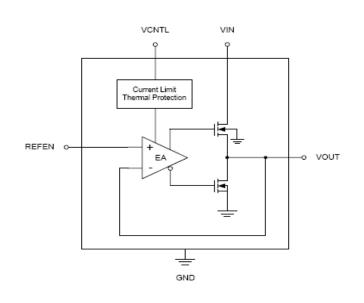
GS9020 2A Sink/Source Bus Termination Regulator

Product Description

The GS9020 is a simple, cost-effective and high-speed linear regulator designed to generate termination voltage in double data rate (DDR) memory system to comply with the JEDEC SSTL_2 and SSTL_18 or other specific interfaces such as HSTL, SCSI-2 and SCSI-3 etc. devices requirements. The regulator is capable of actively sinking or sourcing up to 2A while regulating an output voltage to within 40mV.The output termination voltage cab be tightly regulated to track 1/2VDDQ by two external voltage divider resistors or the desired output voltage can be pro-grammed by externally forcing the REFEN pin voltage.

The GS9020 also incorporates a high-speed differential amplifier to provide ultra-fast response in line/load transient. Other features include extremely low initial offset voltage, excellent load regulation, current limiting in bi-directions and on-chip thermal shut-down protection.

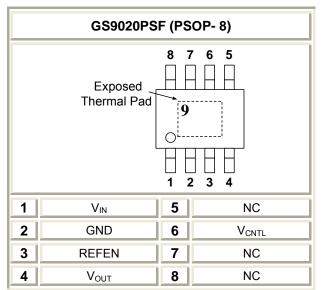
The GS9020 are available in the PSOP-8 (Exposed Pad) surface mount packages.

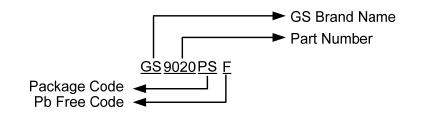

Features

- Ideal for DDR-I, DDR-II and DDR-III V_{TT} Applications
- Sink and Source 2A Continuous Current
- Integrated Power MOSFETs
- Generates Termination Voltage for SSTL_2, SSTL_18, HSTL, SCSI-2 and SCSI-3 Interfaces.
- High Accuracy Output Voltage at Full-Load
- Output Adjustment by Two External Resistors
- Low External Component Count
- Shutdown for Suspend to RAM (STR) Functionality with High-Impedance Output
- Current Limiting Protection
- On-Chip Thermal Protection
 Available in PSOP-8 (Exposed Pad) Packages
- V_{IN} and V_{CNTL}No Power Sequence Issue
- 100% Lead (Pb)-Free
- Stable with Ceramic Output Capacitor
- RoHS Compliant, 100%Pb & Halogen Free

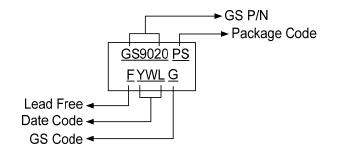
Applications

- Desktop PCs, Notebooks, and Workstations
- Graphics Card Memory Termination
- Set Top Boxes, Digital TVs, Printers
- Embedded Systems
- Active Termination Buses
- DDR-I, DDR-II and DDR-III Memory Systems


Block Diagram


GS9020

Packages & Pin Assignments



Pin Name	Pin function
V _{IN}	Power input
GND	Ground
V _{CNTL}	Gate drive voltage
Vout	Output voltage
REFEN	Reference voltage input and chip enable

Ordering Information

Marking Information

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{IN}	Input Voltage	6	V
V _{CNTL}	Control Voltage	6	V
Vout	Vout Output Voltage (Vout to GND)	Output Voltage (V_{OUT} to GND)-0.3 ~ V_{IN} +0.3V	
PD	Power Dissipation	Internally Limited	
	ESD Rating	3	KV
Ts	Storage Temperature Range	-65 to +150	°C
T _{LEAD}	Lead Temperature(Soldering,5 sec.)	rre(Soldering,5 sec.) 260	
ΘJC	Package Thermal Resistance	28	°C/W

Operating Rating

Symbol	Parameter	Value	Unit
V _{IN}	Input Voltage	5.5 to 1.5 ±3%	V
V _{CNTL}	Control Voltage	5.0 to 3.3 ±5%	V
TA	Ambient Temperature	-40 to +85	°C
TJ	Junction Temperature	-40 to +125	°C

