

TPD6E004

SLLS799B - FEBRUARY 2008 - REVISED APRIL 2016

TPD6E004 Low-Capacitance, 6-Channel ±15-kV ESD Protection Array for High-Speed Data Interfaces

Features

- **ESD Protection Exceeds JESD**
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC 61000-4-2 Contact Discharge
 - ±12-kV IEC 61000-4-2 Air-Gap Discharge
- Low 1.6-pF I/O Capacitance
- 0.9-V to 5.5-V Supply-Voltage Range
- 6-Channel Device
- Space-Saving UQFN (RSE) Package

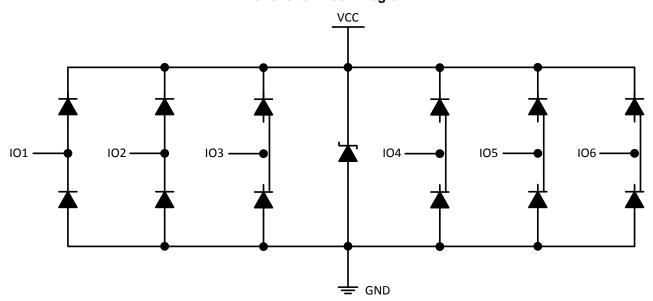
Applications

- **USB**
- Ethernet
- **FireWire**
- Video
- Cell Phones
- **SVGA Video Connections**
- Glucose Meters

3 Description

The TPD6E004 device is a low-capacitance, ±15-kV ESD-protection diode array designed to protect sensitive electronics attached to communication lines. Each channel consists of a pair of diodes that steers ESD current pulses to V_{CC} or GND. The TPD6E004 protects against ESD pulses up to ±15-kV humanbody model (HBM), ±8-kV contact ESD, and ±12-kV air-gap ESD as specified in IEC 61000-4-2. This device has a typical 1.6-pF capacitance per channel, making it ideal for use in high-speed data I/O interfaces.

The TPD6E004 device is available in the RSE package and is specified for -40°C to +85°C operation.


The TPD6E004 device is a six-channel ESD structure designed USB, Ethernet, and applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPD6E004	UQFN (8)	1.50 mm × 1.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

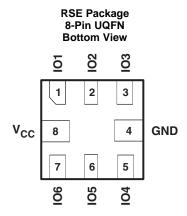
Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	7.3 Feature Des	cription
2	Applications 1	7.4 Device Func	tional Modes
3	Description 1	8 Application and	I Implementation
4	Revision History2	8.1 Application In	nformation
5	Pin Configuration and Functions 3	8.2 Typical Appli	cation
6	Specifications	9 Power Supply F	Recommendations
-	6.1 Absolute Maximum Ratings	10 Layout	
	6.2 ESD Ratings	10.1 Layout Guid	delines
	6.3 ESD Ratings – Surge Protection	10.2 Layout Exa	mple
	6.4 Recommended Operating Conditions	11 Device and Do	cumentation Support1
	6.5 Thermal Information	11.1 Documenta	tion Support1
	6.6 Electrical Characteristics	11.2 Community	Resources1
	6.7 Typical Characteristics	11.3 Trademarks	3 1
7	Detailed Description 6	11.4 Electrostation	c Discharge Caution1
	7.1 Overview 6	11.5 Glossary	1
	7.2 Functional Block Diagram 6		ckaging, and Orderable 1

4 Revision History


Changes from Revision A (February 2008) to Revision B

Page

 $\label{localization} {\it Copyright} @ 2008-2016, {\it Texas Instruments Incorporated} \\ {\it Product Folder Links: $\it TPD6E004$}$

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION		
NO.	NAME	1/0	DESCRIPTION		
1	IO1	I/O	ESD-protected channel		
2	IO2	I/O	ESD-protected channel		
3	IO3	I/O	ESD-protected channel		
4	GND	GND	Ground		
5	104	I/O	ESD-protected channel		
6	IO5	I/O	ESD-protected channel		
7	106	I/O	ESD-protected channel		
8	V _{CC}	PWR	Power-supply input. Bypass V _{CC} to GND with a 0.1-μF ceramic capacitor.		

