Reserved    | 1 - Reserved    | 10 - Re       | eserved   |
| R23       |                        | 1 - Reserved     | 1 - Reserved    | 10 - Re     | eserved   | 1 - Reserved    | 1- Reserved     | 10 - Reserved |           |
| R24       |                        | 1 - Reserved     | 1 - Reserved    | 10 - Re     | eserved   | 1 - Reserved    | 1 - Reserved    | 10 - Reserved |           |
| R25       | GPIO_8-9               | GPIO9_<br>MODE   | GPIO9_TYPE      | GPIO        | GPIO9_PIN |                 | GPIO8_TYPE      | GPIO8_PIN     |           |
| R26       | GPIO_10-11             | 1 - Reserved     | 1 - Reserved    | 10 - Re     | eserved   | GPIO10_<br>MODE | GPIO10_TYP<br>E | GPIO10_PIN    |           |
| R27       | GPIO_12-13             | GPIO13_<br>MODE  | GPIO13_TYP<br>E | GPIO1       | 13_PIN    | GPIO12_<br>MODE | GPIO12_TYP<br>E | GPIO1         | 2_PIN     |
| R28       | GPIO_14-15             | GPIO15_<br>MODE  | GPIO15_TYP<br>E | GPIO1       | 5_PIN     | GPIO14_<br>MODE | GPIO14_TYP<br>E | GPIO1         | 4_PIN     |
| Power seq | uencer control registe | rs (SEQ)         |                 |             |           |                 |                 |               |           |
| R29       | ID_0_1                 |                  | LDO1            | _STEP       |           | Not used        |                 | DEF_SUPPLY    | nRES_MODE |
| R30       | ID_2_3                 |                  | LDO3_STEP       |             |           |                 |                 |               |           |
| R32       | ID_6_7                 |                  | LDO7_STEP       |             |           |                 |                 |               |           |
| R34       | ID_10_                 |                  | LDO9_STEP       |             |           |                 |                 |               |           |
| R34       | ID_10_11               |                  | PD_DIS_STEP     |             |           | LDO10_STEP      |                 |               |           |
| R36       | ID_14_15               |                  | BUCKPR          | RO_STEP     |           |                 | BUCKCO          | RE_STEP       |           |

Datasheet Revision 2.5 17-Feb-2017



## **Company confidential**

| Register                             | Function   | 7              | 6            | 5        | 4     | 3             | 2       | 1       | 0     |
|--------------------------------------|------------|----------------|--------------|----------|-------|---------------|---------|---------|-------|
| R37                                  | ID_16_17   | BUCKPERI_STEP  |              |          |       | BUCKMEM_STEP  |         |         |       |
| R38                                  | ID_18_19   |                | GP_RISE      | E2_STEP  |       | GP_RISE1_STEP |         |         |       |
| R39                                  | ID_20_21   |                | GP_FALI      | L2_STEP  |       |               | GP_FALI | L1_STEP |       |
| R40                                  | SEQ_STATUS |                | SEQ_P        | OINTER   |       |               | WAIT_   | _STEP   |       |
| R41                                  | SEQ_A      |                | POWE         | R_END    |       |               | SYSTE   | M_END   |       |
| R42                                  | SEQ_B      |                | PART_        | DOWN     |       |               | MAX_C   | COUNT   |       |
| R43                                  | SEQ_TIMER  |                | SEQ_D        | DUMMY    |       |               | SEQ_    | _TIME   |       |
| Power supply control registers (REG) |            |                |              |          |       |               |         |         |       |
| R44                                  | BUCK_A     | BPRC           | D_ILIM       | BPRO_    | _MODE | BCOR          | E_ILIM  | BCORE   | _MODE |
| R45                                  | BUCK_B     | BPER           | I_ILIM       | BPERI_   | _MODE | BMEM          | I_ILIM  | BMEM_   | MODE  |
| R46                                  | BUCKCORE   | BCORE_CON<br>F | BCORE_EN     | VBCORE   |       |               |         |         |       |
| R47                                  | BUCKPRO    | BPRO_CONF      | BPRO_EN      |          |       | VBP           | PRO     |         |       |
| R48                                  | BUCKMEM    | BMEM_CONF      | BMEM_EN      |          |       | VBM           | 1EM     |         |       |
| R49                                  | BUCKPERI   | BPERI_CONF     | VBPERI       | BPERI_HS |       |               | VBPERI  |         |       |
| R50                                  | LDO1       | LDO1_CONF      | LDO1_EN      |          |       | VLD           | 001     |         |       |
| R51                                  |            | 0 - Reserved   | 0 - Reserved |          |       |               |         |         |       |
| R52                                  | LDO3       | LDO3_CONF      | LDO3_EN      |          |       | VLC           | 003     |         |       |
| R53                                  |            | 0 - Reserved   | 0 - Reserved |          |       |               |         |         |       |
| R54                                  |            | 0 - Reserved   | 0 - Reserved |          |       |               |         |         |       |
| R55                                  |            | 0 - Reserved   | 0 - Reserved |          |       |               |         |         |       |
| R56                                  | LDO7       | LDO7_CONF      | LDO7_EN      | VLDO7    |       |               |         |         |       |
| R57                                  |            | 0 - Reserved   | 0 - Reserved |          |       |               |         |         |       |
| R58                                  | LDO9       | LDO9_CONF      | LDO9_EN      | VLDO9    |       |               |         |         |       |
| R59                                  | LDO10      | LDO10_CON      | LDO10_EN     |          |       | VLD           | O10     |         |       |

