

# **NAND Flash Memory**

## Serial Peripheral Interface (SPI) MT29F4G01AAADD

#### **Features**

· Single-level cell (SLC) technology

Organization

- Page size x1: 2112 bytes (2048 + 64 bytes)

- Block size: 64 pages (128K + 4K bytes)

- Plane size: 2 planes x 2048 blocks per plane

- Device size: 4Gb: 4096 blocks

• Data retention: 10 years

New commands

- PAGE READ in x2 mode

- PAGE READ in x4 mode

#### **Options**

• Density: 4Gb (single die)

• Operating temperature

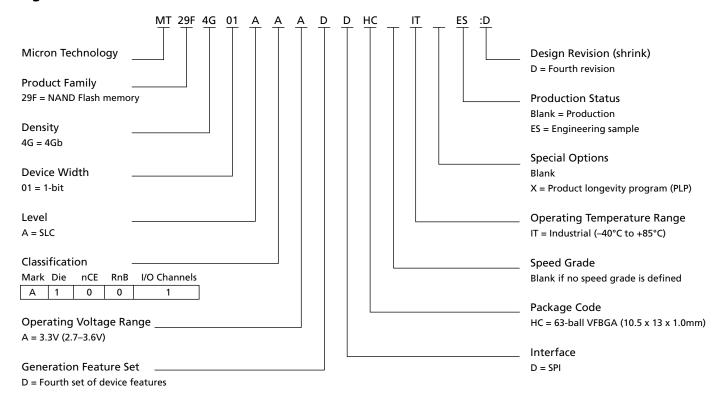
Commercial (0°C to +70°C)

- Industrial (-40°C to +85°C)

Package

- 63-ball VFBGA, lead-free, (10.5mm x 13mm)

**Table 1: NAND Flash SPI Parameters** 


| Parameters                       | Value       |
|----------------------------------|-------------|
| V <sub>CC</sub> range            | 2.7–3.6V    |
| Frequency                        | 50 MHz      |
| Transfer rate                    | 20ns        |
| Loading throughput               | 50 MT/s     |
| <sup>t</sup> BERS (BLOCK ERASE)  | 4ms (TYP)   |
| <sup>t</sup> PROG (PAGE PROGRAM) | 400μs (TYP) |
| <sup>t</sup> RD (PAGE READ)      | 100μs (MAX) |
| Internal ECC correction          | 4-bit       |
| Width                            | x1, x2, x4  |



### **Part Numbering Information**

Micron NAND Flash devices are available in different configurations and densities. Verify valid part numbers by using Micron's part catalog search at <a href="https://www.micron.com">www.micron.com</a>. To compare features and specifications by device type, visit <a href="https://www.micron.com/products">www.micron.com/products</a>. Contact the factory for devices not found.

**Figure 1: Part Number Chart** 





### **Contents**

| General Description                       | 6  |
|-------------------------------------------|----|
| Architecture                              | 7  |
| Ball Assignments and Descriptions         | 8  |
| Memory Mapping                            | 10 |
| Array Organization                        | 10 |
| Bus Operation                             | 11 |
| SPI Modes                                 | 11 |
| CS#                                       | 11 |
| SCK                                       | 11 |
| HOLD#/SO3                                 | 11 |
| SI/SO0                                    |    |
| WP#/SO2                                   |    |
| SO/SO1                                    |    |
| SPI NAND Command Definitions              |    |
| WRITE Operations                          |    |
| WRITE ENABLE (06h)                        |    |
| WRITE DISABLE (04h)                       |    |
| Features Operations                       |    |
| GET FEATURES (0Fh) and SET FEATURES (1Fh) |    |
| READ Operations                           |    |
| PAGE READ (13h)                           |    |
| READ ID (9Fh)                             |    |
| Parameter Page                            |    |
| UniqueID Page                             |    |
| Parameter Page Data Structure Table       |    |
| Program Operations                        |    |
|                                           |    |
| PAGE PROGRAM                              |    |
| RANDOM DATA PROGRAM                       |    |
| INTERNAL DATA MOVE                        |    |
| Block Operations                          |    |
| BLOCK ERASE (D8h)                         |    |
| Block Lock Feature                        |    |
| One-Time Programmable (OTP) Feature       |    |
| Status Register                           |    |
| Error Management                          |    |
| ECC Protection                            |    |
| Power-Up                                  |    |
| SPI Power-Up                              |    |
| Electrical Specifications                 |    |
| Package Dimensions                        |    |
| Revision History                          | 43 |
| Rev. G – 10/12                            | 43 |
| Rev. F – 11/11                            | 43 |
| Rev. E – 10/11                            | 43 |
| Rev. D – 05/11                            | 43 |
| Rev. C – 02/11                            | 43 |
| Rev. B – 07/10                            | 43 |
| Rev A = 08/09                             | 43 |



## **List of Figures**

| Figure 1:  | Part Number Chart                         | . 2 |
|------------|-------------------------------------------|-----|
| Figure 2:  | Functional Block Diagram                  | . 7 |
| Figure 3:  | 63-Ball VFBGA (SPI only) Ball Assignments | . 8 |
| Figure 4:  | Memory Map                                | 10  |
| Figure 5:  | Array Organization                        | 10  |
| Figure 6:  | SPI Modes Timing                          | 11  |
| Figure 7:  | WRITE ENABLE (06h) Timing                 | 14  |
| Figure 8:  | WRITE DISABLE (04h) Timing                | 14  |
| Figure 9:  | GET FEATURES (0Fh) Timing                 | 16  |
| Figure 10: | SET FEATURES (1Fh) Timing                 | 16  |
| Figure 11: | PAGE READ (13h) Timing x1                 | 17  |
| Figure 12: | RANDOM DATA READ (03h or 0Bh) Timing      | 18  |
|            | READ FROM CACHE x2                        |     |
| Figure 14: | READ FROM CACHE x 4                       | 20  |
| Figure 15: | READ ID (9Fh) Timing                      | 21  |
|            | PROGRAM LOAD (02h) Timing                 |     |
| Figure 17: | PROGRAM EXECUTE (10h) Timing              | 27  |
| Figure 18: | PROGRAM LOAD RANDOM DATA (84h) Timing     | 28  |
| Figure 19: | BLOCK ERASE (D8h) Timing                  | 30  |
|            | SPI Power-Up Timing                       |     |
|            | Alternative SPI Power-Up Timing           |     |
| Figure 22: | WP# Timing                                | 40  |
| Figure 23: | Serial Input Timing                       | 41  |
|            | Serial Output Timing                      |     |
| Figure 25: | Hold# Timing                              | 41  |
| Figure 26. | 63-Ball VERGA Package Code HC             | 42  |



### **List of Tables**

| Table 1:   I | NAND Flash SPI Parameters                       | . ] |
|--------------|-------------------------------------------------|-----|
|              | SPI Ball Descriptions                           |     |
|              | SPI NAND Command Set                            |     |
| Table 4: 1   | Features Settings                               | 15  |
| Table 5: 1   | READ ID Table                                   | 2]  |
| Table 6: 1   | Parameter Page Data Structure                   | 23  |
| Table 7: 1   | Block Lock Register Block Protect Bits          | 31  |
| Table 8: (   | OTP States                                      | 32  |
| Table 9: 3   | Status Register Bit Descriptions                | 33  |
| Table 10:    | Error Management Details                        | 34  |
|              | ECC Protection                                  |     |
| Table 12:    | ECC Status                                      | 36  |
| Table 13:    | Absolute Maximum Ratings                        | 38  |
| Table 14:    | SPI Mode Electrical Characteristics             | 38  |
|              | DC Characteristics                              |     |
| Table 16:    | General Timing Characteristics (SPI)            | 38  |
| Table 17:    | PROGRAM/READ/ERASE Timing Characteristics (SPI) | 39  |



### 4Gb x1: SPI NAND Flash Memory General Description

### **General Description**

The serial peripheral interface (SPI) provides NAND Flash with a cost-effective non-volatile memory storage solution in systems where pin count must be kept to a minimum. It is also an alternative to SPI-NOR, offering superior write performance and cost per bit over SPI-NOR.

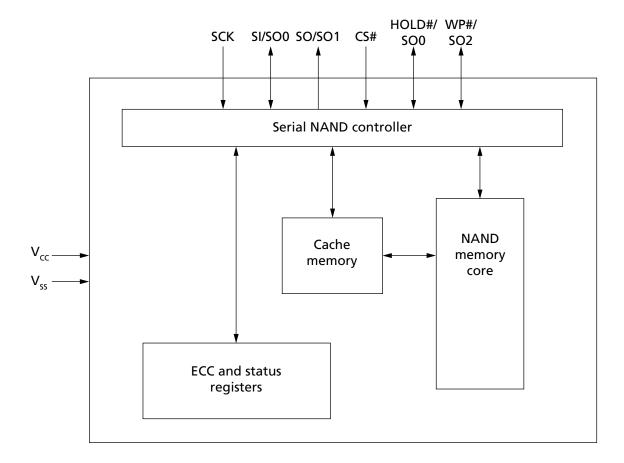
SPI NAND Flash is an SLC NAND Flash memory device based on the standard parallel NAND Flash. The serial electrical interface follows the industry-standard serial peripheral interface. New command protocols and registers are defined for SPI operation. The command set resembles common SPI-NOR command sets, modified to handle NAND-specific functions and added new features. New features include user-selectable internal ECC. SPI NAND Flash devices have six signal lines plus VCC and ground (GND). The signal lines are SCK (serial clock), SI, SO (for command/response and data input/output), and control signals CS, HOLD#, WP#. This hardware interface creates a low-pin-count device with a standard pinout that remains the same from one density to another, supporting future upgrades to higher densities without board redesign.