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Operating voltage for pin VCC		-0.3	5.5	V
V _{I/O}	Operating voltage for pins IO1, IO2, IO3, IO4, IO5 and IO6		-0.3	V _{CC} + 0.3	V
	Duman tanamanatura (aaldarina)	Infrared (15 s)		220	°C
	Bump temperature (soldering)	Vapor phase (60 s)		215	
	Lead temperature (soldering, 10 s)		300	°C	
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±15000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings - Surge Protection

			VALUE	UNIT
V	Floatroototic discharge	IEC 61000-4-2 contact discharge	±8000	V
V _(ESD) Electr	Electrostatic discharge	IEC 61000-4-2 air-gap discharge	±12000	V

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

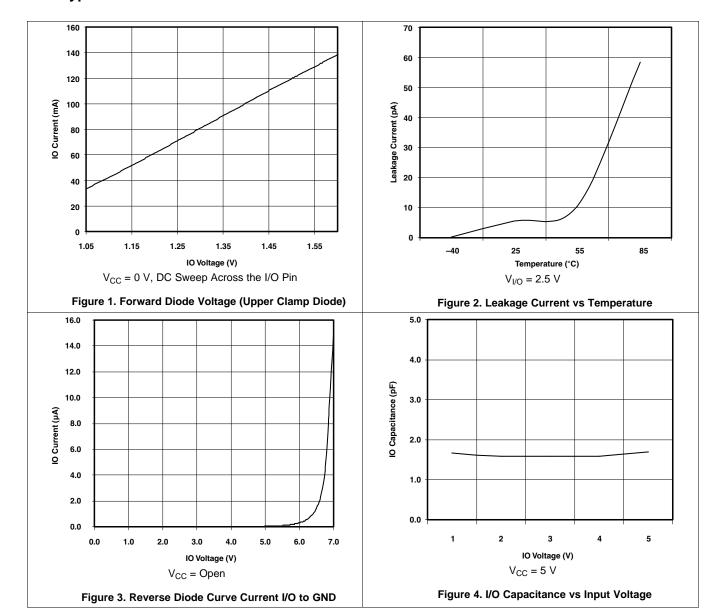
		MIN	MAX	UNIT
T _A	Operating free-air temperature	-40	85	°C
V _{CC}	Operating voltage for pin VCC	0.9	5.5	V
V _{I/O}	Operating voltage for pins IO1, IO2, IO3, IO4, IO5 and IO6	0	Minimum of: (5.8, V _{CC})	V

6.5 Thermal Information

		TPD6E004	
	THERMAL METRIC ⁽¹⁾	RSE (UQFN)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	138.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	74.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	43.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	3.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	43.6	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

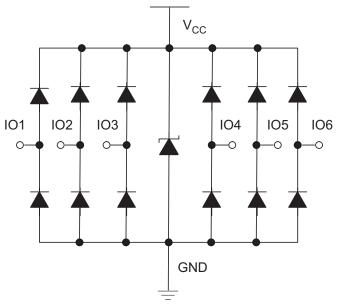
6.6 Electrical Characteristics


 $V_{CC} = 5 \text{ V} \pm 10\%$, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted)

- 00	IVIA	((
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{CC}	Supply voltage		0.9		5.5	V
I _{CC}	Supply current				500	nA
V_{F}	Diode forward voltage	I _F = 1 mA		0.8		V
I _I	Channel leakage current			±1		nA
V_{BR}	Break-down voltage	I _I = 10 μA	6		8	V
C _{I/O}	Channel input capacitance	V_{CC} = 5 V, bias of $V_{CC}/2$, f = 10 MHz		1.6	2	pF

