27－，28－，and 32－Output，76V， Serial－Interfaced VFD Tube Drivers

General Description

The MAX6922／MAX6932／MAX6933／MAX6934 multi－out－ put，76V，vacuum－fluorescent display（VFD）tube drivers that interface a VFD tube to a microcontroller or a VFD controller，such as the MAX6850－MAX6853．The MAX6922／MAX6934 have 32 outputs，while the MAX6932 has 27 outputs，and the MAX6933 has 28 outputs．All devices are also suitable for driving telecom relays．
Data is input using standard 4 －wire serial interface （CLOCK，DATA，LOAD，BLANK）compatible with other VFD drivers and controllers．
For easy display control，the active－high BLANK input forces all driver outputs low，turning the display off，and automatically puts the IC into shutdown mode．Display intensity may also be controlled by directly pulse－width modulating the BLANK input．
The MAX6922／MAX6932／MAX6934 have a serial inter－ face data output，DOUT，allowing any number of devices to be cascaded on the same serial interface．
The MAX6932／MAX6933／MAX6934 have a negative supply voltage input，VSS，allowing the drivers＇output swing to be made bipolar to simplify filament biasing in many applications．
The MAX6922 is available in a 44－pin PLCC package， the MAX6932 and MAX6933 are available in 36－pin SSOP packages，and the MAX6934 is available in 44－pin PLCC and TQFN packages．
Maxim also offers a 12－output VFD driver（MAX6920） and 20－output VFD drivers（MAX6921／MAX6931）．

Applications			
White Goods		Industrial Weighing	
Gaming Machines		Security	
Automotive		Telecom	
Avionics		VFD Modules	
Instrumentation		Industrial Control	
		Selector Guide	
PART	NO．OF OUTPUTS	BIPOLAR OUTPUT SWING	DOUT FOR CASCADING
MAX6922	32	No	Yes
MAX6932	27	Yes	Yes
MAX6933	28	Yes	No
MAX6934	32	Yes	Yes

Pin Configurations appear at end of data sheet．
—＿Features
－5MHz Industry－Standard 4－Wire Serial Interface
－3V to 5．5V Logic Supply Range
－8V to 76V Grid／Anode Supply Range
－－11V to OV Filament Bias Supply
（MAX6932／MAX6933／MAX6934 Only）
－Push－Pull CMOS High－Voltage Outputs
－Outputs Can Source 40mA，Sink 4mA Continuously
－Outputs Can Source 75mA Repetitive Pulses
－Outputs Can Be Paralleled for Higher Current Drive
－Any Output Can Be Used as a Grid or an Anode Driver
－BLANK Input Simplifies PWM Intensity Control
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range as Standard

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	PKG CODE
MAX6922AQH	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 PLCC	Q44－1
MAX6932AAX	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	36 SSOP	$\mathrm{A} 36-2$
MAX6933AAX	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	36 SSOP	$\mathrm{A} 36-2$
MAX6934AQH	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 PLCC	$\mathrm{Q} 44-1$
MAX6934ATH	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$44 \mathrm{TQFN-EP*}$	$\mathrm{~T} 4477-3$
${ }^{*} E P=$ Exposed paddle．			

Typical Operating Circuit

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

ABSOLUTE MAXIMUM RATINGS

(Voltage with respect to GND.)
V_{BB}...-0.3V to +80 V

VCC -0.3V to +6V
VSS (MAX6932/MAX6933/MAX6934 only)..............-12V to +0.3 V
VBB - VSS (MAX6932/MAX6933/MAX6934 only)-0.3V to +80 V
OUT_ (MAX6922 only)(GND - 0.3 V) to (VBB +0.3 V)
OUT_ (MAX6932/MAX6933/MAX6934 only)
. $\mathrm{V}_{\mathrm{SS}}--0.3 \mathrm{~V}$) to $\left(\mathrm{V}_{\mathrm{BB}}+0.3 \mathrm{~V}\right)$
All Other Pins. \qquad -3.3 V to ($\mathrm{VCC}+0.3 \mathrm{~V}$)
OUT_ Continuous Source Current
.-45 mA OUT_ Pulsed (1ms max, $1 / 4$ max duty) Source Current ...-80mA Total OUT_ Continuous Source Current-840mA Total OUT_ Continuous Sink Current 140 mA
Total OUT_Pulsed (1ms max, 1/4 max duty)
\qquad