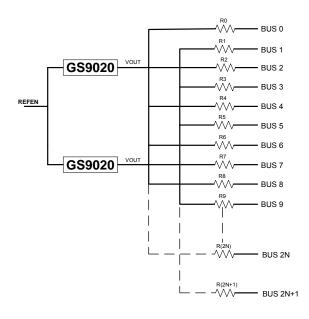
Electrical Characteristics

 $V_{\text{IN}} = 2.5 \text{V} / 1.8 \text{V} / 1.5 \text{V}, \text{ } V_{\text{CNTL}} = 3.3 \text{V}, \text{ } V_{\text{REFEN}} = 1.25 \text{V} / 0.9 \text{V} / 0.75 \text{V}, \text{ } C_{\text{OUT}} = 10 \mu \text{F} \text{ (Ceramic)}, \text{ } \text{T}_{\text{A}} = 25^{\circ} \text{C}, \text{ } \text{unless otherwise specified}$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
Input	Input						
	V _{CNTL} Operation Current	I _{OUT} =0A		1	2.5	mA	
I _{STBY}	Standby Current	V_{REFEN} <0.2V(Shutdown), R _{LOAD} =180 Ω		50	90	μA	
Output (D	Output (DDR / DDR II / DDR III)						
Vos	Output Offset Voltage(3)	I _{OUT} = 0A	-20		+20	mV	
ΔV_{LOAD}	Load Regulation(4)	I _{OUT} = +2A	-20		+20	mV	
ΔV_{LOAD}	Load Regulation(4)	I _{OUT} = -2A	-20		+20	mV	
Protection	1						
I _{LIM}	Current limit		2.2			А	
T _{SD}	Thermal Shutdown Temperature	$3.3V \le V_{CNTL} \le 5V$		170		°C	
ΔT_{SD}	Thermal Shutdown Hysteresis	$3.3V \le V_{CNTL} \le 5V$		35		°C	
REFEN Sh	REFEN Shutdown						
V _{IH}	Shutdown Threshold	Enable	0.6			v	
VIL		Shutdown			0.2	v	
Tss	Soft Start interval	R1=R2=100K, Css=1uF		0.2		ms	

Note 1: Exceeding the absolute maximum rating may damage the device.

Note 2: V_{OS} offset is the voltage measurement defined as V_{OUT} subtracted from V_{REFEN} . Note 3: V_{OS} offset is the voltage measurement defined as V_{OUT} subtracted from V_{REFEN} .


Note 4: Regulation is measured at constant junction temperature by using a 5ms current pulse. Devices are tested for load regulation in the load range from 0A to 2A.

Application Information

Input Capacitor and Layout Consideration

Place the input bypass capacitor as close as possible to voltage divider the GS9020. A low ESR capacitor larger than 470uF is Make sure the sinking current capability of pull-down between GS9020 and the preceding power converter.

Consideration while designs the resistance of

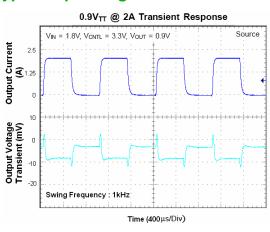
recommended for the input capacitor. Use short and NMOS if the lower resistance was chosen so that the wide traces to minimize parasitic resistance and voltage on VREFEN is below 0.2V. In addition, the inductance. Inappropriate layout may result in large capacitor and voltage divider form the low-pass filter. parasitic inductance and cause undesired oscillation There are two reasons doing this design; one is for output voltage soft-start while another is for noise immunity.

Thermal Consideration

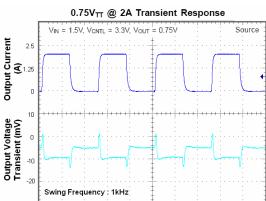
GS9020 regulators have internal thermal limiting circuitry designed to protect the device during overload conditions. For continued operation, do not exceed maximum operation junction temperature 125°C. The power dissipation definition in device is:

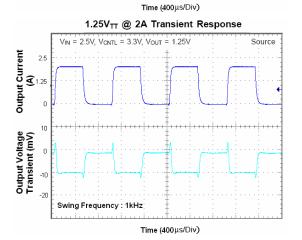
$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{Q}$

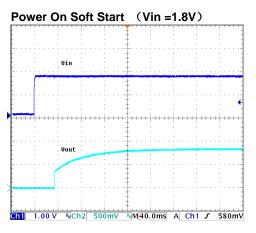
The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula: $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \Theta_{JA}$