Datasheet Revision 2.5 17-Feb-2017



## **Company confidential**

| Register  | Function                            | 7              | 6            | 5                | 4               | 3               | 2               | 1               | 0               |  |
|-----------|-------------------------------------|----------------|--------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
|           |                                     | F              |              |                  |                 |                 |                 |                 |                 |  |
| R60       | SUPPLY                              | V_LOCK         |              |                  | VLDO3_GO        |                 | VB_MEM_GO       | VB_PRO_GO       | VB_CORE_G<br>O  |  |
| R61       | PULLDOWN                            | Not used       | Not used     |                  |                 | LDO1_PD_DI<br>S | MEM_PD_DIS      | PRO_PD_DIS      | CORE_PD_DI<br>S |  |
| Charging  | Charging control registers (CHARGE) |                |              |                  |                 |                 |                 |                 |                 |  |
| R62       | CHG_BUCK                            | CHG_TEMP       | 0 - Reserved | CHG_BUCK_<br>LP  | CHG_BUCK_<br>EN |                 | ISET_           | BUCK            |                 |  |
| R63       | WAIT_CONT                           | WAIT_DIR       | RTC_CLOCK    | WAIT_MODE        | EN_32KOUT       |                 | DELAY           | _TIME           |                 |  |
| R64       | ISET                                |                | IS           | ET               |                 |                 | ISET            | _USB            |                 |  |
| R65       | BAT_CHG                             | ICHG           | _PRE         |                  |                 | ICHG            | s_BAT           |                 |                 |  |
| R66       | CHG_CONT                            |                |              | VCHG_BAT VCH_THR |                 |                 |                 |                 |                 |  |
| R67       | INPUT_CONT                          | TCTR_MODE      | VCHG_DROP    |                  | VBUS_SUSP       |                 | TC              | TR              |                 |  |
| R68       | CHG_TIME                            |                |              |                  | CHG_            | _TIME           |                 |                 |                 |  |
| LED drive | r control registers (LEI            | D)             |              |                  |                 |                 |                 |                 |                 |  |
| R70       |                                     |                |              |                  |                 | 0 - Reserved    | 0 - Reserved    | 0 - Reserved    |                 |  |
| R71       |                                     |                | 0 - Reserved | 0 - Reserved     | 0 - Reserved    | 0 - Reserved    | 0 - Reserved    | 0 - Reserved    | 0 - Reserved    |  |
| R79       | LED4_CONT                           | LED4_DIM       |              |                  |                 | LED4_PWM        |                 |                 |                 |  |
| R80       | LED5_CONT                           | LED5_DIM       |              |                  |                 | LED5_PWM        |                 |                 |                 |  |
| GP-ADC c  | ontrol registers (GPAD              | C)             |              |                  |                 |                 |                 |                 |                 |  |
| R81       | ADC_MAN                             | Not used       | Not used     | Not used         | MAN_CONV        | MUX_SEL         |                 |                 |                 |  |
| R82       | ADC_CONT                            | COMP1V2_E<br>N | ADC_MODE     | TBAT_ISRC_<br>EN | AD4_ISRC_E<br>N | 0 - Reserved    | AUTO_AD5_E<br>N | AUTO_AD4_E<br>N | AUTO_VDD_<br>EN |  |
| R83       | ADC_RES_L                           | Not used       | Not used     | Not used         | Not used        | Not used        | Not used        | ADC_R           | ES_LSB          |  |
| R84       | ADC_RES_H                           |                | ADC_RES_MSB  |                  |                 |                 |                 |                 |                 |  |
| R85       | VDD_RES                             |                | VDDOUT_RES   |                  |                 |                 |                 |                 |                 |  |