Source Current

- 960 mA

OUT_ Sink Current ... 15 mA
CLK, DIN, LOAD, BLANK, DOUT Current $\pm 10 \mathrm{~mA}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 36 -Pin SSOP (derate $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
over $+70^{\circ} \mathrm{C}$)... 941 mW
44-Pin Thin QFN (derate $27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $+70^{\circ} \mathrm{C}$). .2165 mW 44-Pin PLCC (derate $13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $+70^{\circ} \mathrm{C}$).
.1067 mW
Operating Temperature Range
(TMIN to $\mathrm{T}_{\text {MAX }}$) .. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit, $\mathrm{V}_{\mathrm{BB}}=8 \mathrm{~V}$ to $76 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 5.5 V , V SS $=-11 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}} \leq 76 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuit, $\mathrm{V}_{\mathrm{BB}}=8 \mathrm{~V}$ to $76 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 5.5 V , V SS $=-11 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}} \leq 76 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Low-Voltage OUT_ (MAX6932 Only)	VL	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}} \geq 15 \mathrm{~V}, \\ & \text { lout }=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.75	1.2	V
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1.5	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2.1	
		$\begin{aligned} & 8 \mathrm{~V}<\mathrm{V}_{\mathrm{BB}}<15 \mathrm{~V}, \\ & \text { IOUT }=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.8	1.3	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1.7	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2.2	
Low-Voltage OUT_ (MAX6932/MAX6933/MAX6934 Only)	VL	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}} \geq 15 \mathrm{~V}, \\ & \text { lout }=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{S S}+0.75$	S +1.2	V
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		S +1.5	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		S +2.1	
		$\begin{aligned} & 8 \mathrm{~V}<\mathrm{V}_{\mathrm{BB}}<15 \mathrm{~V}, \\ & \text { IOUT }=1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SS }}+0.8$	S +1.3	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Ss + 1.7	
			$T_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		S + 2.2	
Rise Time OUT_ (20\% to 80\%)	tR	$\mathrm{V}_{\mathrm{BB}}=60 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.3 \mathrm{k} \Omega$		0.9	2.5	$\mu \mathrm{s}$
Fall Time OUT_ (80\% to 20\%)	$\mathrm{tF}_{\text {F }}$	$\mathrm{V}_{\mathrm{BB}}=60 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.3 \mathrm{k} \Omega$		0.6	1.5	$\mu \mathrm{s}$
SERIAL INTERFACE TIMING CHARACTERISTICS						
LOAD Rising to OUT_ Falling Delay		(Notes 2, 3)		0.9	3	$\mu \mathrm{s}$
LOAD Rising to OUT_ Rising Delay		(Notes 2, 3)		1.2	3	$\mu \mathrm{s}$
BLANK Rising to OUT_Falling Delay		(Notes 2, 3)		0.9	3	$\mu \mathrm{S}$
BLANK Falling to OUT_ Rising Delay		(Notes 2, 3)		1.3	3	$\mu \mathrm{s}$
Input Leakage Current CLK, DIN, LOAD, BLANK	$\mathrm{IIH}^{\text {I IL }}$			0.05	10	$\mu \mathrm{A}$
Logic-High Input Voltage CLK, DIN, LOAD, BLANK	V_{IH}			$\begin{aligned} & 0.8 x \\ & V_{C C} \end{aligned}$		V
Logic-Low Input Voltage CLK, DIN, LOAD, BLANK	VIL				$\begin{aligned} & 0.3 x \\ & V_{C C} \end{aligned}$	V
Hysteresis Voltage DIN, CLK, LOAD, BLANK	$\Delta \mathrm{V}_{\mathrm{I}}$			0.6		V
High-Voltage DOUT	VOH	ISOURCE $=-1.0 \mathrm{~mA}$		$\begin{gathered} \mathrm{VCC}_{\mathrm{CC}} \\ 0.5 \end{gathered}$		V
Low-Voltage DOUT	VOL	$\mathrm{ISINK}=1.0 \mathrm{~mA}$			0.5	V

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuit, $\mathrm{V}_{\mathrm{BB}}=8 \mathrm{~V}$ to $76 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 5.5 V , V SS $=-11 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}} \leq 76 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Note 1)

Note 1: All parameters are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: Delay measured from control edge to when output OUT_ changes by 1 V .