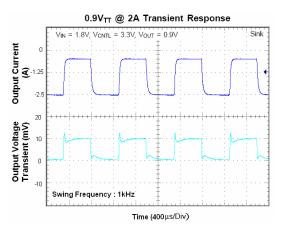

Where $T_{J(MAX)}$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the Θ_{JA} is the junction to ambient thermal resistance. The junction to ambient thermal resistance (Θ_{JA} is layout dependent) for PSOP-8 package (Exposed Pad) is 75 °C/W on standard JEDEC 51-7 (4layers, 2S2P) thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by following formula: $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / 75^{\circ}C /W = 1.33W$

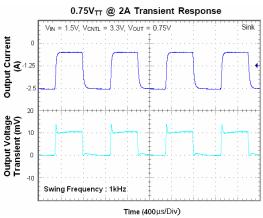
The thermal resistance Θ_{JA} of PSOP-8 (Exposed Pad) is determined by the package design and the PCB design. However, the package design has been decided. If possible, it's useful to increase thermal performance by the PCB design. The thermal resistance can be decreased by adding copper under the expose pad of PSOP-8 package. We have to consider the copper couldn't stretch infinitely and avoid the tin overflow.

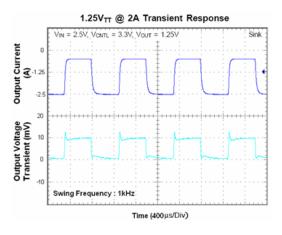

Typical Application Circuit V_{CNTL}=3.3V ↔ VIN=2.5V/1.8V/1.5V --CCNTL CIN ≷R₁ VIN VCNTL R_TT <u>۸۸۸</u> GS9020 <u>۸۸۸</u> REFEN VOUT 2N7002 <u>۱</u>۸۸. GND Css Ś R_{DUMMY} ≷R₂ H COUT $\Lambda \Lambda \Lambda_r$ EN O- \sim $R_1 = R_2 = 100 K\Omega, R_{TT} = 50 \Omega/33 \Omega/25 \Omega$

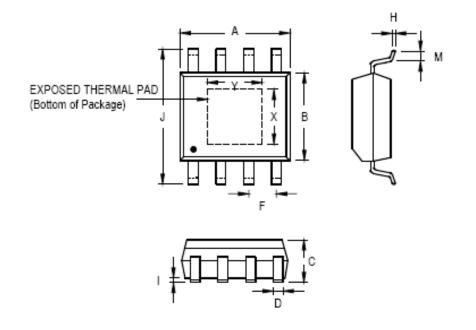

 $C_{OUT, min}$ =10µF(Ceramic)+1000µF under the worst case testing condition R_{DUMMY} =1k Ω as for VOUT discharge when VIN is not present but VCNTL is present $C_{SS}=1\mu F, C_{IN}=470\mu F(ESR), C_{CNTL}=1\mu F$






Typical Operating Characteristics





- GS9020

Package Dimension

PSOP-8 PLASTIC PACKAGE

Dimensions					
SYMBOL	Millimeters		Inches		
STWIDOL	MIN	MAX	MIN	MAX	
Α	4.801	5.004	0.189	0.197	
В	3.810	3.988	0.150	0.157	
С	1.346	1.753	0.053	0.069	
D	0.330	0.508	0.013	0.020	
F	1.194	1.346	0.047	0.053	
Н	0.191	0.254	0.008	0.010	
	0.000	0.152	0.000	0.006	
J	5.791	6.198	0.228	0.244	
М	0.406	1.270	0.016	0.050	
X	2.057	2.515	0.081	0.099	
Y	2.057	3.404	0.081	0.134	

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

GS Headquarter		
	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)	
Go	886-2-2657-9980	
Q	886-2-2657-3630	
∑@	sales@g-tech.com.tw	

Wu-Xi Branch			
\	No.21 Changjiang Rd., WND, Wuxi, Jiangsu, China (INFO. &. TECH. Science Park Building A 210 Room)		
Go	86-5108-5217051		
0	86-5108-5211238		
@	sales@g-tech.com.tw		

RD Division		
	824 Bolton Drive Milpitas. CA. 95035	
Go	1-408-457-0587	
`@	sales@g-tech.com.tw	