## **Company confidential**

| Register   | Function            | 7         | 6          | 5          | 4                  | 3      | 2          | 1      | 0 |
|------------|---------------------|-----------|------------|------------|--------------------|--------|------------|--------|---|
| R86        | VDD_MON             |           | VDDOUT_MON |            |                    |        |            |        |   |
| R87        | ICHG_AV             |           | ICHG_AV    |            |                    |        |            |        |   |
| R88        | ICHG_THD            |           |            |            | ICHG               | _THD   |            |        |   |
| R89        | ICHG_END            |           |            |            | ICHG               | _END   |            |        |   |
| R90        | TBAT_RES            |           |            |            | TBAT               | _RES   |            |        |   |
| R91        | TBAT_HIGHP          |           |            |            | TBAT_              | HIGHP  |            |        |   |
| R92        | TBAT_HIGHN          |           |            |            | TBAT_              | HIGHN  |            |        |   |
| R93        | TBAT_LOW            |           |            |            | TBAT               | _LOW   |            |        |   |
| R94        | T_OFFSET            |           |            |            | T_OF               | FSET   |            |        |   |
| R95        | ADCIN4_RES          |           |            |            | ADCIN              | 4_RES  |            |        |   |
| R96        | AUTO4_HIGH          |           |            |            | AUTO4              | LHIGH  |            |        |   |
| R97        | AUTO4_LOW           |           |            |            | AUTO <sub>4</sub>  | 1_LOW  |            |        |   |
| R98        | ADCIN5_RES          |           |            |            | ADCIN              | 5_RES  |            |        |   |
| R99        | AUTO5_HIGH          |           |            |            | AUTO               | 5_HIGH |            |        |   |
| R100       | AUTO5_LOW           |           |            |            | AUTO               | 5_LOW  |            |        |   |
| R104       | TJUNC_RES           |           |            |            | TJUNG              | C_RES  |            |        |   |
| RTC calend | dar and alarm (RTC) |           |            |            |                    |        |            |        |   |
| R111       | COUNT_S             | Not used  | MONITOR    |            |                    | COUN   | IT_SEC     |        |   |
| R112       | COUNT_MI            | Not used  | Not used   |            |                    | COUN   | NT_MIN     |        |   |
| R113       | COUNT_H             | Not used  | Not used   | Not used   |                    |        | COUNT_HOUR |        |   |
| R114       | COUNT_D             | Not used  | Not used   | Not used   | Not used COUNT_DAY |        |            |        |   |
| R115       | COUNT_MO            | Not used  | Not used   | Not used   | Not used           |        | COUNT      | _MONTH |   |
| R116       | COUNT_Y             | Not used  | Not used   | COUNT_YEAR |                    |        |            |        |   |
| R117       | ALARM_MI            | TICK_TYPE | ALARM_TYPE |            |                    | ALAR   | M_MIN      |        |   |