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=76 \mathrm{~V}\right.$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC SUPPLY CURRENT (Icc) vs. TEMPERATURE (OUTPUTS LOW)

27－，28－，and 32－Output，76V， Serial－Interfaced VFD Tube Drivers

Typical Operating Characteristics（continued）
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=76 \mathrm{~V}\right.$ ，and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．$)$

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Pin Description

PIN			NAX6922/ MAX6934 PLCC	MAX6932/ MAX6933 SSOP	MAX6934 TQFN
1	1	39			

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Figure 1. MAX6922/MAX6932/MAX6933/MAX6934 Functional Diagram

Figure 2. MAX6922 CMOS Output Driver Structure

Detailed Description

The MAX6922/MAX6932/MAX6933/MAX6934 are VFD tube drivers comprising a 4-wire serial interface driving high-voltage Rail-to-Rail® output ports. The driver is suitable for both static and multiplexed displays.
The output ports feature high current-sourcing capability to drive current into grids and anodes of static or multiplex VFDs. The ports also have active current sinking for fast discharge of capacitive display electrodes in multiplexing applications.

Figure 3. MAX6932/MAX6933/MAX6934 CMOS Output Driver Structure

The 4-wire serial interface comprises a shift register and transparent latch with 32 bits for the MAX6922/ MAX6934, 28 bits for the MAX6933, and 27 bits for the MAX6932. The shift register is written through a clock input CLK and a data input DIN. For the MAX6922/ MAX6932/MAX6934, the data propagates to a data output DOUT. The data output allows multiple drivers to be cascaded and operated together. The output latch is transparent to the shift register outputs when LOAD is high, and latches the current state on the falling edge of LOAD.

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Each driver output is a slew-rate controlled CMOS push-pull switch driving between $\mathrm{V}_{B B}$ and GND (MAX6922) or $V_{B B}$ and VSS (MAX6932/MAX6933/ MAX6934). The output rise time is always slower than the output fall time to avoid shoot-through currents during output transitions. The output slew rates are slow enough to minimize EMI, yet are fast enough so as not to impact the typical 100μ s digit multiplex period and affect the display intensity.

Initial Power-Up and Operation

An internal reset circuit clears the internal registers on power-up. All outputs and the interface output DOUT (MAX6922/MAX6932/MAX6934 only) initialize Iow regardless of the initial logic levels of the CLK, DIN, BLANK, and LOAD inputs.

4-Wire Serial Interface
These driver ICs use a 4 -wire serial interface with three inputs (DIN, CLK, LOAD) and a data output (DOUT, MAX6922/MAX6932/MAX6934 only). This interface is used to write data to the ICs (Figure 4) (Table 1). The serial interface data word length is 32 bits for the MAX6922/MAX6934, 27 bits for the MAX6932, and 28 bits for the MAX6933.
The functions of the four serial interface pins are:

- CLK input is the interface clock, which shifts data into the shift register on its rising edge.
- LOAD input passes data from the shift register to the output latch when LOAD is high (transparent latch), and latches the data on LOAD's falling edge.
- DIN is the interface data input, and must be stable when it is sampled on the rising edge of CLK.
- DOUT is the interface data output, which shifts data out from the shift register on the rising edge of CLK. Data at DIN is propagated through the shift register and appears at DOUT (n CLK cycles + tDo) later, where n is the number of drivers in the IC.
A fifth input, BLANK, can be taken high to force the outputs low, without altering the contents of the output latches. When the BLANK input is low, the outputs follow the state of the output latches. A common use of the BLANK input is PWM intensity control.
The BLANK input's function is independent of the operation of the serial interface. Data can be shifted into the serial interface shift register and latched regardless of the state of BLANK.

Writing Device Registers Using

the 4-Wire Serial Interface
The MAX6922/MAX6932/MAX6933/MAX6934 are normally written using the following sequence:

1) Take CLK Iow.
2) Clock n bits of data in order D_{n-1} first to DO last into DIN, observing the data setup and hold times.
3) Load the n output latches with a falling edge on LOAD, where n is 27 for the MAX6932, 28 for the MAX6933, and 32 for the MAX6922 and MAX6934.
LOAD may be high or low during a transmission. If LOAD is high, then the data shifted into the shift register at DIN appears at the OUTO to OUT ${ }_{n-1}$ outputs.
CLK and DIN may be used to transmit data to other peripherals. Activity on CLK always shifts data into the shift register. However, the output latches only update on the rising edge of LOAD, and the last n bits of data