(1) Typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

6.7 Typical Characteristics



7 Detailed Description

7.1 Overview

The TPD6E004 device is a six-channel TVS protection diode array. The TPD6E004 is rated to dissipate ESD strikes of ±8-kV contact and ±12-kV air-gap, as specified in the IEC 61000-4-2 international standard. This device has 1.6-pF capacitance per I/O channel, making it ideal for use in high-speed data I/O interfaces.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Figure 5. Logic Block Diagram

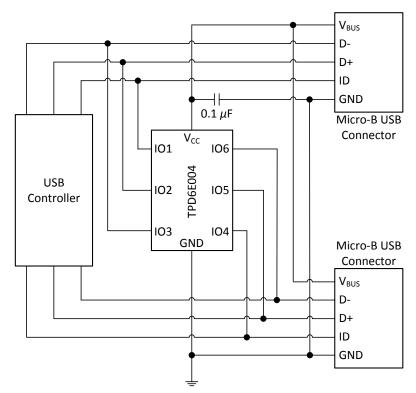
7.3 Feature Description

The TPD6E004 is a TVS that provides ESD protection for up to six channels, withstanding up to ±8-kV contact and ±12-kV air-gap ESD per IEC 61000-4-2. The monolithic technology yields exceptionally small variations in capacitance between any I/O pin of the TPD6E004. The small footprint is ideal for applications where space-saving designs are important.

7.4 Device Functional Modes

The TPD6E004 device is a passive integrated circuit that triggers when voltages are above V_{BR} or below the diodes V_{F} of approximately -0.8 V. During ESD events, voltages as high as ± 8 -kV contact and ± 12 -kV air-gap ESD can be directed to ground through the internal diodes. When the voltages on the protected line fall below the trigger levels of TPD6E004 (usually within 10s of nano-seconds) the device reverts back to its high-impedance state.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPD6E004 device is a TVS diode array typically used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected integrated circuit (IC). The triggered TVS holds this voltage, V_{CLAMP}, to a safe level for the protected IC.

8.2 Typical Application

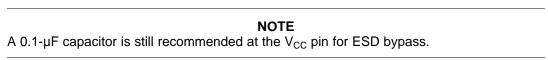
Copyright © 2016, Texas Instruments Incorporated

Figure 6. Two-Port Micro-B USB 2.0 Application

8.2.1 Design Requirements

For this design example, a single TPD6E004 is used to protect all the pins of two USB 2.0 Micro-B connectors. Table 1 lists the design parameters for the USB application.

Table 1. Design Parameters


DESIGN PARAMETER	VALUE
Signal range on IO1, IO2, IO3, IO4, IO5 and IO6	0 V to 3.6 V
Signal voltage range on V _{CC}	0 V to 5.5 V
Operating Frequency	240 MHz

8.2.2 Detailed Design Procedure

When placed near the USB connectors, the TPD6E004 ESD solution offers little or no signal distortion during normal operation due to low I/O capacitance and ultra-low leakage current specifications. The TPD6E004 ensures that the core circuitry is protected and the system is functioning properly in the event of an ESD strike. For proper operation, the *Layout* and following design guidelines must be followed:

- 1. Place the TPD6E004 solution close to the connectors. This allows the TPD6E004 to take away the energy associated with ESD strike before it reaches the internal circuitry of the system board.
- 2. Place a 0.1-μF capacitor very close to the V_{CC} pin. This limits any momentary voltage surge at the I/O pin during the ESD strike event.
- 3. Ensure that there is enough metallization for the V_{CC} and GND loop. During normal operation, the TPD6E004 consumes only μA of leakage current, but during an ESD event, V_{CC} and GND may see 15-A to 30-A of current, depending on the ESD level. A sufficient current path enables the safe discharge of all the energy associated with the ESD strike.
- 4. Leave any unused I/O pins floating. In this example of protecting two Micro-B USB ports, none of the I/O pins are left unused.
- 5. The V_{CC} pin can be connected in two different ways:
 - (a) If the V_{CC} pin is connected to the system power supply, the TPD6E004 works as a transient suppressor for any signal swing above V_{CC} + V_F. TI recommends a 0.1-μF capacitor on the device V_{CC} pin for ESD bypass.
 - (b) If the V_{CC} pin is not connected to the system power supply, the TPD6E004 can tolerate a higher signal swing in the range of up to 5.8 V.