Each block of the serial NAND Flash device is subdivided into 64 programmable pages. Each page consists of 2112 bytes. The pages are further divided into a 2048-byte data storage region with a separate 64-byte spare area. The 64-byte area is typically used for memory and error management functions. See Table 10 on page 32 for available user area when ECC is enabled.

With internal ECC enabled, ECC code is generated internally when a page is written to the memory core. The ECC code is stored in the spare area of each page. When a page is read to the cache register, the ECC code is calculated again and compared with the stored value. Errors are corrected if necessary. The device either outputs corrected data or returns an ECC error status.



## 4Gb x1: SPI NAND Flash Memory Architecture

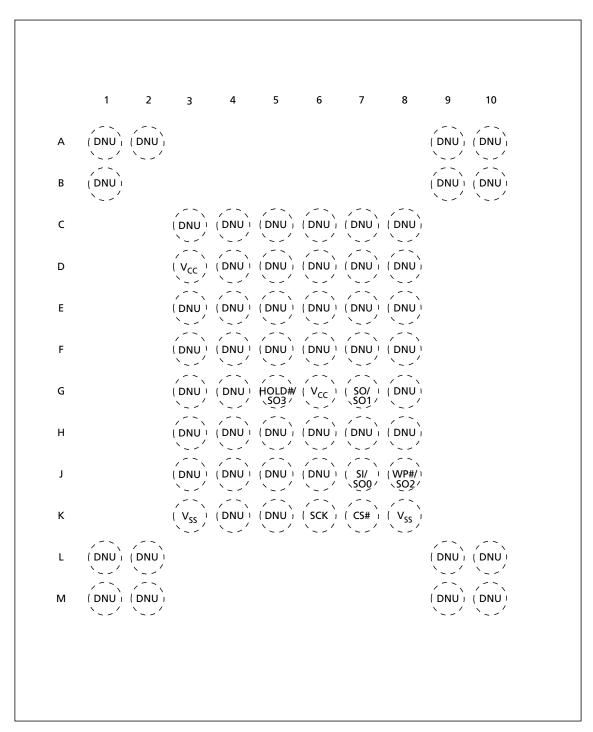

### **Architecture**

These devices use an industry-standard NAND Flash memory core organized by page/block. The standard parallel NAND Flash electrical interface and I/O logic are replaced by an SPI interface. The new command protocol set is a modification of the SPI-NOR command set common in the industry. The modifications are specifically to handle functions related to NAND Flash architecture. The interface supports page and random read/write and copy-back functions. The device also includes an internal ECC feature.

Data is transferred to or from the NAND Flash memory array, page by page, to a data register and a cache register. The cache register is closest to I/O control circuits and acts as a data buffer for the I/O data; the data register is closest to the memory array and acts as a data buffer for the NAND Flash memory array operation.

The NAND Flash memory array is programmed and read in page-based operations; it is erased in block-based operations. The cache register functions as the buffer memory to enable random data READ/WRITE operations. These devices also use a new SPI status register that reports the status of device operation.

**Figure 2: Functional Block Diagram** 






## 4Gb x1: SPI NAND Flash Memory Ball Assignments and Descriptions

### **Ball Assignments and Descriptions**

Figure 3: 63-Ball VFBGA (SPI only) Ball Assignments

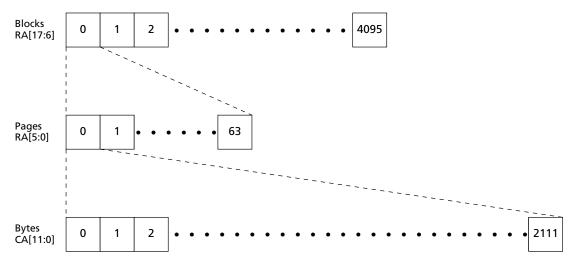


Top View, Ball Down



# 4Gb x1: SPI NAND Flash Memory Ball Assignments and Descriptions

#### **Table 2: SPI Ball Descriptions**

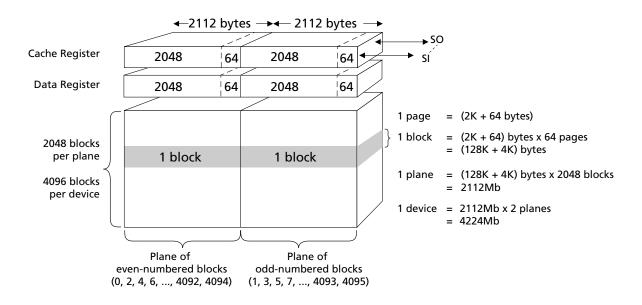

| Symbol          | Туре   | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS#             | Input  | <b>Chip select:</b> Places the device in active power mode when driven LOW. Deselects the device and places SO at High-Z when HIGH. After power-up, the device requires a falling edge on CS# before any command can be written. The device goes to standby mode when no PROGRAM, ERASE, or WRITE STATUS REGISTER operation is in progress. Single command and address sequences and array-based operations are registered on CS#. |
| SCK             | Input  | <b>Serial clock:</b> Provides serial interface timing. Latches commands, addresses, and data on SI on the rising edge of SCK. Triggers output on SO after the falling edge of SCK.                                                                                                                                                                                                                                                 |
| HOLD#/SO3       | I/O    | <b>Hold:</b> Pauses any serial communication with the device without deselecting it. When driven LOW, SO is at High-Z, and all inputs at SI and SCK are ignored. Requires that CS# also be driven LOW.  HOLD# must not be driven by the host during x4 read operations.                                                                                                                                                            |
| SI/SO0          | I/O    | Serial data input:                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3,,300          |        | Transfers data serially into the device. Device latches commands, addresses, and program data on SI on the rising edge of SCK.  SI must not be driven by the host during x2 or x4 read operations.                                                                                                                                                                                                                                 |
| WP#/SO2         | I/O    | Write protect: When LOW, prevents overwriting block-lock bits if the block register write disable (BRWD) bit is set.  WP# must not be driven by the host during x4 read operations.                                                                                                                                                                                                                                                |
| SO/SO1          | Output | <b>Serial data output:</b> Transfers data serially out of the device on the falling edge of SCK.                                                                                                                                                                                                                                                                                                                                   |
| V <sub>CC</sub> | Supply | V <sub>CC</sub> : Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                   |
| V <sub>SS</sub> | Supply | V <sub>SS</sub> : Ground                                                                                                                                                                                                                                                                                                                                                                                                           |
| DNU             | _      | Do not use: DNUs must be left unconnected.                                                                                                                                                                                                                                                                                                                                                                                         |



## 4Gb x1: SPI NAND Flash Memory Memory Mapping

### **Memory Mapping**

**Figure 4: Memory Map** 




Notes:

- 1. The 12-bit column address is capable of addressing from 0 to 4095 bytes; however, only bytes 0 through 2111 are valid. Bytes 2112 through 4095 of each page are "out of bounds," do not exist in the device, and cannot be addressed.
- 2. BA6 controls plane selection.

### **Array Organization**

**Figure 5: Array Organization** 



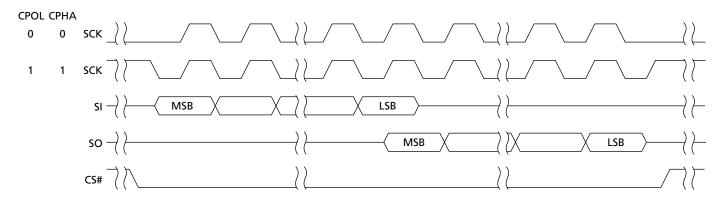


### **Bus Operation**

#### **SPI Modes**

SPI NAND supports two SPI modes:

- CPOL = 0, CPHA = 0 (Mode 0)
- CPOL = 1, CPHA = 1 (Mode 3)


Input data is latched in on the rising edge of SCK, and output data is available from the falling edge of SCK for both modes.

When the bus master is in standby mode:

- SCK remains at 0 for (CPOL = 0, CPHA = 0 Mode 0)
- SCK remains at 1 for (CPOL = 1, CPHA = 1 Mode 3)

All timing diagrams shown in this data sheet are mode 0.