Figure 4. 4-Wire Serial Interface Timing Diagram

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Table 1. 4-Wire Serial Interface Truth Table

SERIAL DATA	$\begin{array}{\|c\|} \hline \text { CLOCK } \\ \text { INPUT } \end{array}$	SHIFT REGISTER CONTENTS						LOAD INPUT LOAD	LATCH CONTENTS						BLANKING INPUT$\|$	OUTPUT CONTENTS					
DIN	CLK	D0	D1	D2	\ldots	Dn-2	Dn-1		D0	D1	D2	\cdots	Dn-2	Dn-1		D0	D1	D2	...	Dn-2	Dn-1
H	T	H	R0	R1	...	Rn-2	Rn-1														
L	-	L	R0	R1		Rn-2	Rn-1														
X	-	RO	R1	R2		Rn-1	Rn														
		X	X	X	...	X	X	L	R0	R1	R2	...	Rn-1	Rn							
		P0	P1	P2	...	Pn-1	Pn	H	P0	P1	P2	\ldots	Pn-1	Pn	L	P0	P1	P2	\ldots	Pn-1	Pn
									X	X	X	...	X	X	H	L	L	L	..	L	L

$L=$ Low logic level.
$H=$ High logic level.
$X=$ Don't care.
$P=$ Present state (shift register).
$R=$ Previous state (latched).
clocked in are loaded. Therefore, multiple devices can share CLK and DIN, as long as they have unique LOAD controls.

Determining Driver Output Voltage Drop

The outputs are CMOS drivers, and have a resistive characteristic. The typical and maximum sink and source output resistances can be calculated from the V_{H} and V_{L} electrical characteristics. Use this calculated resistance to determine the output voltage drop at different output currents.

Output Current Ratings

The continuous current-source capability is 40 mA per output. Outputs may drive up to 75 mA as a repetitive peak current, subject to the on-time (output high) being no longer than 1 ms , and the duty cycle being such that the output power dissipation is no more than the dissipation for the continuous case. The repetitive peak rating allows outputs to drive a higher current in multiplex grid driver applications, where only one grid is on at a time, and the multiplex time per grid is no more than 1 ms .
Since dissipation is proportional to current squared, the maximum current that can be delivered for a given multiplex ratio is given by:

$$
\text { IPEAK }=(\text { grids } \times 1600)^{1 / 2} \mathrm{~mA}
$$

where grids is the number of grids in a multiplexed display.
This means that a duplex application (two grids) can use a repetitive peak current of 56.5 mA , a triplex (three grids) application can use a repetitive peak current of 69.2 mA , and higher multiplex ratios are limited to 75 mA .

Paralleling Outputs

 Any number of outputs within the same package may be paralleled in order to raise the current drive or reduce the output resistance. Only parallel outputs directly (by shorting outputs together) if the interface control can be guaranteed to set the outputs to the same level. Although the sink output is relatively weak (typically 750Ω), that resistance is low enough to dissipate 530 mW when shorted to an opposite level output at a VBB voltage of only 20 V . A safe way to parallel outputs is to use diodes to prevent the outputs from sinking current (Figure 5). Because the diodes also stop the outputs from sinking current from the VFD tube, an external discharge resistor, R, is required. For static tubes, R can be a large value such as $100 \mathrm{k} \Omega$. For multiplexed tubes, the value of the resistor can be determined by the load capacitance and timing

Figure 5. Paralleling Outputs

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

characteristics required. Resistor R discharges tube capacitance C to 10% of the initial voltage in $2.3 \times R C$ seconds. So, for example, a $15 \mathrm{k} \Omega$ value for R discharges 100 pF tube grid or anode from 40 V to 4 V in $3.5 \mu \mathrm{~s}$, but draws an additional 2.7 mA from the driver when either output is high.