## **Company confidential**

| Register | Function  | 7                | 6                 | 5               | 4          | 3        | 2         | 1        | 0                |  |
|----------|-----------|------------------|-------------------|-----------------|------------|----------|-----------|----------|------------------|--|
| R118     | ALARM_H   | Not used         | Not used          | Not used        | ALARM_HOUR |          |           |          |                  |  |
| R119     | ALARM_D   | Not used         | Not used          | Not used        |            |          | ALARM_DAY |          |                  |  |
| R120     | ALARM_MO  | Not used         | Not used          | Not used        | Not used   |          | ALARM_    | _MONTH   |                  |  |
| R121     | ALARM_Y   | TICK_ON          | ALARM_ON          |                 |            | ALARI    | M_YEAR    |          |                  |  |
| R122     | SECOND_A  |                  |                   |                 | SECO       | NDS_A    |           |          |                  |  |
| R123     | SECOND_B  |                  |                   |                 | SECO       | NDS_B    |           |          |                  |  |
| R124     | SECOND_C  |                  | SECONDS_C         |                 |            |          |           |          |                  |  |
| R125     | SECOND_D  |                  |                   |                 | SECO       | NDS_D    |           |          |                  |  |
| PAGE 1   |           | •                |                   |                 |            |          |           |          |                  |  |
| Customer | OTP (MEM) |                  |                   |                 |            |          |           |          |                  |  |
| R128     | PAGE_CON  | REG_PAGE         | Not used          | Not used        | Not used   | Not used | Not used  | Not used | Not used         |  |
| R129     | CHIP_ID   |                  | MF                | RC              |            |          | TRC       |          |                  |  |
| R130     | CONFIG_ID |                  |                   | CUSTOMER_ID     |            |          |           | CONF_ID  |                  |  |
| R131     | OTP_CONT  | GP_WRITE_D<br>IS | OTP_CONF_<br>LOCK | OTP_GP_LO<br>CK | Not used   | OTP_CONF | OTP_GP    | OTP_RP   | OTP_TRANS<br>FER |  |
| R132     | OSC_TRIM  | TRIM_32K         |                   |                 |            |          |           |          |                  |  |

**Company confidential** 

## 22 Package information

## 22.1 Package outlines

WLBGA 64B (3.94x4.12 mm) 0.5 mm pitch

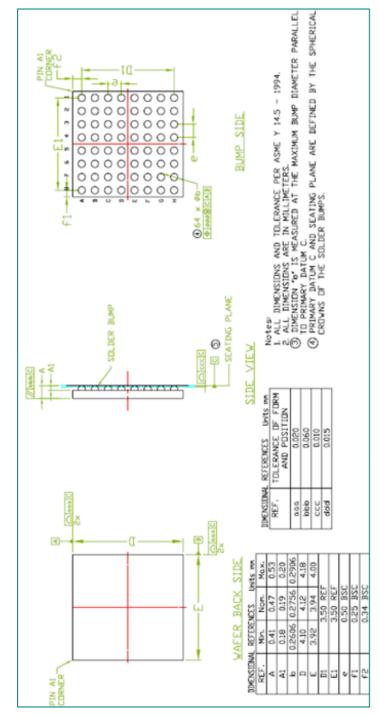



Figure 48: DA9021/22 package outline drawing



**Company confidential** 

## 23 External component selection

## 23.1 Capacitor selection

Ceramic capacitors are used as bypass capacitors at all VDD and output rails.

When selecting a capacitor, especially for types with high capacitance at smallest physical dimension, the DC bias characteristic has to be taken into account. On the VDDOUT main supply rail a minimum distributed capacitance of 30 µF with the following split is recommended:

- 10 μF close to VDDOUT pin
- 10 μF close to VDDMEM\_PERI, VDD\_CORE\_PRO buck supply pins
- 10 µF close to boost converter input (coil)
- 2x 1 μF close to VDD LDOx pins