#### **Figure 6: SPI Modes Timing**



Note: 1. While CS# is HIGH, keep SCK at V<sub>CC</sub> or GND (determined by mode 0 or mode 3). Do not begin toggling SCK until after CS# is driven LOW.

CS#

Chip select (CS#) activates or deactivates the device. When CS goes LOW, the device is placed in active mode. When CS is HIGH, the device is placed in inactive mode and SO is High-Z.

**SCK** 

Serial clock (SCK) provides interface timing for SPI NAND. Addresses, data, and commands are latched on the rising edge of SCK. Data is placed on SO at the falling edge of SCK. When CS# is HIGH, SCK must return either HIGH or LOW.

### HOLD#/SO3

HOLD# input provides a method to pause serial communication with the device but does not terminate any ERASE, READ, or WRITE operation currently in progress.

Hold mode starts at the falling edge of HOLD# provided SCK is also LOW. If SCK is HIGH when HOLD# goes LOW, hold mode begins after the next falling edge of SCK. Similarly,



hold mode is exited at the rising edge of HOLD# provided SCK is also LOW. If SCK is HIGH, hold mode ends after the next falling edge of SCK.

During hold mode, SO is High-Z, and SI and SCK inputs are ignored.

SO3 operation is enabled by issuing a READ FROM CACHE x4 command with data being clocked out of the device at the falling edge of SCK. During this time the host must wait until the READ FROM CACHE x4 command is complete before driving HOLD#.

#### SI/SO0

Writes use serial data in (SI). Data, commands, and addresses are transferred on SI in x1 mode at the rising edge of SCK. SI must not be driven by the host during x2 or x4 read operations.

SO0 operation is enabled by issuing a READ FROM CACHE x2 or x4 command with data being clocked out of the device at the falling edge of SCK. During this time the host must wait until the READ FROM CACHE x2 or x4 command is complete before driving SI.

#### **WP#/SO2**

Write protect (WP#) prevents the block lock bits (BP0, BP1, and BP2) from being overwritten. If the BRWD bit is set to 1 and WP# is LOW, the block protect bits cannot be altered. WP# must not be driven by the host during READ FROM CACHE x4 operations.

SO2 operation is enabled by issuing a READ FROM CACHE x4 command with data being clocked out of the device at the falling edge of SCK. During this time the host must wait until the READ FROM CACHE x4 command is complete before driving WP#.

### **SO/SO1**

Reads use serial data out (SO). Device reads are performed in x1, or x2, or x4 modes. SO acts as the only output in x1 READ operations, and as SO1 in x2 and x4 read operations.

Data is clocked out of the device on SO at the falling edge of SCK control signals.

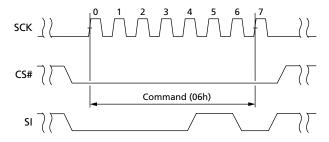


### **SPI NAND Command Definitions**

#### **Table 3: SPI NAND Command Set**

|                          |          | Address | Dummy | Data      |                                        |
|--------------------------|----------|---------|-------|-----------|----------------------------------------|
| Command                  | Op Code  | Bytes   | Bytes | Bytes     | Comments                               |
| BLOCK ERASE              | D8h      | 3       | 0     | 0         | Block erase                            |
| GET FEATURE              | 0Fh      | 1       | 0     | 1         | Get features                           |
| PAGE READ                | 13h      | 3       | 0     | 0         | Array read                             |
| PROGRAM EXECUTE          | 10h      | 3       | 0     | 0         | Enter block/page address, no data, ex- |
|                          |          |         |       |           | ecute                                  |
| PROGRAM LOAD             | 02h      | 2       | 0     | 1 to 2112 | Load program data—2kB MAX              |
| PROGRAM LOAD RANDOM DATA | 84h      | 2       | 0     | 1 to 2112 | Enter cache address/data               |
| READ FROM CACHE          | 03h, 0Bh | 2       | 1     | 1 to 2112 | Output cache data at addr              |
| READ FROM CACHE x2       | 3Bh      | 2       | 1     | 1 to 2112 | Output cache data on SI and SO         |
| READ FROM CACHE x4       | 6Bh      | 2       | 1     | 1 to 2112 | Output cache data on SI, SO, WP#,      |
|                          |          |         |       |           | HOLD#                                  |
| READ ID                  | 9Fh      | 0       | 1     | 2         | Read device ID                         |
| RESET                    | FFh      | 0       | 0     | 0         | Reset the device                       |
| SET FEATURE              | 1Fh      | 1       | 0     | 1         | Set features                           |
| WRITE DISABLE            | 04h      | 0       | 0     | 0         |                                        |
| WRITE ENABLE             | 06h      | 0       | 0     | 0         |                                        |



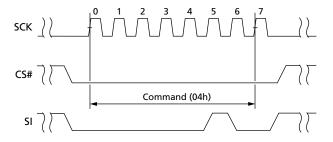

#### **WRITE Operations**

#### WRITE ENABLE (06h)

The WRITE ENABLE (06h) command sets the WEL bit in the status register to 1. WRITE ENABLE is required in the following operations that change the contents of the memory array:

- Page program
- OTP program
- BLOCK ERASE

Figure 7: WRITE ENABLE (06h) Timing




#### **WRITE DISABLE (04h)**

The WRITE DISABLE (04h) command clears the WEL bit in the status register to 0. This disables the following operations:

- · Page program
- OTP program
- BLOCK ERASE

Figure 8: WRITE DISABLE (04h) Timing



#### **Features Operations**

#### **GET FEATURES (0Fh) and SET FEATURES (1Fh)**

The GET FEATURES (0Fh) and SET FEATURES (1Fh) commands are used to alter the device behavior from the default power-on behavior. These commands use a 1-byte feature address to determine which feature is to be read or modified. Features such as OTP and block locking can be enabled or disabled by setting specific bits in feature address A0h and B0h (shown in the following table). The status register is mostly read, except WEL, which is a writable bit with the WRITE ENABLE (06h) command.



When a feature is set, it remains active until the device is power cycled or the feature is written to. Unless otherwise specified in the following table, once the device is set, it remains set, even if a RESET (FFh) command is issued.

**Table 4: Features Settings** 

|            |         |                   | Data Bits |            |            |          |          |          |          |  |
|------------|---------|-------------------|-----------|------------|------------|----------|----------|----------|----------|--|
| Register   | Address | 7                 | 6         | 5          | 4          | 3        | 2        | 1        | 0        |  |
| Block lock | A0h     | BRWD <sup>1</sup> | Reserved  | BP2        | BP1        | BP0      | Reserved | Reserved | Reserved |  |
| ОТР        | B0h     | OTP               | ОТР       | Reserved   | ECC Enable | Reserved | Reserved | Reserved | Reserved |  |
|            |         | Protect           | Enable    |            |            |          |          |          |          |  |
| Status     | C0h     | Reserved          | Reserved  | ECC Status | ECC Status | P_Fail   | E_Fail   | WEL      | OIP      |  |

Note: 1. If BRWD is enabled and WP# is LOW, then the block lock register cannot be changed.



Figure 9: GET FEATURES (0Fh) Timing

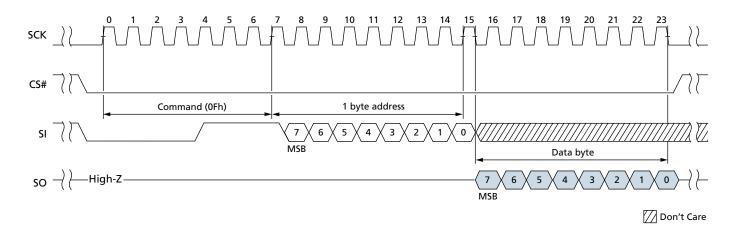
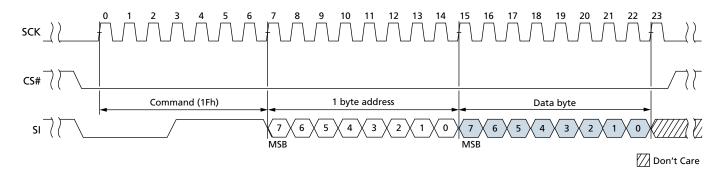




Figure 10: SET FEATURES (1Fh) Timing



#### **READ Operations**

#### PAGE READ (13h)

The PAGE READ (13h) command transfers the data from the NAND Flash array to the cache register. The command sequence is follows:

- 13h (PAGE READ to cache)
- 0Fh (GET FEATURES command to read the status)
- 0Bh or 03h (Random data read)

The PAGE READ command requires a 24-bit address consisting of 6 dummy bits followed by an 18-bit block/page address. After the block/page addresses are registered, the device starts the transfer from the main array to the cache register, and is busy for <sup>1</sup>RD time. During this time, the GET FEATURE (0Fh) command can be issued to monitor the status of the operation. Following a status of successful completion, the RANDOM DATA READ (03h or 0Bh) command must be issued in order to read the data out of the cache. The RANDOM DATA READ command requires 3 dummy bits, followed by a plane select and a 12-bit column address for the starting byte address. The starting byte address can be 0 to 2111, but after the end of the cache register is reached, the data does



not wrap around and SO goes to a High-Z state. Refer to Figure 11 (page 17) and Figure 12 (page 18) to view the entire READ operation.