Power Dissipation

Take care to ensure that the maximum package dissipation ratings for the chosen package are not exceeded. Over-dissipation is unlikely to be an issue when driving static tubes, but the peak currents are usually higher for multiplexed tubes. When using multiple driver devices, try to share the average dissipation evenly between the drivers.
Determine the power dissipation (PD) for the MAX6922/ MAX6932/MAX6933/MAX6934 for static tube drivers with the following equation:

$$
\begin{aligned}
P_{D}= & \left(V_{C C} \times I C C\right)+\left(V_{B B} \times I_{B B}\right)+\left(\left(V_{B B}-V_{H}\right) \times\right. \\
& \left.\left.I_{\text {ANODE }} \times A\right)\right)
\end{aligned}
$$

where:
$A=$ number of anodes driven (maximum of 32 with the MAX6922/MAX6934).
$I_{\text {ANODE }}=$ maximum anode current.
$\left(V_{B B}-V_{H}\right)$ is the output voltage drop at the given maximum anode current loUT.
A static tube dissipation example follows:
$V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=10 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~A}=32$, IOUT $=2 \mathrm{~mA}$
$P D=(5.25 \mathrm{~V} \times 1.5 \mathrm{~mA})+(18 \mathrm{~V} \times 2.2 \mathrm{~mA})+$
$((2.5 \mathrm{~V} \times 2 \mathrm{~mA} / 25 \mathrm{~mA}) \times 2 \mathrm{~mA} \times 32)=60 \mathrm{~mW}$
Determine the power dissipation (PD) for the MAX6922/ MAX6932/MAX6933/MAX6934 for multiplex tube drivers with the following equation:

$$
\begin{aligned}
P_{D}= & \left(V_{C C} \times I C C\right)+\left(V_{B B} \times I_{B B}\right)+\left(\left(V_{B B}-V_{H}\right) \times\right. \\
& \left.\left.I_{\text {ANODE }} \times A\right)+\left(\left(V_{B B}-V_{H}\right) \times I_{\text {GRID }}\right)\right)
\end{aligned}
$$

where:
A = number of anodes driven.
$G=$ number of grids driven.
IANODE = maximum anode current.
IGRID = maximum grid current.
The calculation presumes all anodes are on, but only one grid is on. The calculated PD is the worst case, presuming one digit is always being driven with all its anodes lit. Actual PD can be estimated by multiplying this P_{D} figure by the actual tube drive duty cycle, taking into account interdigit blanking and any PWM intensity control.

A multiplexed tube dissipation example follows:

$$
\begin{aligned}
\mathrm{VCC}= & 5 \mathrm{~V} \pm 5 \%, \mathrm{VBB}=36 \mathrm{~V} \text { to } 42 \mathrm{~V}, \mathrm{~A}=20, \mathrm{G}=12, \\
& \mathrm{I}_{\mathrm{ANODE}}=0.4 \mathrm{~mA}, \mathrm{IGRID}=24 \mathrm{~mA} \\
\mathrm{PD}= & (5.25 \mathrm{~V} \times 1.5 \mathrm{~mA})+(42 \mathrm{~V} \times 2.2 \mathrm{~mA})+ \\
& ((2.5 \mathrm{~V} \times 0.4 \mathrm{~mA} / 25 \mathrm{~mA}) \times 0.4 \mathrm{~mA} \times 20)+ \\
& ((2.5 \mathrm{~V} \times 24 \mathrm{~mA} / 25 \mathrm{~mA}) \times 24 \mathrm{~mA})=158 \mathrm{~mW}
\end{aligned}
$$

Thus, for a 44-pin PLCC package (TJA $=1 / 0.0133=$ $75.188^{\circ} \mathrm{C} / \mathrm{W}$ from Absolute Maximum Ratings), the maximum allowed ambient temperature T_{A} is given by:

$$
\begin{aligned}
T_{J}(\mathrm{MAX})= & \mathrm{T}_{\mathrm{A}}+(\mathrm{PD} \times \mathrm{TJA})=+150^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{A}}+(0.158 \times \\
& \left.75.188^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

So $T_{A}=+138^{\circ} \mathrm{C}$.
This means that the driver can be operated in this application with a PLCC package up to the $+125^{\circ} \mathrm{C}$ maximum operating temperature.

Power-Supply Considerations The MAX6922/MAX6932/MAX6933/MAX6934 operate with multiple power-supply voltages. Bypass the VCC, VBB, and VSS (MAX6932/MAX6933/MAX6934 only) power-supply pins to GND with $0.1 \mu \mathrm{~F}$ capacitors close to the device. The MAX6932/MAX6933/MAX6934 may be operated with $V_{\text {SS }}$ tied to GND if a negative bias supply is not required. For multiplex applications, it may be necessary to add an additional bulk electrolytic capacitor of $1 \mu \mathrm{~F}$ or greater to the V_{BB} supply.