Table 152: Recommended capacitor types

| Application                                                     | Value        | Size | Temp. char. | Tolerance | Rated voltage | Туре                         |
|-----------------------------------------------------------------|--------------|------|-------------|-----------|---------------|------------------------------|
| VLD01, VLD09<br>output bypass                                   | 4x<br>1 μF   | 0402 | X5R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM155R61A105KE15D |
| VLD03, VLD07,<br>LD010 output<br>bypass                         | 6x<br>2.2 μF | 0402 | X5R +/-15 % | +/-20 %   | 6.3 V         | Murata<br>GRM155R60J225ME95D |
| VDDCORE output bypass                                           | 1x<br>100 nF | 0402 | X7R +/-15 % | +/-10 %   | 16 V          | Murata<br>GRM155R71C104KA88D |
| VBUCKMEM,<br>VBUCKPERI output<br>bypass                         | 2x<br>10 μF  | 0805 | X5R +/-15 % | +/-10 %   | 6.3 V         | Murata<br>GRM21BR60J106KE19L |
| VBUCKPRO,<br>BUCKCORE output<br>bypass (also in<br>merged mode) | 2x<br>22 μF  | 0805 | X5R +/-15 % | +/-20 %   | 6.3 V         | Murata<br>GRM21BR60J226ME39L |
| VBUS bypass                                                     | 2x<br>2.2 μF | 0603 | X5R +/-15 % | +/-10 %   | 16 V          | Murata<br>GRM188R61C225KE15  |
| VBUS_PROT bypass                                                | 2x<br>4.7 μF | 0603 | X5R +/-15 % | +/-10 %   | 6.3 V         | Murata<br>GRM188R71J475KE19D |
| VCENTER bypass                                                  | 1x<br>10 μF  | 0805 | X7R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM21BR70J106KE76L |
| VDDOUT bypass                                                   | 3x<br>10 μF  | 0805 | X7R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM21BR70J106KE76L |
|                                                                 | 2x<br>1 μF   | 0402 | X5R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM155R61A105KE15D |
| VBAT bypass                                                     | 1x<br>10 μF  | 0805 | X7R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM21BR70J106KE76L |
| VDD_REF bypass                                                  | 1x<br>2.2 μF | 0402 | X5R +/-15 % | +/-10 %   | 10 V          | Murata<br>GRM155R61A225ME95D |
| VREF bypass                                                     | 1x<br>100 nF | 0402 | X7R +/-15 % | +/-10 %   | 16 V          | Murata<br>GRM155R71C104KA88D |
| XIN, XOUT bypass to VSS                                         | 2x<br>12 pF  | 0402 | U2J         | +/-5 %    | 50 V          | Murata<br>GRM1557U1H120JZ01D |



Company confidential

© 2017 Dialog Semiconductor

#### 23.2 Inductor selection

Inductors should be selected based upon the following parameters:

- rated max. current (usually a coil provides two current limits):
  - the first limit specifies the maximum current at which the inductance derating (due to saturation effects) is limited to be within a specified tolerance (typical 20 % or 30 %) of the peak current
  - the second limit is defined by the maximum power dissipation and is applied to the effective current
- DC resistance
  - o critical to converter efficiency and should therefore be minimised
- inductance
  - $\circ~$  given by converter electrical characteristics; is 4.7  $\mu H$  for all DA9021 switched mode converters

Table 153: Recommended inductor types

| Application                   | Value        | Size       | Imax  | Tolerance | DC res.        | Туре                     |
|-------------------------------|--------------|------------|-------|-----------|----------------|--------------------------|
| BUCKMEM, BUCKPRO,<br>BUCKCORE | 3x<br>4.7 μH | 3x3x1.2 mm | 1.2 A | +/-20 %   | 0.13 Ω<br>typ. | TDK VLS3012T-<br>4R7M1R0 |
| Merged<br>BUCKCORE/BUCKPRO    | 1x<br>2.2 μH | 3x3x1.2 mm | 1.7 A | +/-20 %   | 0.08 Ω<br>typ. | TDK VLS3012T-<br>2R2M1R5 |
| CHARGER BUCK                  | 1x<br>4.7 μH | 3x3x1.2 mm | 1.2 A | +/-20 %   | 0.13 Ω<br>typ. | TDK VLS3012T-<br>4R7M1R0 |

#### 23.3 Resistors

Table 154: Recommended resistor types

| Application                       | Value | Size | Tolerance | P max  | Туре                      |
|-----------------------------------|-------|------|-----------|--------|---------------------------|
| IREF bias<br>current<br>reference | 200kΩ | 0402 | +/-1 %    | 100 mW | Panasonic<br>ERJ2RKF2003x |

#### 23.4 External pass transistors and Schottky diodes

#### Table 155: Example FETs:

| Application                           | Package                     | Туре                       |
|---------------------------------------|-----------------------------|----------------------------|
| VBUS overvoltage protection FET       | SOT-23                      | CSD25301W1015, PMV65XP     |
| VBUS/dual overvoltage protection FET  | PowerPAK1212-8 3.3x3.3x1 mm | Vishay Siliconix Si7911DN  |
| System load switch (active diode) FET | SOT-23 3x2.6x1 mm           | Vishay Siliconix Si2333CDS |

#### 23.5 Battery pack temperature sensor (NTC)

In order to achieve reasonable accuracy over the relevant temperature range (for example, 0 °C to 50 °C for charging) by using the internal 50  $\mu$ A current source, the recommended NTC should have a nominal resistance of 10 k $\Omega$  at 25 °C and its resistance should not exceed 50 k $\Omega$  within this range.



**Company confidential** 

#### Table 156: Example NTC

| Туре            | Size | Manufacturer |
|-----------------|------|--------------|
| NCP15XH103J03RC | 0402 | Murata       |

## 23.6 Crystal

The RTC module requires an external 32.768 kHz crystal.

For crystal selection the effective load capacitance has to be taken into account. It includes both external capacitors on pins XIN and XOUT in series combination and the PCB and DA9021 stray capacitances.

For example, if 2x12 pF external capacitors are used, which gives a series combination of 6 pF, and the stray capacitance is 3 pF, then the crystal type specified for a load capacitance of 9 pF should be chosen.

Different stray capacitances may require different external capacitors and/or a different crystal type.

Furthermore the series resistance of the crystal must not exceed 100 k $\Omega$ .

#### Table 157: Example crystal

| Туре                                     | Size           | Manufacturer  |
|------------------------------------------|----------------|---------------|
| CC7V-T1A 32.768 kHz 9.0 pF +/-<br>30 ppm | 3.2x1.5x0.9 mm | Micro Crystal |



Company confidential

## 24 Layout guidelines

#### 24.1 General recommendations

- Appropriate trace width and amount of vias should be used for all power supply paths.
- Too high trace resistances can prevent the system from proper operation, for example efficiency
  and current ratings of switch mode converters and charger might be degraded. Furthermore the
  PCB might be exposed to thermal hot spots, which can lead to critical overheating due to the
  positive temperature coefficient of copper.
- Special care must be taken to the DA9021 pad connections. The traces of the outer row should be connected with the same width as the pads and should become wider as soon as possible.
   For supply pins in the second row connection in an inner layer is recommended (depending on the maximum current two or more vias might be required).
- A common ground plane should be used, which allows proper electrical and thermal performance. Noise sensitive references like the VREF capacitor and IREF resistor should be referred to a silent ground which is connected at a star point underneath or close to the DA9021 main ground connection.
- Generally all power tracks with discontinuous and / or high currents should be kept as short as possible.
- Noise sensitive analogue signals like feedback lines or crystal connections should be kept away from traces carrying pulsed analogue or digital signals. This can be achieved by separation (distance) or shielding with quiet signals or ground traces.

## 24.2 System supply and charger

- Trace resistance of the VBUS\_PROT bypass capacitor to VCENTER must be minimised to allow proper operation of the charge and system current control.
- If an external pMOS transistor is used to bypass the internal active diode, its connection trace resistance has to be kept to a minimum.
- The placement of the distributed capacitors at VDDOUT must ensure that all VDD inputs, especially to the buck converters and LDOs, are connected to a bypass capacitor close to the pads. It is recommended to place at least two 1 µF capacitors close to the LDO supply pads and at least one 10 µF close to the buck VDD rail.
- Using a local power plane underneath the chip for VDDOUT can be considered.
- Adequate heat sink areas should be used for at least one terminal of the external overvoltage protection and / or active diode FETs.

### 24.3 LDOs and switched mode supplies

- Transient current loops area of the switched mode converters should be minimised.
- The common references (VREF capacitor, IREF resistor) should be placed close to DA9021, cross coupling to any noisy digital or analogue trace must be avoided.
- Output capacitors of the LDOs should be placed close to the output pins. Small capacitors (for example 100 nF) are also required to be close to the input pins of the supplied devices.
- Care must be taken that no current is carried on feedback lines (VBUCKxx).