8.2.3 Application Curve

Figure 7 is a capture of the voltage clamping waveform of the TPD6E004 during a +8-kV contact IEC 61000-4-2 ESD strike.

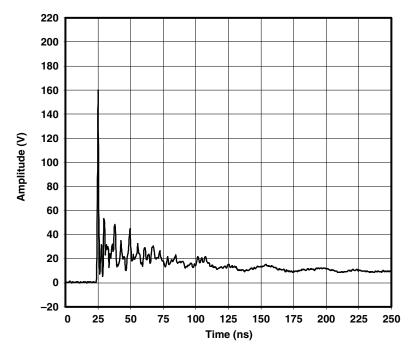
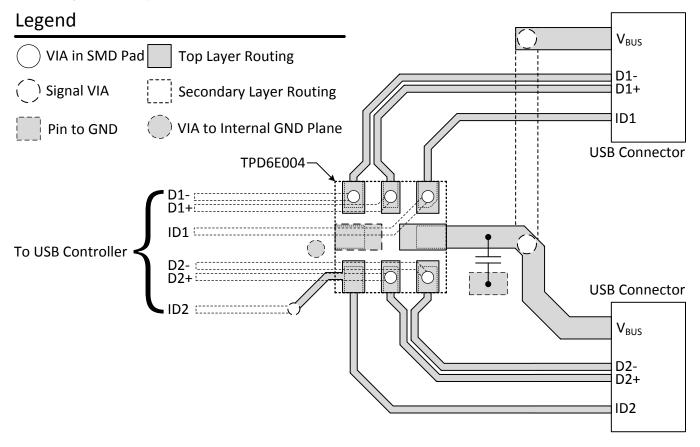


Figure 7. IEC 61000-4-2 +8-kV Contact ESD Clamping Waveform

9 Power Supply Recommendations


The TPD6E004 device is a passive ESD protection device, so there is no need to power it. Do not violate the maximum voltage specifications for each pin.

10 Layout

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- · Route the protected traces as straight as possible.
- Eliminate any corners less than 135° on the protected traces between the TVS and the connector. Best practice is using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.
- Connect the ground pin to a same layer ground pour which is connected to an internal ground plane with a VIA. Place the VIA very near the ground pin.

10.2 Layout Example

Copyright © 2016, Texas Instruments Incorporated

Figure 8. TPD6E004 Layout Example for Two USB 2.0 Micro-B Connectors

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Reading and Understanding an ESD Protection Datasheet, SLLA305
- ESD Protection Layout Guide, SLVA680

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

4-Feb-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPD6E004RSER	ACTIVE	UQFN	RSE	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2V	Samples
TPD6E004RSERG4	ACTIVE	UQFN	RSE	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2V	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

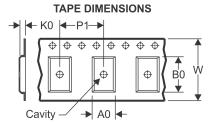
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

4-Feb-2016

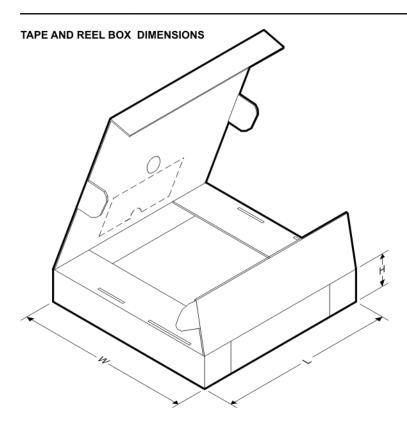

n no event shall TI's liabili	ty arising out of such information	exceed the total purchase	price of the TI part(s)	at issue in this document sold by	TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Feb-2016