Power-Supply Sequencing The order of the power-supply sequencing is not important. These ICs are damaged if any combination of $V_{C C}$, $V_{B B}$, and $V_{S S}$ is grounded while the other supply or supplies are maintained up to their maximum ratings. However, as with any CMOS device, do not drive the logic inputs if the logic supply V_{CC} is not operational because the input protection diodes clamp the signals.

Cascading Drivers

(MAX6922/MAX6932/MAX6934 Only)
Multiple driver ICs may be cascaded, as shown in the Typical Application Circuit, by connecting each driver's DOUT to DIN of the next drivers. Devices may be cascaded at the full 5 MHz CLK speed when $\mathrm{V}_{C C} \geq 4.5 \mathrm{~V}$. When $\mathrm{V}_{\mathrm{Cc}}<4.5 \mathrm{~V}$, the longer propagation delay (tDo) limits the maximum cascaded CLK to 4 MHz .

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Typical Application Circuit

Chip Information
TRANSISTOR COUNT: 3850
PROCESS: BiCMOS

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

27－，28－，and 32－Output，76V， Serial－Interfaced VFD Tube Drivers

Package Information
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.165	0.180	4.20	4.57
A1	0.090	0.120	2.29	3.04
A2	0.145	0.156	3.69	3.96
A3	0.020	---	0.51	---
B	0.013	0.021	0.33	0.53
B1	0.026	0.032	0.66	0.81
C	0.009	0.011	0.23	0.28
e	0.050		1.27	

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	N	MO047
D	0.385	0.395	9.78	10.03	20	AA
D1	0.350	0.356	8.89	9.04		
D2	0.290	0.330	7.37	8.38		
D3	0.200 REF		5.08	REF		

D	0.485	0.495	12.32	12.57	28 AB	
D1	0.450	0.456	11.43	11.58		
D2	0.390	0.430	9.91	10.92		
D3	0.300	REF	7.62	REF		

D	0.785	0.795	19.94	20.19	52	AD
D1	0.750	0.756	19.05	19.20		
D2	0.690	0.730	17.53	18.54		
D3	0.600 REF		15．24 REF			
D	0.985	0.995	25.02	25.27	68	AE
D1	0.950	0.958	24.13	24.33		
D2	0.890	0.930	22.61	23.62		
D3	0.800	REF	20.32	REF		

NOTES：
1．D1 DOES NOT INCLUDE MOLD FLASH．
2．MOLD FLASH OR PROTRUSIONS NOT TO EXCEED
． 20 mm （．008＂）PER SIDE．
3．LEADS TO BE COPLANAR WITHIN ． 10 mm ．
4．CONTROLLING DIMENSION：MILLIMETER
5．MEETS JEDEC MO047－XX AS SHOWN IN TABLE．
6．$N=$ NUMBER OF PINS．

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.096	0.104	2.44	2.65
A1	0.004	0.011	0.10	0.29
B	0.012	0.017	0.30	0.44
C	0.009	0.013	0.23	
e	0.0315 BSC		0.32	
E	0.291	0.299	0.80	
H	0.398	0.414	10.11	7.60
L	0.020	0.040	0.51	1.02
D	0.598	0.612	15.20	15.55

FRONT VIEW
SIDE VIEW

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.

27－，28－，and 32－Output，76V， Serial－Interfaced VFD Tube Drivers

Package Information（continued）

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

27-, 28-, and 32-Output, 76V, Serial-Interfaced VFD Tube Drivers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 2, 3, 16

[^0]
MAX6922

Part Number Table

Notes:

1. See the MAX6922 QuickView Data Sheet for further information on this product family or download the MAX6922 full data sheet (PDF, 656kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX6922AQH+D			PLCC;44 pin;.653" SQ Dwg: 21-0049D (PDF) Use pkgcode/variation: Q44+1*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX6922AQH+TD				-40 C to +85 C	RoHS/Lead-Free: Yes
MAX6922AQH-D			PLCC;44 pin;.653" sq. Dwg: 21-0049D (PDF) Use pkgcode/variation: Q44-1*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX6922AQH-TD			PLCC;44 pin;.653" sq. Dwg: 21-0049D (PDF) Use pkgcode/variation: Q44-1*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis

Didn't Find What You Need?

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