#### 24.4 Crystal oscillator

- The crystal and its load capacitors should be placed as close as possible to the IC with short and symmetric traces.
- The traces must be isolated from noisy signals, especially from clocked digital ones. Ideally the lines are buried between two ground layers, surrounded by additional ground traces.

137 of 142



**Company confidential** 

### 24.5 DA9021 thermal connection, land pad and stencil design

- The DA9021 provides a centre ground plane, which is soldered directly to the PCB's centre ground pad. This PCB ground pad must be connected with as many vias and as direct as possible to the PCB's main ground plane in order to achieve good thermal performance.
- Solder mask openings for the ground pad must be split by following a certain pattern like stripes
  or round shapes or squares, as a solid square would apply too much solder paste and the signal
  pads might not be connected properly.
- As DA9021 also provides different sizes of the signal pads, some adaption of the mask openings might be required as well (generally small pads a bit larger, large pads a bit smaller than the pad itself). Vias inside or next to the pads should be filled. An appropriately fine solder paste is required.

Company confidential

#### 25 Definitions

### 25.1 Power dissipation and thermal design

When designing with the DA9021/22 consideration must be given to power dissipation as the level of integration of the device can result in high power dissipation when all functions are operating with high battery voltages. Exceeding the package power dissipation will result in the internal thermal sensor shutting down the device until it has cooled sufficiently.

The package includes a thermal management paddle to enable improved heat spreading on the PCB.

Linear regulators operating with a high current and high differential voltage between input and output will dissipate the following power:

$$P_{diss} = (V_{in} - V_{out}) * I_{out}$$

#### **Example**

A regulator supplying 150 mA @ 2.8 V from a fully charged lithium battery (VDD = 4.1 V):

$$P_{diss} = (4.1 V - 2.8 V) * 0.15 A = 195 mW$$

For switching regulators:

$$P_{out} = P_{in} * efficiency$$

Therefore:

$$P_{diss} = P_{in} - P_{out}$$

#### **Example**

An 85 % efficient buck converter supplying 1.2 V@ 400 mA:

$$P_{diss} = 1.2 V * 0.4 A * \left(\frac{1}{0.85} - 1\right) = 85 mW$$

As the DA9021/22 is a multiple regulator configuration each supply must be considered and summed to give the total device dissipation (current drawn from the reference and control circuitry can be considered negligible in these calculations).

#### 25.2 Regulator parameters

#### 25.2.1 Dropout voltage

In the DA9021/22 a regulator's dropout voltage is defined as the minimum voltage differential between the input and output voltages whilst regulation still takes place. Within the regulator, voltage control takes place across a PMOS pass transistor and when entering the dropout condition the transistor is fully turned on and therefore cannot provide any further voltage control.

When the transistor is fully turned on the output voltage tracks the input voltage and regulation ceases. As the DA9021/22 is a CMOS device and uses a PMOS pass transistor, the dropout voltage is directly related to the ON resistance of the device. In the device the pass transistors are sized to provide the optimum balance between required performance and silicon area. By employing a 0.25  $\mu$ m process Dialog Semiconductor are able to achieve very small pass transistor sizes for superior performance. Vdropout = Vin - Vout = Rdson \* Iout

When defining dropout voltage it is specified in relation to a minimum acceptable change in output voltage. For example all Dialog regulators have dropout voltage defined as the point at which the output voltage drops 10 mV below the output voltage at the minimum guaranteed operating voltage. The worst case conditions for dropout are high temperature (highest ON resistance for internal device) and maximum current load.

Company confidential

#### 25.2.2 Power supply rejection

Power supply rejection (PSRR) is especially important in the supplies to the RF and audio parts of the telephone. In a TDMA system such as GSM, the 217 Hz transmit burst from the power amplifier results in significant current pulses being drawn from the battery. These can peak at up to 2 A before reaching a steady state of 1.4 A (see below). Due to the battery having a finite internal resistance (typically  $0.5~\Omega$ ) these current peaks induce ripple on the battery voltage of up to 500 mV. As the supplies to the audio and RF are derived from this supply it is essential that this ripple is removed otherwise it would show as a 217 Hz tone in the audio and could also affect the transmit signal. Power supply rejection should always be specified under worst case conditions when the battery is at its minimum operating voltage, when there is minimum headroom available due to dropout.

#### 25.2.3 Line regulation

Static line regulation is a measurement that indicates a change in the regulator output voltage  $\Delta V$ reg (regulator operating with a constant load current) in response to a change in the input voltage  $\Delta V$ in. Transient line regulation is a measurement of the peak change  $\Delta V$ reg in regulated voltage seen when the line input voltage changes.

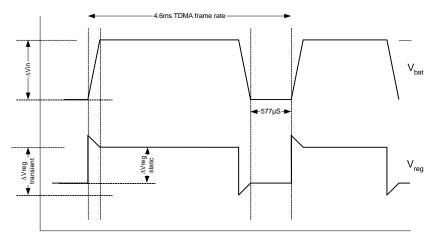



Figure 49: Line regulation

#### 25.2.4 Load regulation

Static load regulation is a measurement that indicates a change in the regulator output voltage  $\Delta V$ reg in response to a change in the regulator loading  $\Delta I$ load whilst the regulator input voltage remains constant. Transient load regulation is a measurement of the peak change in regulated voltage  $\Delta V$ reg seen when the regulator load changes.

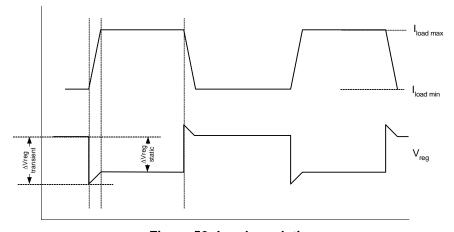



Figure 50: Load regulation



**Company confidential** 

# **26 Ordering information**

| Part number  | Package           | Shipment    | Pack quantity |
|--------------|-------------------|-------------|---------------|
| DA9021-xxUE2 | 4x4 64 bump WLCSP | T&R         | 5000          |
| DA9021-xxUE6 | 4x4 64 bump WLCSP | Waffle pack | 320           |
| DA9022-xxUE2 | 4x4 64 bump WLCSP | T&R         | 5000          |
| DA9022-xxUE6 | 4x4 64 bump WLCSP | Waffle pack | 320           |

## 26.1 Additional applications information

Please contact Dialog Semiconductor for latest application information on the DA9021/22 and other power management devices.

## **Revision history**

| Revision | Date          | Description                                                                              |  |
|----------|---------------|------------------------------------------------------------------------------------------|--|
| 2.5      | 17-Feb-2017   | Minor update to General Description for uniformity, align revisioning                    |  |
| 2.0      | 17-March-2016 | Conversion to new template (CFR0011-120-00 Rev 5) and reformatting to current guidelines |  |

#### Change details:

• Many minor formatting changes, such as the use of non-breaking spaces. Rewording of text from US to UK English and rewording of some confusing grammar and vocabulary to plain English.



Company confidential

#### **Status definitions**

| Revision   | Datasheet status | Product status | Definition                                                                                                                                                                                                                                                            |
|------------|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. <n></n> | Target           | Development    | This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.                                                                                                                                |
| 2. <n></n> | Preliminary      | Qualification  | This datasheet contains the specifications and preliminary characterisation data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.                                                             |
| 3. <n></n> | Final            | Production     | This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications. |
| 4. <n></n> | Obsolete         | Archived       | This datasheet contains the specifications for discontinued products. The information is provided for reference only.                                                                                                                                                 |

#### **Disclaimer**

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

#### **RoHS** compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor's statement on RoHS can be found on the customer portal <a href="https://support.diasemi.com/">https://support.diasemi.com/</a>. RoHS certificates from our suppliers are available on request.

## **Contacting Dialog Semiconductor**

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email:

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Singapore China (Shenzhen)
Dialog Semiconductor Singapore Dialog Semicondu

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

Datasheet Revision 2.5 17-Feb-2017

Phone: +65 64 8499 29

Phone: +852 3769 5200

Phone: +82 2 3469 8200

Dialog Semiconductor Korea

Dialog Semiconductor Hong Kong

Hona Kona