TAPE AND REEL INFORMATION

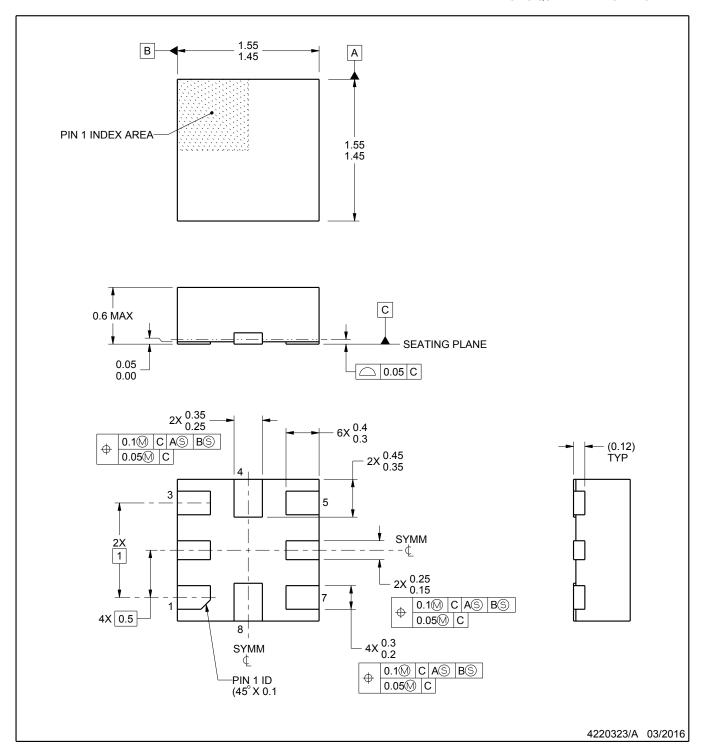
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD6E004RSER	UQFN	RSE	8	3000	179.0	8.4	1.7	1.7	0.76	4.0	8.0	Q2
TPD6E004RSER	UQFN	RSE	8	3000	180.0	9.5	1.7	1.7	0.75	4.0	8.0	Q2

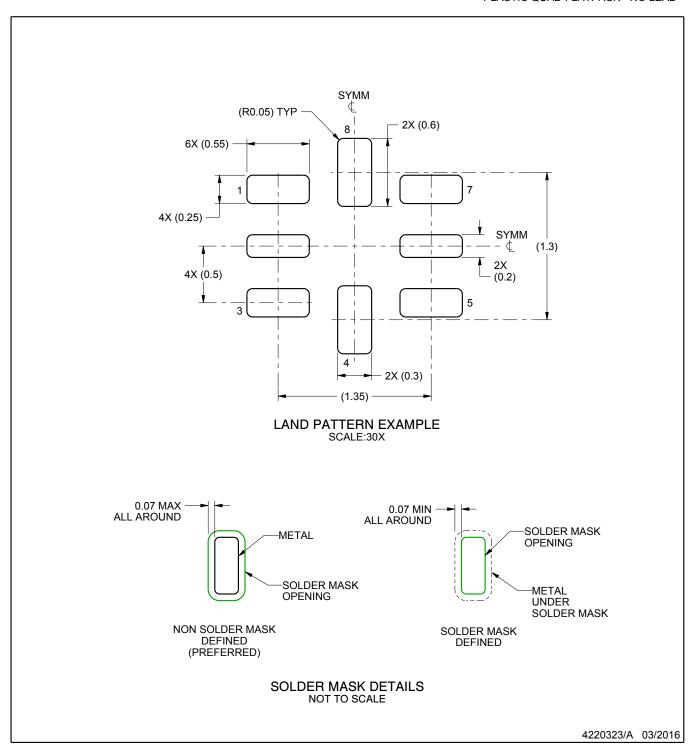
www.ti.com 4-Feb-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPD6E004RSER	UQFN	RSE	8	3000	203.0	203.0	35.0	
TPD6E004RSER	UQFN	RSE	8	3000	184.0	184.0	19.0	

PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity