Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Applications
2-Way Remote Keyless Entry
Security Systems
Home Automation
Remote Controls
Remote Sensing
Smoke Alarms
Garage Door Openers
Local Telemetry Systems

Abstract

\section*{General Description}

The MAX7030 crystal-based, fractional-N transceiver is designed to transmit and receive ASK/OOK data at fac-tory-preset carrier frequencies of $315 \mathrm{MHz}, 345 \mathrm{MHz}^{\dagger}$, or 433.92 MHz with data rates up to 33kbps (Manchester encoded) or 66kbps (NRZ encoded). This device generates a typical output power of +10 dBm into a 50Ω load, and exhibits typical sensitivity of -114 dBm . The MAX7030 features separate transmit and receive pins (PAOUT and LNAIN) and provides an internal RF switch that can be used to connect the transmit and receive pins to a common antenna. The MAX7030 transmit frequency is generated by a 16bit, fractional-N, phase-locked loop (PLL), while the receiver's local oscillator (LO) is generated by an inte-ger-N PLL. This hybrid architecture eliminates the need for separate transmit and receive crystal reference oscillators because the fractional-N PLL is preset to be 10.7 MHz above the receive LO. Retaining the fixed-N PLL for the receiver avoids the higher current-drain requirements of a fractional-N PLL and keeps the receiver current drain as low as possible. All frequencygeneration components are integrated on-chip, and only a crystal, a 10.7 MHz IF filter, and a few discrete components are required to implement a complete antenna/digital data solution.

The MAX7030 is available in a small, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32pin thin QFN package, and is specified to operate over the automotive $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. \dagger Consult factory for availability.

Features
 Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX7030_ATJ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 Thin QFN-EP ${ }^{\star}$

*EP = Exposed pad.
Note: The MAX7030 is available with factory-preset operating frequencies. See the Product Selector Guide for complete part numbers.

Product Selector Guide

PART	CARRIER FREQUENCY (MHz)
MAX7030LATJ+	315
MAX7030MATJ+	345
MAX7030HATJ+	433.92

+Denotes a lead-free/RoHS-compliant package.
*Contact factory for availability.

Pin Configuration, Typical Application Circuit, and Functional Diagram appear at end of data sheet.

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

ABSOLUTE MAXIMUM RATINGS

HVIN to GND	-0.3V to +6.0V
PAVDD, $\mathrm{AV}_{\text {DD }}$, DVDD to GND-0.3V to +4.0V	
ENABLE, T/R, DATA, AGC0, AGC1,	
AGC2 to GND	(HV IN $+0.3 \mathrm{~V})$
Other Pins to GND.	(_VDD + 0.3V)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 32-Pin Thin QFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).

1702 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range .
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, 50Ω system impedance, $\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=\mathrm{HV} \mathrm{VIN}=\mathrm{PAV}$ DD $=+2.1 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, 345 \mathrm{MHz}$, or $433.92 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{AV} D \mathrm{DD}=\mathrm{DV}$ DD $=H V_{I N}=\operatorname{PAV} D \mathrm{D}=+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage (3V Mode)	$V_{D D}$	$H V_{I N}, P A V_{D D}, A V_{D D}$, and $D V_{D D}$ connected to power supply		2.1	2.7	3.6	V
Supply Voltage (5V Mode)	HVIN	PAVDD $A V_{D D}$, and $D V_{D D}$ unconnected from HVIN, but connected together		4.5	5.0	5.5	V
Supply Current	IDD	Transmit mode, PA off, VDATA at 0\% duty cycle (Note 2)	$\mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$		3.5	5.4	mA
			$\mathrm{ffF}=434 \mathrm{MHz}$		4.3	6.7	
		Transmit mode, VDATA at 50% duty cycle (Notes 3, 4)	$f_{\text {RF }}=315 \mathrm{MHz}$		7.6	12.3	
			$\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$		8.4	13.6	
		Transmit mode, VDATA at 100\% duty cycle (Note 2)	$\mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$		11.6	19.1	
			$\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$		12.4	20.4	
		$\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, typ at $+25^{\circ} \mathrm{C}$ (Note 4)	Receiver 315 MHz		6.1	7.9	
			Receiver 434MHz		6.4	8.3	
			Deep-sleep (3V mode)		0.8	8.8	$\mu \mathrm{A}$
			Deep-sleep (5V mode)		2.4	10.9	
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}, \\ & \text { typ at }+125^{\circ} \mathrm{C} \\ & \text { (Note 2) } \end{aligned}$	Receiver 315MHz		6.4	8.2	mA
			Receiver 434MHz		6.7	8.4	
			Deep-sleep (3V mode)		8.0	34.2	$\mu \mathrm{A}$
			Deep-sleep (5V mode)		14.9	39.3	
Voltage Regulator	VREG	$\mathrm{HV}^{\prime} \mathrm{I}=5 \mathrm{~V}, \mathrm{ILOAD}=15 \mathrm{~mA}$			3.0		V
DIGITAL I/O							
Input-High Threshold	V_{IH}	(Note 2)		$\begin{aligned} & 0.9 \times \\ & H V_{\text {IN }} \end{aligned}$			V
Input-Low Threshold	VIL	(Note 2)				$\begin{aligned} & 0.1 \mathrm{x} \\ & \mathrm{HV} \mathrm{IN}^{2} \end{aligned}$	V

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

DC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, 50Ω system impedance, $\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{HV} \operatorname{IN}=\mathrm{PAV} \mathrm{DD}=+2.1 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{fRF}^{2}=315 \mathrm{MHz}, 345 \mathrm{MHz}$, or $433.92 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at AV DD $=\mathrm{DV}$ DD $=H V_{I N}=P A V D D=+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Pulldown Sink Current		AGC0-2, ENABLE, T/ $/$, DATA ($\mathrm{HV} \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$)	20		$\mu \mathrm{A}$
Output-Low Voltage	VOL	ISINK $=500 \mu \mathrm{~A}$	0.15		V
Output-High Voltage	VOH	ISOURCE $=500 \mu \mathrm{~A}$	HVIN-0.26		V

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, 50Ω system impedance, $\mathrm{PAV}_{\mathrm{DD}}=\mathrm{AV}$ DD $=\mathrm{DV}$ DD $=\mathrm{HV} \operatorname{IN}=+2.1 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, 345 \mathrm{MHz}$, or $433.92 \mathrm{MHz}, \mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at PAV DD $=A V_{D D}=D V_{D D}=H V I N=+2.7 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, 50Ω system impedance, $\mathrm{PAV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{HV} \operatorname{IN}=+2.1 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, 345 \mathrm{MHz}$, or $433.92 \mathrm{MHz}, \mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at PAV DD $=A V_{D D}=D V_{D D}=H V I N=+2.7 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, 50Ω system impedance, $\mathrm{PAV}_{\mathrm{DD}}=A \mathrm{~V}_{\mathrm{DD}}=\mathrm{DV} \mathrm{VDD}_{\mathrm{DD}}=\mathrm{HV} \mathrm{IN}_{\mathrm{N}}=+2.1 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, 345 \mathrm{MHz}$, or $433.92 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at PAV DD $=A V_{D D}=D V_{D D}=H V_{I N}=+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
CRYSTAL OSCILLATOR					
Crystal Frequency	fXtal		$\begin{gathered} (f R F-10.7) \\ / 24 \end{gathered}$		MHz
Maximum Crystal Inductance			50		mH
Frequency Pulling by $\mathrm{V}_{\text {D }}$			2		ppm/V
Crystal Load Capacitance		(Note 7)	4.5		pF

Note 1: Supply current, output power, and efficiency are greatly dependent on board layout and PAOUT match.
Note 2: 100% tested at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$. Guaranteed by design and characterization overtemperature.
Note 3: 50\% duty cycle at 10kHz ASK data (Manchester coded).
Note 4: Guaranteed by design and characterization. Not production tested.
Note 5: Time for final signal detection; does not include baseband filter settling.
Note 6: Efficiency = POUT/(VDD $\times \operatorname{IDD})$.
Note 7: Dependent on PCB trace capacitance.
Note 8: Input impedance is measured at the LNAIN pin. Note that the impedance at 315 MHz includes the 12 nH inductive degeneration from the LNA source to ground. The impedance at 434 MHz includes a 10 nH inductive degeneration connected from the LNA source to ground. The equivalent input circuit is 50Ω in series with $\sim 2.2 \mathrm{pF}$. The voltage conversion is measured with the LNA input-matching inductor, the degeneration inductor, and the LNA/mixer tank in place, and does not include the IF filter insertion loss.

Typical Operating Characteristics

(Typical Operating Circuit, PAVDD $=A V_{D D}=D V_{D D}=H V_{I N}=+3.0 \mathrm{~V}$, $\mathrm{fRF}=433.92 \mathrm{MHz}$, IF BW $=280 \mathrm{kHz}, 4 \mathrm{kbps}$ Manchester encoded, $0.2 \% \mathrm{BER}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RECEIVER

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Operating Characteristics (continued)

 $0.2 \% \mathrm{BER}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RECEIVER

$\underset{\sim}{n} \stackrel{0}{\sim} \stackrel{(\%) \forall 17 \exists 0}{\sim}$

SENSITIVITY vs. TEMPERATURE

RSSI vs. RF INPUT POWER

IMAGE REJECTION vs. TEMPERATURE

S11 SMITH PLOT OF RFIN

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Operating Characteristics (continued)
(Typical Operating Circuit, PAV ${ }_{D D}=A V_{D D}=\operatorname{DVDD}=H V I N=+3.0 \mathrm{~V}, \mathrm{fRF}=433.92 \mathrm{MHz}$, IF BW $=280 \mathrm{kHz}, 4 \mathrm{kbps}$ Manchester encoded, $0.2 \% \mathrm{BER}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RECEIVER

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Operating Characteristics (continued)
(Typical Operating Circuit, PAVDD $=$ AVDD $=$ DVDD $=H V I N=+3.0 \mathrm{~V}, \mathrm{fRF}=433.92 \mathrm{MHz}$, IF BW $=280 \mathrm{kHz}$, 4kbps Manchester encoded, 0.2% BER, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

TRANSMITTER

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Operating Characteristics (continued)
(Typical Operating Circuit, PAVDD $=A V_{D D}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{HV} \operatorname{IN}=+3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=433.92 \mathrm{MHz}$, IF BW $=280 \mathrm{kHz}, 4 \mathrm{kbps}$ Manchester encoded, $0.2 \% \mathrm{BER}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TRANSMITTER
OUTPUT POWER vs. SUPPLY VOLTAGE

OUTPUT POWER vs. SUPPLY VOLTAGE

EFFICIENCY vs. SUPPLY VOLTAGE

EFFICIENCY vs. SUPPLY VOLTAGE

OUTPUT POWER vs. SUPPLY VOLTAGE

EFFICIENCY vs. SUPPLY VOLTAGE

PHASE NOISE vs. OFFSET FREQUENCY

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Operating Characteristics (continued)

(Typical Operating Circuit, PAV $\operatorname{DD}=A V_{D D}=D V_{D D}=H V_{I N}=+3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=433.92 \mathrm{MHz}$, IF BW $=280 \mathrm{kHz}, 4 \mathrm{kbps}$ Manchester encoded, $0.2 \% \mathrm{BER}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TRANSMITTER

FREQUENCY STABILITY
vs. SUPPLY VOLTAGE

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Pin Description

PIN	NAME	FUNCTION
1	PAV ${ }_{\text {DD }}$	Power-Amplifier Supply Voltage. Bypass to GND with $0.01 \mu \mathrm{~F}$ and 220 pF capacitors placed as close as possible to the pin.
2	ROUT	Envelope-Shaping Output. ROUT controls the power-amplifier envelope's rise and fall times. Connect ROUT to the PA pullup inductor or optional power-adjust resistor. Bypass the inductor to GND as close as possible to the inductor with 680pF and 220pF capacitors, as shown in the Typical Application Circuit.
3	TX/RX1	Transmit/Receive Switch Throw. Drive T//̄R high to short TX/RX1 to TX/RX2. Drive T//̄R low to disconnect TX/RX1 from TX/RX2. Functionally identical to TX/RX2.
4	TX/RX2	Transmit/Receive Switch Pole. Typically connected to ground. See the Typical Application Circuit.
5	PAOUT	Power-Amplifier Output. Requires a pullup inductor to the supply voltage (or ROUT if envelope shaping is desired), which can be part of the output-matching network to an antenna.
6	$A V_{D D}$	Analog Power-Supply Voltage. $A V_{D D}$ is connected to an on-chip +3.0 V regulator in 5 V operation. Bypass AVDD to GND with a $0.1 \mu \mathrm{~F}$ and 220pF capacitor placed as close as possible to the pin.
7	LNAIN	Low-Noise Amplifier Input. Must be AC-coupled.
8	LNASRC	Low-Noise Amplifier Source for External Inductive Degeneration. Connect an inductor to GND to set the LNA input impedance.
9	LNAOUT	Low-Noise Amplifier Output. Must be connected to AVDD through a parallel LC tank filter. AC-couple to MIXIN+.
10	MIXIN+	Noninverting Mixer Input. Must be AC-coupled to the LNA output.
11	MIXIN-	Inverting Mixer Input. Bypass to AV ${ }_{\text {DD }}$ with a capacitor as close as possible to the LNA LC tank filter.
12	MIXOUT	330Ω Mixer Output. Connect to the input of the 10.7 MHz filter.
13	IFIN-	Inverting 330Ω IF Limiter-Amplifier Input. Bypass to GND with a capacitor.
14	IFIN+	Noninverting 330Ω IF Limiter-Amplifier Input. Connect to the output of the 10.7 MHz IF filter.
15	PDMIN	Minimum-Level Peak Detector for Demodulator Output
16	PDMAX	Maximum-Level Peak Detector for Demodulator Output
17	DS-	Inverting Data Slicer Input
18	DS+	Noninverting Data Slicer Input
19	OP+	Noninverting Op-Amp Input for the Sallen-Key Data Filter
20	DF	Data-Filter Feedback Node. Input for the feedback capacitor of the Sallen-Key data filter.
21, 25	N.C.	No Connection. Do not connect to this pin.
22	T/R	Transmit//Receive. Drive high to put the device in transmit mode. Drive low or leave unconnected to put the device in receive mode. It is internally pulled down.
23	ENABLE	Enable. Drive high for normal operation. Drive low or leave unconnected to put the device into shutdown mode.
24	DATA	Receiver Data Output/Transmitter Data Input
26	DV ${ }_{\text {DD }}$	Digital Power-Supply Voltage. Bypass to GND with a $0.01 \mu \mathrm{~F}$ and 220 pF capacitor placed as close as possible to the pin.
27	HVIN	High-Voltage Supply Input. For 3 V operation, connect $H V_{I N}$ to $A V_{D D}, ~ D V_{D D}$, and $P A V_{D D}$. For 5 V operation, connect only HVIN to 5 V . Bypass $\mathrm{HV}_{\text {IN }}$ to GND with a $0.01 \mu \mathrm{~F}$ and 220pF capacitor placed as close as possible to the pin.

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Pin Description (continued)

PIN	NAME	
28	AGC2	AGC Enable/Dwell Time Control 2 (MSB). See Table 1. Bypass to GND with a 10pF capacitor.
29	AGC1	AGC Enable/Dwell Time Control 1. See Table 1. Bypass to GND with a 10pF capacitor.
30	AGC0	AGC Enable/Dwell Time Control 0 (LSB). See Table 1. Bypass to GND with a 10pF capacitor.
31	XTAL1	Crystal Input 1. Bypass to GND if XTAL2 is driven by an AC-coupled external reference.
32	XTAL2	Crystal Input 2. XTAL2 can be driven from an external AC-coupled reference.
EP	GND	Exposed Pad. Solder evenly to the board's ground plane for proper operation.

Detailed Description

The MAX7030 $315 \mathrm{MHz}, 345 \mathrm{MHz}$, and 433.92 MHz CMOS transceiver and a few external components provide a complete transmit and receive chain from the antenna to the digital data interface. This device is designed for transmitting and receiving ASK data. All transmit frequencies are generated by a fractional-Nbased synthesizer, allowing for very fine frequency steps in increments of fxtal/4096. The receive LO is generated by a traditional integer-N-based synthesizer. Depending on component selection, data rates as high as 33kbps (Manchester encoded) or 66kbps (NRZ encoded) can be achieved.

Receiver

Low-Noise Amplifier (LNA)

The LNA is a cascode amplifier with off-chip inductive degeneration that achieves approximately 30 dB of voltage gain that is dependent on both the antenna-matching network at the LNA input and the LC tank network between the LNA output and the mixer inputs.
The off-chip inductive degeneration is achieved by connecting an inductor from LNASRC to AGND. This inductor sets the real part of the input impedance at LNAIN, allowing for a more flexible match for low-input impedances such as a PCB trace antenna. A nominal value for this inductor with a 50Ω input impedance is 12 nH at 315 MHz and 10 nH at 434 MHz , but the inductance is affected by PCB trace length. LNASRC can be shorted to ground to increase sensitivity by approximately 1 dB , but the input match must then be reoptimized.

The LC tank filter connected to LNAOUT consists of L5 and C9 (see the Typical Application Circuit). Select L5 and C9 to resonate at the desired RF input frequency. The resonant frequency is given by:

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\text { LTOTAL } \times \mathrm{C}_{\text {TOTAL }}}}
$$

where LTOTAL $=$ L5 + LPARASITICS and CTOTAL $=\mathrm{C} 9+$ CPARASITICS.
Lparasitics and Cparasitics include inductance and capacitance of the PCB traces, package pins, mixerinput impedance, LNA-output impedance, etc. These parasitics at high frequencies cannot be ignored, and can have a dramatic effect on the tank filter center frequency. Lab experimentation should be done to optimize the center frequency of the tank. The total parasitic capacitance is generally between 5 pF and 7pF.

Automatic Gain Control (AGC)

When the AGC is enabled, it monitors the RSSI output. When the RSSI output reaches 1.28 V , which corresponds to an RF input level of approximately -55 dBm , the AGC switches on the LNA gain-reduction attenuator. The attenuator reduces the LNA gain by 36 dB , thereby reducing the RSSI output by about 540 mV to 740 mV . The LNA resumes high-gain mode when the RSSI output level drops back below 680mV (approximately -59 dBm at the RF input) for a programmable interval called the AGC dwell time (see Table 1). The AGC has a hysteresis of approximately 4 dB . With the AGC function, the RSSI dynamic range is increased, allowing the MAX7030 to reliably produce an ASK output for RF input levels up to 0 dBm with a modulation depth of 18 dB . AGC is not required and can be disabled (see Table 1).

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Table 1. AGC Dwell Time Settings for MAX7030

AGC2	AGC1	AGCO	DESCRIPTION
0	0	0	AGC disabled, high gain selected
0	0	1	$\mathrm{~K}=11$
0	1	0	$\mathrm{~K}=13$
0	1	1	$\mathrm{~K}=15$
1	0	0	$\mathrm{~K}=17$
1	0	1	$\mathrm{~K}=19$
1	1	0	$\mathrm{~K}=21$
1	1	1	$\mathrm{~K}=23$

AGC Dwell-Time Settings

The AGC dwell timer holds the AGC in low-gain state for a set amount of time after the power level drops below the AGC switching threshold. After that set amount of time, if the power level is still below the AGC threshold, the LNA goes into high-gain state. This is important for ASK since the modulated data may have a high level above the threshold and low level below the threshold, which without the dwell timer would cause the AGC to switch on every bit.
The MAX7030 uses the three AGC control pins (AGC0, AGC1, AGC2) to set seven user-controlled, dwell-timer settings. The AGC dwell time is dependent on the crystal frequency and the bit settings of the AGC control pins. To calculate the dwell time, use the following equation:

$$
\text { Dwell Time }=\frac{2^{K}}{f_{\text {XTAL }}}
$$

where K is an odd integer in decimal from 11 to 23, determined by the control pin settings shown in Table 1.
To calculate the value of K, use the following equation and use the next integer higher than the calculated result:

$$
K \geq 3.3 \times \log _{10} \text { (Dwell Time } \times \text { fxtaL) }
$$

For Manchester Code (50\% duty cycle), set the dwell time to at least twice the bit period. For nonreturn-tozero (NRZ) data, set the dwell to greater than the period of the longest string of zeros or ones. For example, using Manchester Code at 315 MHz (fxtAL = 12.679 MHz) with a data rate of 2 kbps (bit period $=$ $250 \mu \mathrm{~s}$), the dwell time needs to be greater than $500 \mu \mathrm{~s}$:

$$
K \geq 3.3 \times \log _{10}(500 \mu \mathrm{~s} \times 12.679) \approx 12.546
$$

Choose the AGC pin settings for K to be the next oddinteger value higher than 12.546 , which is 13 . This says that AGC1 is set high and AGC0 and AGC2 are set low.

Mixer

A unique feature of the MAX7030 is the integrated image rejection of the mixer. This eliminates the need for a costly front-end SAW filter for many applications. The advantage of not using a SAW filter is increased sensitivity, simplified antenna matching, less board space, and lower cost.
The mixer cell is a pair of double-balanced mixers that perform an IQ downconversion of the RF input to the 10.7 MHz intermediate frequency (IF) with low-side injection (i.e., fLO $=$ fRF $-f_{I F}$). The image-rejection circuit then combines these signals to achieve a typical 46dB of image rejection over the full temperature range. Lowside injection is required as high-side injection is not possible due to the on-chip image rejection. The IF output is driven by a source follower, biased to create a driving impedance of 330Ω to interface with an off-chip 330Ω ceramic IF filter. The voltage-conversion gain driving a 330Ω load is approximately 20 dB . Note that the MIXIN+ and MIXIN- inputs are functionally identical.

Integer-N Phase-Locked Loop (PLL) The MAX7030 utilizes a fixed-integer-N PLL to generate the receive LO. All PLL components, including the loop filter, voltage-controlled oscillator, charge pump, asynchronous $24 x$ divider, and phase-frequency detector are integrated internally. The loop bandwidth is approximately 500 kHz . The relationship between RF, IF, and reference frequencies is given by:

$$
f_{R E F}=\left(f_{R F}-f_{I F}\right) / 24
$$

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Intermediate Frequency (IF)

The IF section presents a differential 330Ω load to provide matching for the off-chip ceramic filter. The internal six AC-coupled limiting amplifiers produce an overall gain of approximately 65 dB , with a bandpass filter type response centered near the 10.7 MHz IF frequency with a 3dB bandwidth of approximately 10 MHz . For ASK data, the RSSI circuit demodulates the IF to baseband by producing a DC output proportional to the log of the IF signal level with a slope of approximately $15 \mathrm{mV} / \mathrm{dB}$.

Data Filter

The data filter for the demodulated data is implemented as a 2nd-order, lowpass, Sallen-Key filter. The pole locations are set by the combination of two on-chip resistors and two external capacitors. Adjusting the value of the external capacitors changes the corner frequency to optimize for different data rates. Set the corner frequency in kHz to approximately 3 times the fastest expected Manchester data rate in kbps from the transmitter (1.5 times the fastest expected NRZ data rate). Keeping the corner frequency near the data rate rejects any noise at higher frequencies, resulting in an increase in receiver sensitivity.
The configuration shown in Figure 1 can create a Butterworth or Bessel response. The Butterworth filter offers a very-flat-amplitude response in the passband and a rolloff rate of $40 \mathrm{~dB} /$ decade for the two-pole filter. The Bessel filter has a linear phase response, which works well for filtering digital data. To calculate the value of the capacitors, use the following equations, along with the coefficients in Table 2:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{F} 1}=\frac{\mathrm{b}}{\mathrm{a}(100 \mathrm{k} \Omega)(\pi)\left(\mathrm{f}_{\mathrm{C}}\right)} \\
& \mathrm{C}_{\mathrm{F} 2}=\frac{\mathrm{a}}{4(100 \mathrm{k} \Omega)(\pi)\left(\mathrm{f}_{\mathrm{C}}\right)}
\end{aligned}
$$

where $f \mathrm{f}$ is the desired 3 dB corner frequency.
For example, choose a Butterworth filter response with a corner frequency of 5 kHz :

$$
\begin{gathered}
\mathrm{C}_{\mathrm{F} 1}=\frac{1.000}{(1.414)(100 \mathrm{k} \Omega)(3.14)(5 \mathrm{kHz})} \approx 450 \mathrm{pF} \\
\mathrm{C}_{\mathrm{F} 2}=\frac{1.414}{(4)(100 \mathrm{k} \Omega)(3.14)(5 \mathrm{kHz})} \approx 225 \mathrm{pF}
\end{gathered}
$$

Choosing standard capacitor values changes CF1 to 470pF and CF2 to 220pF. In the Typical Application Circuit, CF1 and CF2 are named C16 and C17, respectively.

Data Slicer

The data slicer takes the analog output of the data filter and converts it to a digital signal. This is achieved by using a comparator and comparing the analog input to a threshold voltage. The threshold voltage is set by the voltage on the DS- pin, which is connected to the negative input of the data slicer comparator.
Numerous configurations can be used to generate the data-slicer threshold. For example, the circuit in Figure 2 shows a simple method using only one resistor and one capacitor. This configuration averages the analog output of the filter and sets the threshold to approximately 50% of that amplitude. With this configuration, the threshold automatically adjusts as the analog signal varies, minimizing the possibility for errors in the digital data. The values of R and C affect how fast the threshold tracks the analog amplitude. Be sure to keep the corner frequency of the RC circuit much lower (about 10 times) than the lowest expected data rate.
With this configuration, a long string of NRZ zeros or ones can cause the threshold to drift. This configuration works best if a coding scheme, such as Manchester coding, which has an equal number of zeros and ones, is used.
Figure 3 shows a configuration that uses the positive and negative peak detectors to generate the threshold. This configuration sets the threshold to the midpoint between a high output and a low output of the data filter.

Figure 1. Sallen-Key Lowpass Data Filter
Table 2. Coefficients to Calculate CF1
and CF2

FILTER TYPE	a	b
Butterworth $(Q=0.707)$	1.414	1.000
Bessel $(Q=0.577)$	1.3617	0.618

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Figure 2. Generating Data-Slicer Threshold Using a Lowpass Filter

Peak Detectors

The maximum peak detector (PDMAX) and minimum peak detector (PDMIN), with resistors and capacitors shown in Figure 3, create DC output voltages equal to the high- and low-peak values of the filtered demodulated signal. The resistors provide a path for the capacitors to discharge, allowing the peak detectors to dynamically follow peak changes of the data filter output voltages.
The maximum and minimum peak detectors can be used together to form a data slicer threshold voltage at a value midway between the maximum and minimum voltage levels of the data stream (see the Data Slicer section and Figure 3). Set the RC time constant of the peak detector combining network to at least 5 times the data period.
If there is an event that causes a significant change in the magnitude of the baseband signal, such as an AGC gain-switch or a power-up transient, the peak detectors may "catch" a false level. If a false peak is detected, the slicing level is incorrect. The MAX7030 peak detectors correct these problems by temporarily tracking the incoming baseband filter voltage when an AGC state switch occurs, or forcing the peak detectors to track the baseband filter output voltage until all internal circuits are stable following an enable pin low-to-high transition and also T / \bar{R} pin high-to-low transition. The peak detectors exhibit a fast attack/slow decay response. This feature allows for an extremely fast startup or AGC recovery.

Transmitter
Power Amplifier (PA)
The PA of the MAX7030 is a high-efficiency, opendrain, class-C amplifier. The PA with proper outputmatching network can drive a wide range of antenna impedances, which includes a small-loop PCB trace

Figure 3. Generating Data-Slicer Threshold Using the Peak Detectors
and a 50Ω antenna. The output-matching network for a 50Ω antenna is shown in the Typical Application Circuit. The output-matching network suppresses the carrier harmonics and transforms the antenna impedance to an optimal impedance at PAOUT (pin 5). The optimal impedance at PAOUT is 250Ω.
When the output-matching network is properly tuned, the PA transmits power with a high overall efficiency of up to 32%. The efficiency of the PA itself is more than 46%. The output power is set by an external resistor at PAOUT, and is also dependent on the external antenna and antenna-matching network at the PA output.

Envelope Shaping

The MAX7030 features an internal envelope-shaping resistor, which connects between the open-drain output of the PA and the power supply (see the Typical Application Circuit). The envelope-shaping resistor slows the turn-on/turn-off of the PA in ASK mode, and results in a smaller spectral width of the modulated PA output signal.

Fractional-N Phase-Locked Loop (PLL) The MAX7030 utilizes a fully integrated, fractional-N, PLL for its transmit frequency synthesizer. All PLL components, including the loop filter, are integrated internally. The loop bandwidth is approximately 200 kHz .

Power-Supply Connections

The MAX7030 can be powered from a 2.1 V to 3.6 V supply or a 4.5 V to 5.5 V supply. If a 4.5 V to 5.5 V supply is used, then the on-chip linear regulator reduces the 5 V supply to the 3 V needed to operate the chip.
To operate the MAX7030 from a 3V supply, connect PAVDD, AVDD, DVDD, and HVIN to the 3V supply. When using a 5 V supply, connect the supply to HV IN only and

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

connect $A V_{D D}, P_{A V}$, and DVDD together. In both cases, bypass DVDD, $\mathrm{HV}_{\mathrm{IN}}$, and PAVDD to GND with $0.01 \mu \mathrm{~F}$ and 220 pF capacitors and bypass $A V_{D D}$ to GND with $0.1 \mu \mathrm{~F}$ and 220 pF capacitors. Bypass $\mathrm{T} / \overline{\mathrm{R}}$, ENABLE, DATA, and AGCO-2 with 10pF capacitors to GND. Place all bypass capacitors as close as possible to the respective pins.

Transmit/Receive Antenna Switch

The MAX7030 features an internal SPST RF switch that, when combined with a few external components, allows the transmit and receive pins to share a common antenna (see the Typical Application Circuit). In receive mode, the switch is open and the power amplifier is shut down, presenting a high impedance to minimize the loading of the LNA. In transmit mode, the switch closes to complete a resonant tank circuit at the PA output and forms an RF short at the input to the LNA. In this mode, the external passive components couple the output of the PA to the antenna and protect the LNA input from strong transmitted signals.
The switch state is controlled by the T / \bar{R} pin (pin 22). Drive T / \bar{R} high to put the device in transmit mode; drive T / \bar{R} low to put the device in receive mode.

Crystal Oscillator (XTAL)

The XTAL oscillator in the MAX7030 is designed to present a capacitance of approximately $3 p F$ between the XTAL1 and XTAL2 pins. In most cases, this corresponds to a 4.5 pF load capacitance applied to the external crystal when typical PCB parasitics are added. It is very important to use a crystal with a load capacitance that is equal to the capacitance of the MAX7030 crystal oscillator plus PCB parasitics. If a crystal designed to oscillate with a different load capacitance is used, the crystal is pulled away from its stated operating frequency, introducing an error in the reference frequency. Crystals designed to operate with higher differential load capacitance always pull the reference frequency higher.

In actuality, the oscillator pulls every crystal. The crystal's natural frequency is really below its specified frequency, but when loaded with the specified load capacitance, the crystal is pulled and oscillates at its specified frequency. This pulling is already accounted for in the specification of the load capacitance.
Additional pulling can be calculated if the electrical parameters of the crystal are known. The frequency pulling is given by:
$f_{p}=\frac{C_{m}}{2}\left(\frac{1}{C_{\text {CASE }}+C_{\text {LOAD }}}-\frac{1}{C_{\text {CASE }}+C_{S P E C}}\right) \times 10^{6}$
where:
f_{p} is the amount the crystal frequency is pulled in ppm.
C_{m} is the motional capacitance of the crystal.
CCASE is the case capacitance.
CSPEC is the specified load capacitance.
CLOAD is the actual load capacitance.
When the crystal is loaded as specified, i.e., CLOAD $=$ CSPEC, the frequency pulling equals zero.

Pin Configuration

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Table 3. Component Values for Typical Application Circuit

COMPONENT	VALUE FOR 433.92MHz RF	VALUE FOR 315MHz RF	DESCRIPTION
C1	220pF	220pF	10\%
C2	680pF	680pF	10\%
C3	6.8 pF	12pF	5\%
C4	6.8 pF	10pF	5\%
C5	10pF	22pF	5\%
C6	220pF	220pF	10\%
C7	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	10\%
C8	100pF	100pF	5\%
C9	1.8 pF	2.7 pF	$\pm 0.1 \mathrm{pF}$
C10	100pF	100pF	5\%
C11	220pF	220pF	10\%
C12	100pF	100pF	5\%
C13	1500pF	1500pF	10\%
C14	$0.047 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$	10\%
C15	$0.047 \mu \mathrm{~F}$	0.047 $\mu \mathrm{F}$	10\%
C16	470pF	470pF	10\%
C17	220 pF	220pF	10\%
C18	220pF	220pF	10\%
C19	$0.01 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	10\%
C20	100pF	100pF	5\%
C21	100pF	100pF	5\%
C22	220pF	220pF	10\%
C23	$0.01 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	10\%
C24	$0.01 \mu \mathrm{~F}$	0.01 F	10\%
L1	22 nH	27 nH	Coilcraft 0603CS
L2	22 nH	30 nH	Coilcraft 0603CS
L3	22 nH	30 nH	Coilcraft 0603CS
L4	10nH	12 nH	Coilcraft 0603CS
L5	16 nH	30 nH	Murata LQW18A
L6	68 nH	100 nH	Coilcraft 0603CS
R1	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	5\%
R2	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	5\%
R3	0Ω	0Ω	-
Y1	17.63416 MHz	12.67917 MHz	Crystal, 4.5pF load capacitance
Y2	10.7 MHz ceramic filter	10.7 MHz ceramic filter	Murata SFECV10.7 series

Note: Component values vary depending on PCB layout.

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Typical Application Circuit

Chip Information
PROCESS: CMOS

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
32 Thin QFN	T3255-3	$\underline{\mathbf{2 1 - 0 1 4 0}}$

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

Functional Diagram

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$5 / 05$	Initial release	-
1	$9 / 08$	Added + to each part to denote lead-free/RoHS-compliant package and explicitly calling out the odd frequency as contact factory for availability.	1