Figure 11: PAGE READ (13h) Timing x1

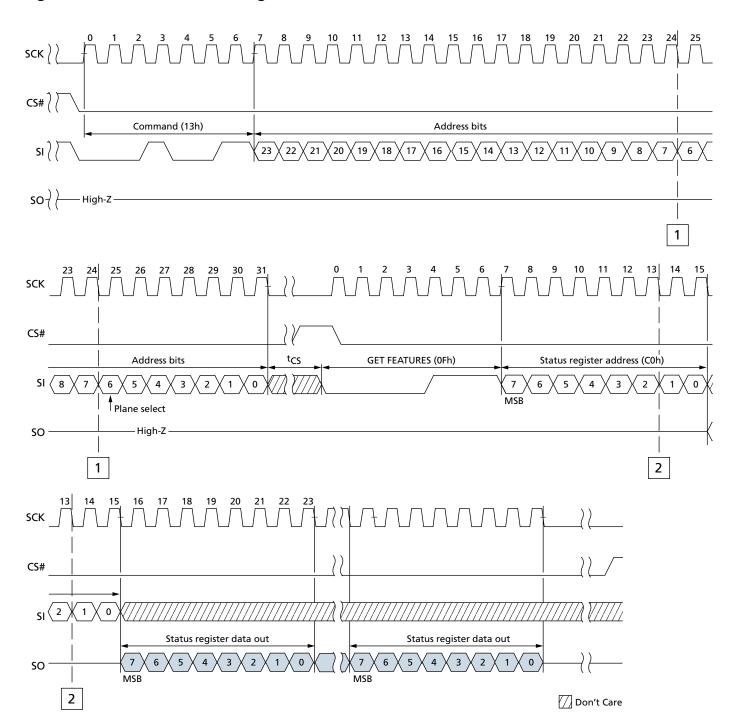
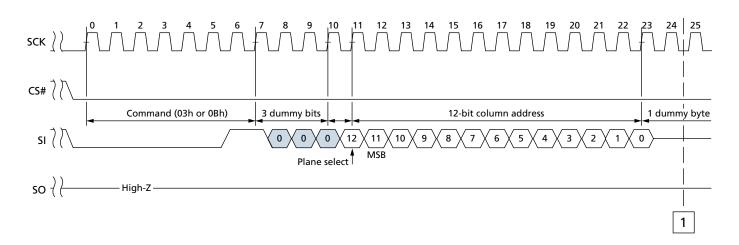






Figure 12: RANDOM DATA READ (03h or 0Bh) Timing



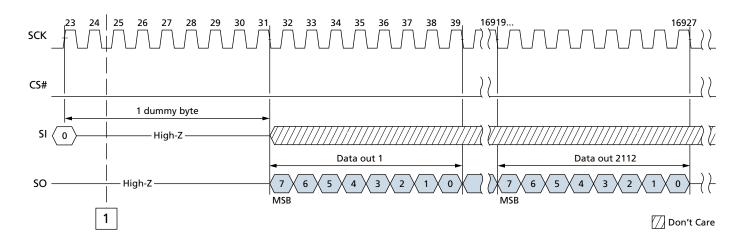





Figure 13: READ FROM CACHE x2

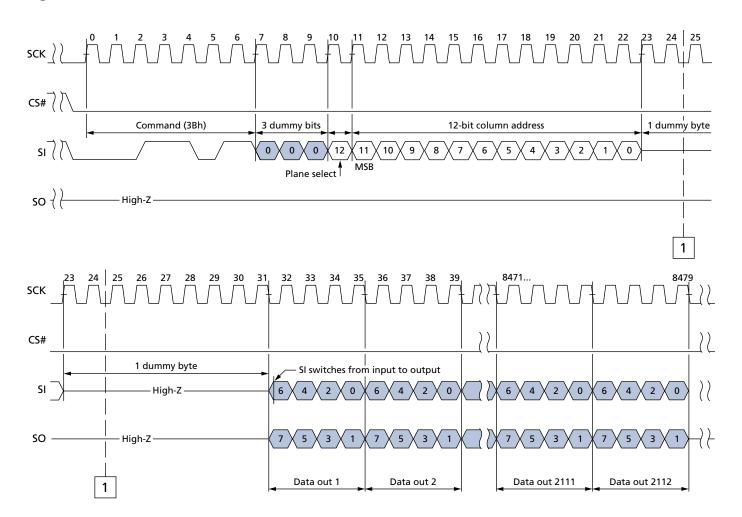
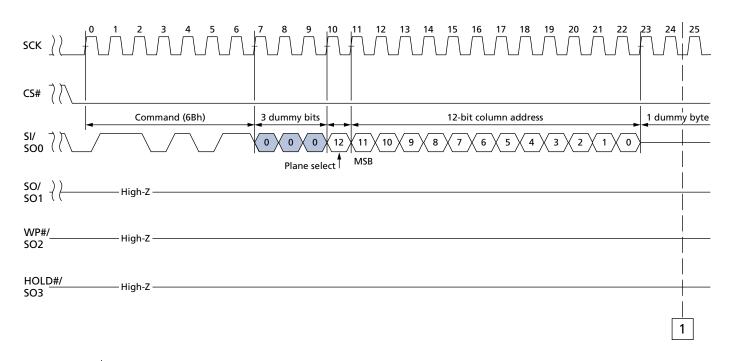
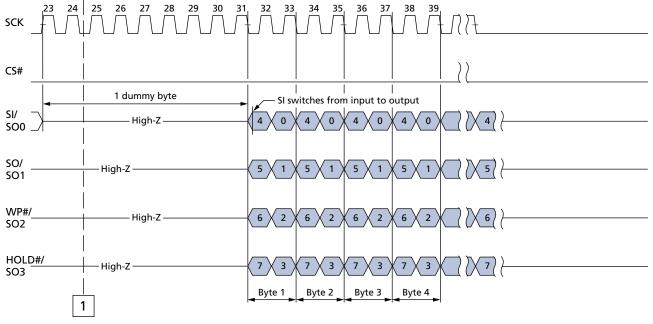




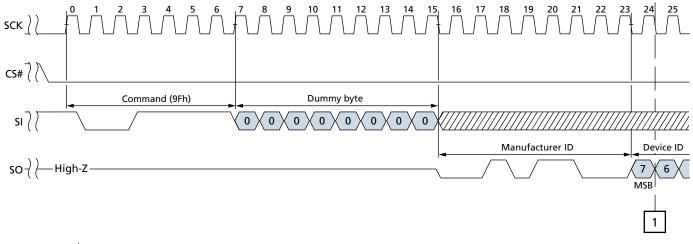


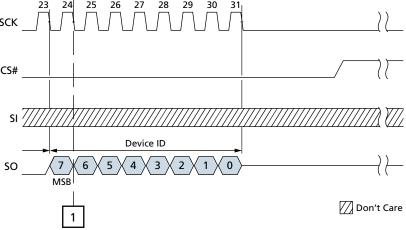

Figure 14: READ FROM CACHE x 4








#### **READ ID (9Fh)**


The READ ID command is used to read the 2 bytes of identifier code programmed into the NAND Flash device. The READ ID command reads a 2-byte table (see below) that includes the Manufacturer ID and the device configuration.

**Table 5: READ ID Table** 

| Byte   | Description              | 1/07 | 1/06 | 1/05 | 1/04 | 1/03 | 1/02 | I/O1 | 1/00 | Value |
|--------|--------------------------|------|------|------|------|------|------|------|------|-------|
| Byte 0 | Manufacturer ID (Micron) | 0    | 0    | 1    | 0    | 1    | 1    | 0    | 0    | 2Ch   |
| Byte 1 | Device ID (SPI)          | 0    | 0    | 1    | 1    | 0    | 0    | 1    | 0    | 32h   |

Figure 15: READ ID (9Fh) Timing







### **Parameter Page**

The following command flow must be issued by the memory controller to access the parameter page contained within Micron SPI devices:

- 1. Issue a SET FEATURES (1Fh) command with a feature address of B0h and data value of 40h (OTP enable, ECC disable).
- 2. Issue a PAGE READ (13h) command with a block/page address of 0x01h, and then check the status of the read completion using the GET FEATURES (0Fh) command with a feature address of C0h.
- 3. Issue a READ FROM CACHE (03h) command with an address of 0x00h to read the data out of the NAND device (see the following Parameter Page Data Structure table for a description of the contents of the parameter page.)
- 4. To exit reading the parameter page, issue a SET FEATURES (1Fh) command with a feature address of B0h and data value of 10h (main array READ, ECC enable).

### **UniqueID Page**

The following command flow must be issued by the memory controller to access the uniqueID page contained within Micron SPI devices:

- 1. Issue a SET FEATURES (1Fh) command with a feature address of B0h and data value of 40h (OTP enable, ECC disable).
- 2. Issue a PAGE READ (13h) command with a block/page address of 0x00h, and then check the status of the read completion using the GET FEATURES (0Fh) command with a feature address of C0h.
- 3. Issue a READ FROM CACHE (03h) command with an address of 0x00h to read the data out of the NAND device. (The contents of the uniqueID page are described in the following note.)

**Note:** The device stores 16 copies of the unique ID data. Each copy is 32 bytes; the first 16 bytes are unique data, and the second 16 bytes are the complement of the first 16 bytes. The host should XOR the first 16 bytes with the second 16 bytes. If the result is 16 bytes of FFh, then that copy of the unique ID data is correct. If a non-FFh result is returned, the host can repeat the XOR operation on a subsequent copy of the unique ID data.

4. To exit reading the uniqueID page, issue a SET FEATURES (1Fh) command with a feature address of B0h and data value of 10h (main array READ, ECC enable).



### **Parameter Page Data Structure Table**

#### **Table 6: Parameter Page Data Structure**

| Byte    | Description                           |                         | Value <sup>1</sup>                                                                            |  |  |  |  |
|---------|---------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| 0–3     | Parameter page signat                 | ure                     | 4Fh, 4Eh, 46h, 49h                                                                            |  |  |  |  |
| 4–5     | Revision number                       |                         | 00h, 00h (n/a)                                                                                |  |  |  |  |
| 6–7     | Features supported                    | MT29F4G01AAADDH<br>C    | 00h, 00h (n/a)                                                                                |  |  |  |  |
| 8–9     | Optional commands su                  | ipported                | 06h, 00h                                                                                      |  |  |  |  |
| 10–31   | Reserved                              |                         | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h,                                                       |  |  |  |  |
| 32–43   | Device manufacturer                   |                         | 4Dh, 49h, 43h, 52h, 4Fh, 4Eh, 20h, 20h, 20h, 20h, 20h                                         |  |  |  |  |
| 44–63   | Device model                          | MT29F4G01AAADDH<br>C    | 4Dh, 54h, 32h, 39h, 46h, 34h, 47h, 30h, 31h, 41h, 41h, 41h, 44h, 44h, 48h, 43h, 20h, 20h, 20h |  |  |  |  |
| 64      | Manufacturer ID                       | •                       | 2Ch                                                                                           |  |  |  |  |
| 65–66   | Date code                             |                         | 00h, 00h                                                                                      |  |  |  |  |
| 67–79   | Reserved                              |                         | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h,                                                       |  |  |  |  |
| 80–83   | Number of data bytes                  | per page                | 00h, 08h, 00h, 00h                                                                            |  |  |  |  |
| 84–85   | Number of spare bytes                 | per page                | 40h, 00h                                                                                      |  |  |  |  |
| 86–89   | Number of data bytes                  | per partial page        | 00h, 02h, 00h, 00h                                                                            |  |  |  |  |
| 90–91   | Number of spare bytes                 | per partial page        | 10h, 00h                                                                                      |  |  |  |  |
| 92–95   | Number of pages per l                 | olock                   | 40h, 00h, 00h, 00h                                                                            |  |  |  |  |
| 96–99   | Number of blocks per                  | unit                    | 00h, 10h, 00h, 00h                                                                            |  |  |  |  |
| 100     | Number of logical unit                | :S                      | 01h                                                                                           |  |  |  |  |
| 101     | Number of address cyc                 | les                     | 00h (n/a)                                                                                     |  |  |  |  |
| 102     | Number of bits per cel                | I                       | 01h                                                                                           |  |  |  |  |
| 103–104 | Bad blocks maximum p                  | per unit                | 50h, 00h                                                                                      |  |  |  |  |
| 105–106 | Block endurance                       |                         | 01h, 05h                                                                                      |  |  |  |  |
| 107     | Guaranteed valid bloc<br>get          | ks at beginning of tar- | 01h                                                                                           |  |  |  |  |
| 108–109 | Block endurance for g                 | uaranteed valid blocks  | 00h, 00h                                                                                      |  |  |  |  |
| 110     | Number of programs p                  | per page                | 04h                                                                                           |  |  |  |  |
| 111     | Partial programming a                 | ttributes               | 00h                                                                                           |  |  |  |  |
| 112     | Number of ECC bits                    |                         | 00h                                                                                           |  |  |  |  |
| 113     | Number of interleaved                 | l address bits          | 00h (n/a)                                                                                     |  |  |  |  |
| 114     | Interleaved operation                 | attributes              | 00h (n/a)                                                                                     |  |  |  |  |
| 115–127 | Reserved                              |                         | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h,                                                       |  |  |  |  |
| 128     | I/O pin capacitance MT29F4G01AAADDH C |                         | 1 1Eh                                                                                         |  |  |  |  |
| 129–130 | Timing mode support                   | 1                       | 00h, 00h (n/a)                                                                                |  |  |  |  |
| 131–132 | Program cache timing                  |                         | 00h, 00h (n/a)                                                                                |  |  |  |  |
| 133–134 | <sup>t</sup> PROG maximum page        | program time            | 84h, 03h                                                                                      |  |  |  |  |



#### **Table 6: Parameter Page Data Structure (Continued)**

| Byte    | Description                                | Value <sup>1</sup>                      |
|---------|--------------------------------------------|-----------------------------------------|
| 135–136 | <sup>t</sup> BERS maximum block erase time | 10h, 27h                                |
| 137–138 | <sup>t</sup> R maximum page read time      | 64h, 00h                                |
| 139–140 | <sup>t</sup> CCS minimum                   | 00h, 00h (n/a)                          |
| 141–163 | Reserved                                   | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h, |
| 164–165 | Vendor-specific revision number            | 00h, 00h (n/a)                          |
| 166–253 | Vendor specific                            | 00h, 00h, 00h, 00h, 00h, 00h, 00h, 00h, |
| 254–255 | Integrity CRC                              | Set at test                             |
| 256–511 | Value of bytes 0–255                       |                                         |
| 512–767 | Value of bytes 0–255                       |                                         |
| 768+    | Additional redundant parameter pages       |                                         |

Note: 1. h = hexadecimal.



### **Program Operations**

#### **PAGE PROGRAM**

The PAGE PROGRAM operation sequence programs 1 byte to 2,112 bytes of data within a page. The page program sequence is as follows:

- 06h (WRITE ENABLE
- 02h (PROGRAM LOAD)
- 10h (PROGRAM EXECUTE)
- 0Fh (GET FEATURE command to read the status)

Prior to performing the PROGRAM LOAD operation, a WRITE ENABLE (06h) command must be issued. As with any command that changes the memory contents, the WRITE ENABLE must be executed in order to set the WEL bit. If this command is not issued, then the rest of the program sequence is ignored. WRITE ENABLE must be followed by a PROGRAM LOAD (02h) command. PROGRAM LOAD consists of an 8-bit Op code, followed by 3 dummy bits, a plane select and a 12-bit column address, then the data bytes to be programmed. The data bytes are loaded into a cache register that is 2112 bytes long. Only four partial-page programs are allowed on a single page. If more than 2112 bytes are loaded, then those additional bytes are ignored by the cache register. The command sequence ends when CS goes from LOW to HIGH. Figure 16 shows the PROGRAM LOAD operation.

After the data is loaded, a PROGRAM EXECUTE (10h) command must be issued to initiate the transfer of data from the cache register to the main array. PROGRAM EXECUTE consists of an 8-bit Op code, followed by a 24-bit address (6 dummy bits and an 18-bit page/block address). After the page/block address is registered, the memory device starts the transfer from the cache register to the main array, and is busy for <sup>t</sup>PROG time. This operation is shown in Figure 17. During this busy time, the status register can be polled to monitor the status of the operation (refer to the Status Register section). When the operation completes successfully, the next series of data can be loaded with the PROGRAM LOAD command.



### Figure 16: PROGRAM LOAD (02h) Timing

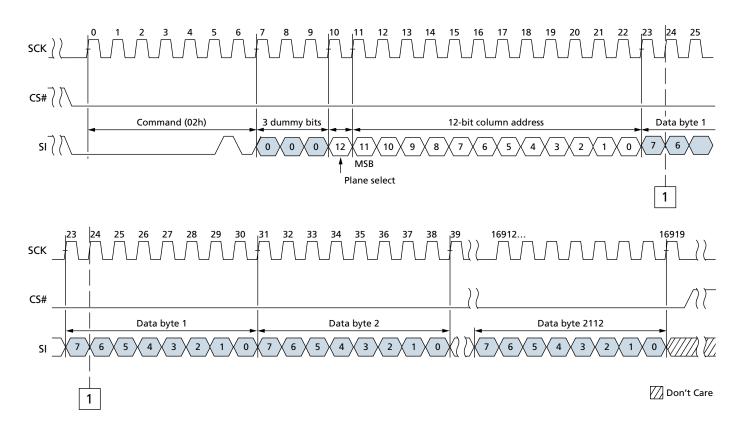
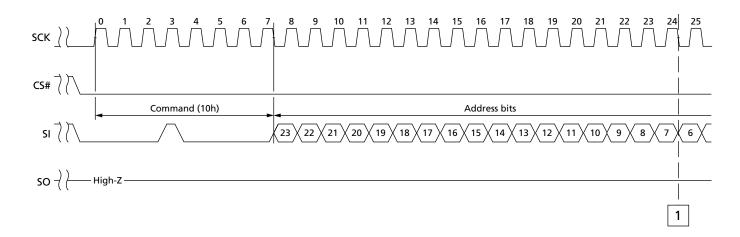
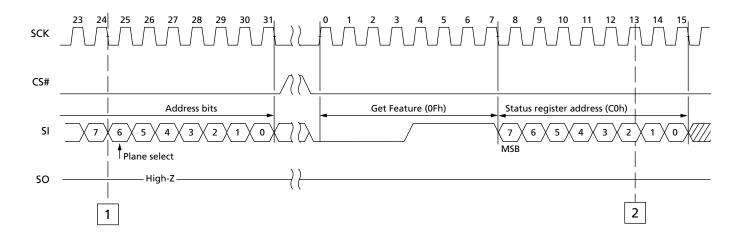
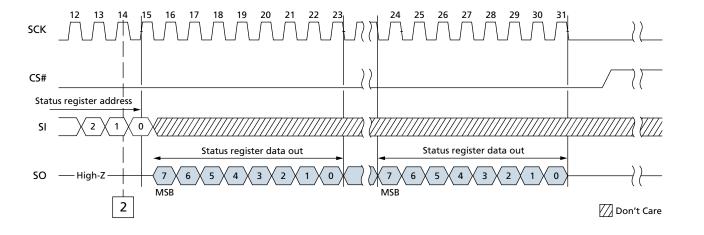







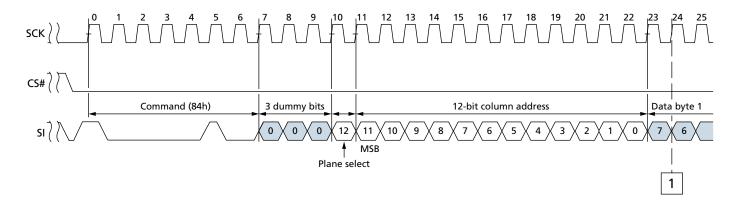

Figure 17: PROGRAM EXECUTE (10h) Timing

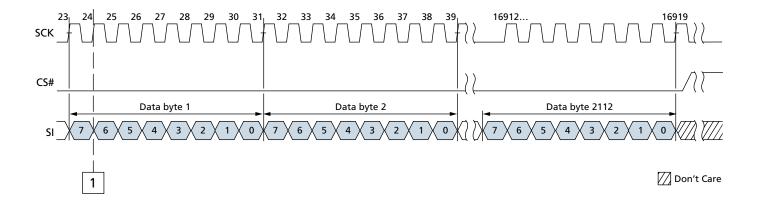









#### **RANDOM DATA PROGRAM**


The RANDOM DATA PROGRAM sequence programs or replaces data in a page with existing data. The random data program sequence is as follows:

- 06h (WRITE ENABLE
- 84h (PROGRAM LOAD RANDOM DATA)
- 10h (PROGRAM EXECUTE)
- 0Fh (GET FEATURE command to read the status)

Prior to performing a PROGRAM LOAD RANDOM DATA operation, a WRITE ENABLE (06h) command must be issued to change the contents of the memory array. Following a WRITE ENABLE (06) command, a PROGRAM LOAD RANDOM DATA (84h) command must be issued. This command consists of an 8-bit Op code, followed by 3 dummy bits, a plane select bit, and a 12-bit column address. New data is loaded in the column address provided with the 12 bits. If the random data is not sequential, then another PROGRAM LOAD RANDOM DATA (84h) command must be issued with a new column address. After the data is loaded, a PROGRAM EXECUTE (10h) command can be issued to start the programming operation.

Figure 18: PROGRAM LOAD RANDOM DATA (84h) Timing







#### **INTERNAL DATA MOVE**

The INTERNAL DATA MOVE command sequence programs or replaces data in a page with existing data. The INTERNAL DATA MOVE command sequence is as follows:

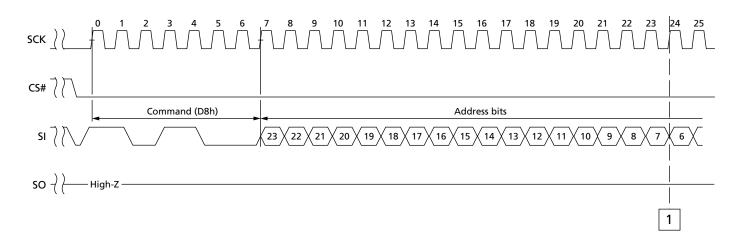
- 13h (PAGE READ to cache)
- 06h (WRITE ENABLE
- 84h (PROGRAM LOAD RANDOM DATA)
- 10h (PROGRAM EXECUTE)
- 0Fh (GET FEATURE command to read the status)

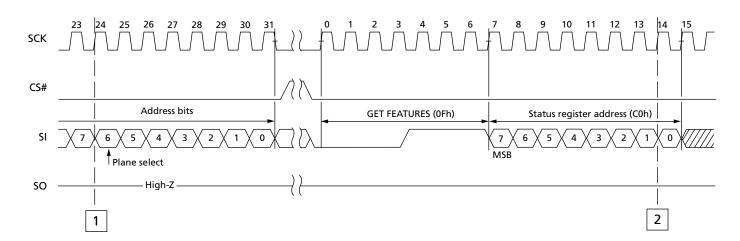
Prior to performing an internal data move operation, the target page content must be read into the cache register. This is done by issuing a PAGE READ (13h) command (see Figure 11). The PAGE READ command must be followed with a WRITE ENABLE (06h) command in order to change the contents of memory array. After the WRITE ENABLE command is issued, the PROGRAM LOAD RANDOM DATA (84h) command can be issued. This command consists of an 8-bit Op code, followed by 3 dummy bits, a plane select, and a 12-bit column address. New data is loaded in the 12-bit column address. If the random data is not sequential, another PROGRAM LOAD RANDOM DATA (84h) command must be issued with the new column address. After the data is loaded, a PROGRAM EXECUTE (10h) command can be issued to start the programming operation.

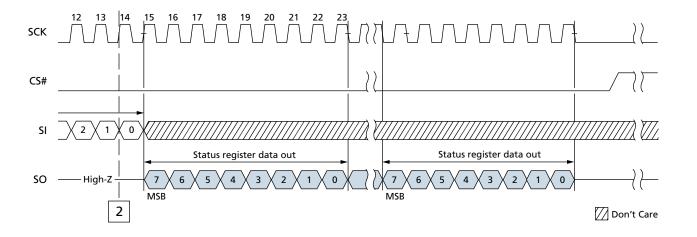
INTERNAL DATA MOVE is not supported across internal planes.

### **Block Operations**

### **BLOCK ERASE (D8h)**


The BLOCK ERASE (D8h) command is used to erase at the block level. The blocks are organized as 64 pages per block, 2112 bytes per page (2048 + 64 bytes). Each block is 132 Kbytes. The BLOCK ERASE command (D8h) operates on one block at a time. The command sequence for the BLOCK ERASE operation is as follows:


- 06h (WRITE ENBALE command)
- D8h (BLOCK ERASE command)
- 0Fh (GET FEATURES command to read the status register)


Prior to performing the BLOCK ERASE operation, a WRITE ENABLE (06h) command must be issued. As with any command that changes the memory contents, the WRITE ENABLE command must be executed in order to set the WEL bit. If the WRITE ENABLE command is not issued, then the rest of the erase sequence is ignored. A WRITE ENABLE command must be followed by a BLOCK ERASE (D8h) command. This command requires a 24-bit address consisting of 6 dummy bits followed by an 18-bit row address. After the row address is registered, the control logic automatically controls timing and erase-verify operations. The device is busy for tERS time during the BLOCK ERASE operation. The GET FEATURES (0Fh) command can be used to monitor the status of the operation (see Figure 19).



### Figure 19: BLOCK ERASE (D8h) Timing









#### **Block Lock Feature**

The block lock feature provides the ability to protect the entire device, or ranges of blocks, from the PROGRAM and ERASE operations. After power-up, the device is in the "locked" state, i.e., bits 3, 4, and 5 of the block lock register are set to 1. To unlock all the blocks, or a range of blocks, the SET FEATURES command must be issued with the A0h feature address, including the data bits shown in Table 6. The operation for the SET FEATURES command is shown in Figure 10 on page 15. When BRWD is set and WP is LOW, none of the writable bits (3, 4, 5, and 7) in the block lock register can be set. Also, when a PROGRAM/ERASE command is issued to a locked block, a status of 00h is returned. When an ERASE command is issued to a locked block, the erase failure, 04h, is returned. When a PROGRAM command is issued to a locked block, program failure, 08h, is returned.

**Table 7: Block Lock Register Block Protect Bits** 

| BP2 | BP1 | BP0 | Protected Rows       |
|-----|-----|-----|----------------------|
| 0   | 0   | 0   | None—all unlocked    |
| 0   | 0   | 1   | Upper 1/64 locked    |
| 0   | 1   | 0   | Upper 1/32 locked    |
| 0   | 1   | 1   | Upper 1/16 locked    |
| 1   | 0   | 0   | Upper 1/8 locked     |
| 1   | 0   | 1   | Upper 1/4 locked     |
| 1   | 1   | 0   | Upper 1/2 locked     |
| 1   | 1   | 1   | All locked (default) |

For example, if all the blocks need to be unlocked after power-up, the following sequence should be performed:

- Issue SET FEATURES register write (1Fh)
- Issue the feature address to unlock the block (A0h)
- Issue 00h on data bits to unlock all blocks



### **One-Time Programmable (OTP) Feature**

The serial device offers a protected, one-time programmable NAND Flash memory area. Ten full pages (2112 bytes per page) are available on the device, and the entire range is guaranteed to be good. Customers can use the OTP area any way they want; typical uses include programming serial numbers, or other data, for permanent storage. To access the OTP feature, the user must issue the SET FEATURES command, followed by feature address B0h. When the OTP is ready for access, pages 02h–0Bh can be programmed in sequential order. The PROGRAM LOAD (02h) and PROGRAM EXECUTE (10h) commands can be used to program the pages. Also, the PAGE READ (13h) command can be used to read the OTP area. The data bits used in feature address B0h to enable OTP access are shown in the table below.

#### **OTP Access**

To access OTP, perform the following command sequence:

- Issue the SET FEATURES register write (1Fh)
- Issue the OTP feature address (B0h)
- Issue the PAGE PROGRAM or PAGE READ command

It is important to note that after bits 6 and 7 of the OTP register are set by the user, the OTP area becomes read-only and no further programming is supported. For OTP states, see the following table.

**Table 8: OTP States** 

| OTP Protect Bit | OTP Enable Bit | State                                 |
|-----------------|----------------|---------------------------------------|
| 0               | 0              | Normal operation                      |
| 0               | 1              | Access OTP space                      |
| 1               | 0              | Not applicable                        |
| 1               | 1              | Use PROGRAM EXECUTE (10h) to lock OTP |

Note: 1. The OTP space cannot be erased and after it has been protected, it cannot be programmed again.



### **Status Register**

The NAND Flash device has an 8-bit status register that software can read during the device operation. The status register can be read by issuing the GET FEATURES (0Fh) command, followed by the feature address C0h (see Figure 9 (page 16)).

The status register will output the status of the operation. The description of data bits from status register are shown in the following table.

**Table 9: Status Register Bit Descriptions** 

| Bit        | Bit Name              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P_Fail     | Program fail          | This bit indicates that a program failure has occurred (P_Fail set to 1). This bit will also be set if the user attempts to program an invalid address or a locked or protected region, including the OTP area.  This bit is cleared during the PROGRAM EXECUTE command sequence or a RESET command (P_Fail = 0).                                                                                                                                                                                                                                                                               |
| E_Fail     | Erase fail            | This bit indicates that an erase failure has occurred (E_Fail set to 1). This bit will also be set if the user attempts to erase a locked region, or if the ERASE operation fails.  This bit is cleared (E_Fail = 0) at the start of the BLOCK ERASE command sequence or the RESET command.                                                                                                                                                                                                                                                                                                     |
| WEL        | Write enable<br>latch | This bit indicates the current status of the write enable latch (WEL) and must be set (WEL = 1), prior to issuing a PROGRAM EXECUTE or BLOCK ERASE command. It is set by issuing the WRITE ENABLE command.  WEL can also be disabled (WEL = 0), by issuing the WRITE DISABLE command.                                                                                                                                                                                                                                                                                                           |
| OIP        | Operation in progress | This bit is set (OIP = 1) when a PROGRAM EXECUTE, PAGE READ, BLOCK ERASE, or RESET command is executing; the device is busy. When the bit is 0, the interface is in the ready state.                                                                                                                                                                                                                                                                                                                                                                                                            |
| ECC_Status | N/A                   | ECC_Status provides ECC status as follows:  00b = No bit errors were detected during the previous read algorithm.  01b = A bit error was detected and corrected.  10b = Multiple bit errors were detected and not corrected.  11b = Reserved  ECC_Status is set to 00b either following a RESET, or at the beginning of the READ. It is then updated after the device completes a valid READ operation.  ECC_Status is invalid if ECC is disabled (via a SET FEATURES command to the OTP feature address).  After power-up RESET, ECC status is set to reflect the contents of block 0, page 0. |



### 4Gb x1: SPI NAND Flash Memory Error Management

### **Error Management**

This NAND Flash device is specified to have the minimum number of valid blocks ( $N_{VB}$ ) of the total available blocks per die shown in the table below. This means the devices may have blocks that are invalid when shipped from the factory. An invalid block is one that contains at least one page that has more bad bits than can be corrected by the minimum required ECC. Additional bad blocks may develop with use. However, the total number of available blocks will not fall below  $N_{VB}$  during the endurance life of the product.

Although NAND Flash memory devices may contain bad blocks, they can be used reliably in systems that provide bad-block management and error-correction algorithms. This ensures data integrity.

Internal circuitry isolates each block from other blocks, so the presence of a bad block does not affect the operation of the rest of the NAND Flash array.

NAND Flash devices are shipped from the factory erased. The factory identifies invalid blocks before shipping by attempting to program the bad-block mark into every location in the first page of each invalid block. It may not be possible to program every location in an invalid block with the bad-block mark. However, the first spare area location in each bad block is guaranteed to contain the bad-block mark. This method is compliant with ONFI factory defect mapping requirements. See the following table for the bad-block mark.

System software should initially check the first spare area location for non-FFh data on the first page of each block prior to performing any program or erase operations on the NAND Flash device. A bad-block table can then be created, enabling system software to map around these areas. Factory testing is performed under worst-case conditions. Because invalid blocks may be marginal, it may not be possible to recover the bad-block marking if the block is erased.

**Table 10: Error Management Details** 

| Description                                       | Requirement |
|---------------------------------------------------|-------------|
| Minimum number of valid blocks (N <sub>VB</sub> ) | 4016        |
| Total available blocks per die                    | 4096        |
| First spare area location                         | Byte 2048   |
| Bad-block mark                                    | 00h         |



## 4Gb x1: SPI NAND Flash Memory ECC Protection

### **ECC Protection**

The serial device offers data corruption protection by offering 4-bit internal ECC. READs and PROGRAMs with internal ECC can be enabled or disabled by setting the ECC bit in the OTP register. ECC is enabled after device power up, so the default READ and PROGRAM commands operate with internal ECC in the "active" state.

To enable/disable ECC, perform the following command sequence:

- Issue the SET FEATURES register write (1Fh).
- Issue the OTP feature address (B0h).
- Then
  - To enable ECC Set Bit 4, ECC Enable, to 1.
  - To disable ECC Clear Bit 4, ECC Enable, to 0.

During a PROGRAM operation, the device calculates an ECC code on the 2k page in the cache register, before the page is written to the NAND Flash array. The ECC code is stored in the spare area of the page.

During a READ operation, the page data is read from the array to the cache register, where the ECC code is calculated and compared with the ECC code value read from the array. If a 1- to 4-bit error is detected, the error is corrected in the cache register. Only corrected data is output on the I/O bus. The ECC status bit indicates whether or not the error correction was successful. The ECC Protection table below shows the ECC protection scheme used throughout a page.

With internal ECC, the user must accommodate the following:

- Spare area definitions provided in the ECC Protection table below.
- WRITEs to ECC are supported for main and spare areas 0, and 1. WRITEs to the ECC area are prohibited (see the ECC Protection table below).
- When using partial-page programming, the following conditions must both be met:
  - In the main user area and in user meta data area I, single partial-page programming operations must be used (see the ECC Protection table below).
- Within a page, the user can perform a maximum of four partial-page programming operations.



# 4Gb x1: SPI NAND Flash Memory ECC Protection

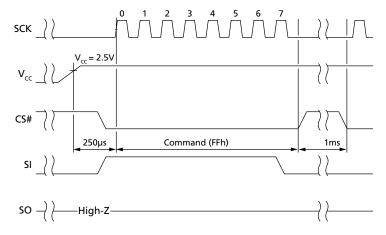
**Table 11: ECC Protection** 

| Max Byte<br>Address | Min Byte<br>Address | ECC<br>Protected | Area    | Description               |
|---------------------|---------------------|------------------|---------|---------------------------|
| 1FFh                | 000h                | Yes              | Main 0  | User data 0               |
| 3FFh                | 200h                | Yes              | Main 1  | User data 1               |
| 5FFh                | 400h                | Yes              | Main 2  | User data 2               |
| 7FFh                | 600h                | Yes              | Main 3  | User data 3               |
| 801h                | 800h                | No               |         | Reserved (bad block data) |
| 803h                | 802h                | No               |         | User meta data II         |
| 807h                | 804h                | Yes              | Spare 0 | User meta data I          |
| 80Fh                | 808h                | Yes              | Spare 0 | ECC for main/spare 0      |
| 811h                | 810h                | No               |         | Reserved                  |
| 813h                | 812h                | No               |         | User meta data II         |
| 817h                | 814h                | Yes              | Spare 1 | User meta data I          |
| 81Fh                | 818h                | Yes              | Spare 1 | ECC for main/spare 1      |
| 821h                | 820h                | No               |         | Reserved                  |
| 823h                | 822h                | No               |         | User meta data II         |
| 827h                | 824h                | Yes              | Spare 2 | User meta data I          |
| 82Fh                | 828h                | Yes              | Spare 2 | ECC for main/spare 2      |
| 831h                | 830h                | No               |         | Reserved                  |
| 833h                | 832h                | No               |         | User meta data II         |
| 837h                | 834h                | Yes              | Spare 3 | User meta data I          |
| 83Fh                | 838h                | Yes              | Spare 3 | ECC for main/spare 3      |

**Table 12: ECC Status** 

| Bit 1 | Bit 0 | Description                                                  |
|-------|-------|--------------------------------------------------------------|
| 0     | 0     | No errors                                                    |
| 0     | 1     | 1- to 4-bit error detected and corrected                     |
| 1     | 0     | Bit errors greater than four bits detected and not corrected |
| 1     | 1     | Reserved                                                     |




## 4Gb x1: SPI NAND Flash Memory Power-Up

### **Power-Up**

### **SPI Power-Up**

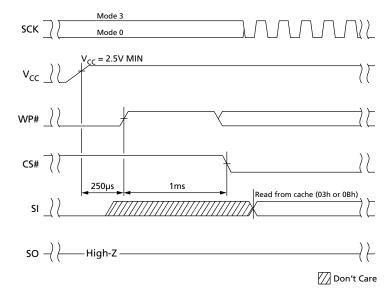

Micron NAND Flash devices are designed to prevent data corruption during power transitions.  $V_{CC}$  is internally monitored and when  $V_{CC}$  reaches 2.5V, a minimum of 250µs must elapse before issuing a RESET (FFh) command. After issuing the RESET command, 1ms must elapse before issuing any other command (see Figure 20).

Figure 20: SPI Power-Up Timing



Micron has developed an alternative SPI NAND sequence that does not require issuing an explicit RESET (FFh) command upon power-up. When WP# is taken HIGH 250 $\mu$ s after V<sub>CC</sub> has reached 2.5V, the device automatically performs the RESET command. The first access to the SPI NAND device can occur 1ms after WP# goes HIGH, and then CS# can be driven LOW, SCK can start, and the required command can be issued to the SPI NAND device (see Figure 21).

Figure 21: Alternative SPI Power-Up Timing





### 4Gb x1: SPI NAND Flash Memory Electrical Specifications

### **Electrical Specifications**

Stresses greater than those listed can cause permanent damage to the device. This is stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods can affect reliability.

**Table 13: Absolute Maximum Ratings** 

| Parameter                         | Symbol          | Min | Max | Unit |
|-----------------------------------|-----------------|-----|-----|------|
| Supply voltage (SPI)              | V <sub>CC</sub> | 2.7 | 3.6 | V    |
| Operating temperature (ambient)   | T <sub>A</sub>  | -40 | 85  | °C   |
| Junction temperature <sup>1</sup> | T <sub>J</sub>  | -   | 110 | °C   |
| Storage temperature               | T <sub>S</sub>  | -40 | 125 | °C   |

Note: 1.  $T_J$  is calculated based on  $T_J = R_{th} \times P + T_A$  with  $R_{th} = 180$ K/W.

**Table 14: SPI Mode Electrical Characteristics** 

| Parameter                                                        | Symbol          | Min | Тур | Max | Unit |
|------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| Supply voltage (SPI)                                             | $V_{CC}$        | 2.7 | 3   | 3.6 | V    |
| Supply current (READ/PROGRAM/<br>ERASE, MAX ROOT MEAN<br>SQUARE) | I <sub>CC</sub> | -   | 12  | 20  | mA   |
| Standby                                                          | I <sub>SB</sub> | _   | 10  | 50  | μΑ   |

**Table 15: DC Characteristics** 

| Parameter              | Symbol            | Min                 | Max                    | Unit | Conditions          |
|------------------------|-------------------|---------------------|------------------------|------|---------------------|
| Input high voltage     | V <sub>IH</sub> , | $0.7 \times V_{CC}$ | V <sub>CC</sub> + 0.3  | V    |                     |
| Input low voltage      | V <sub>IL</sub>   | - 0.3               | 0.2 × V <sub>CC</sub>  | V    |                     |
| Output high voltage    | V <sub>OH</sub> , | $0.7 \times V_{CC}$ | V <sub>CC</sub> + 0.3  | V    | $I_{OH} = -20\mu A$ |
| Output low voltage     | V <sub>OL</sub>   | _                   | 0.15 × V <sub>CC</sub> | V    | $I_{OL} = -1mA$     |
| Input leakage current  | ILI               | _                   | ±10                    | μΑ   |                     |
| Output leakage current | I <sub>LO</sub>   | _                   | ±10                    | μΑ   |                     |

**Table 16: General Timing Characteristics (SPI)** 

| Parameter                                  | Symbol           | Min | Max | Units |
|--------------------------------------------|------------------|-----|-----|-------|
| Clock frequency                            | fC               | -   | 50  | MHz   |
| Hold# non-active hold time relative to SCK | <sup>t</sup> CD  | 5   | _   | ns    |
| HOLD# holding time relative to SCK         | <sup>t</sup> CH  | 5   | _   | ns    |
| Command deselect time                      | tCS              | 100 | _   | ns    |
| Chip select# hold time                     | <sup>t</sup> CSH | 5   | _   | ns    |

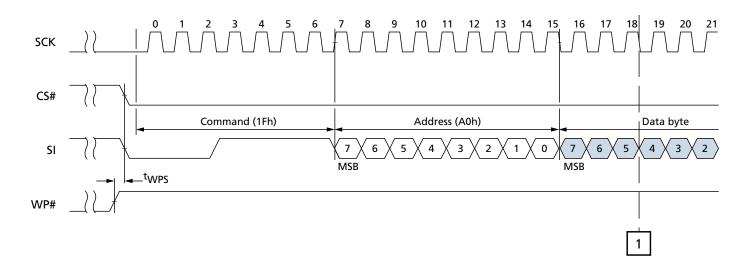


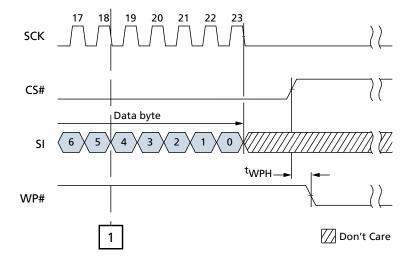
### 4Gb x1: SPI NAND Flash Memory **Electrical Specifications**

**Table 16: General Timing Characteristics (SPI) (Continued)** 

| Parameter                                   | Symbol                         | Min | Мах | Units |
|---------------------------------------------|--------------------------------|-----|-----|-------|
| Chip select# setup time                     | tCSS                           | 5   | _   | ns    |
| Output disable time                         | <sup>t</sup> DIS               | _   | 20  | ns    |
| Hold# non-active setup time relative to SCK | tHC                            | 5   | _   | ns    |
| Hold# setup time relative to SCK            | tHD                            | 5   | _   | ns    |
| Data input hold time                        | tHDDAT                         | 5   | _   | ns    |
| Output hold time                            | tHO                            | 0   | _   | ns    |
| Hold to output High-Z                       | tHZ                            | _   | 15  | ns    |
| Hold# to output Low-Z                       | <sup>t</sup> LZ                | _   | 15  | ns    |
| Rise/fall time                              | <sup>t</sup> R, <sup>t</sup> F | _   | 2   | ns    |
| Data input setup time                       | tSUDAT                         | 5   | _   | ns    |
| Clock LOW to output valid                   | tV                             | _   | 15  | ns    |
| Clock HIGH time                             | tWH                            | 8   | _   | ns    |
| Clock LOW time                              | tWL                            | 8   | _   | ns    |
| WP# hold time                               | tWPH                           | 100 | _   | ns    |
| WP# setup time                              | tWPS                           | 20  | _   | ns    |

**Table 17: PROGRAM/READ/ERASE Timing Characteristics (SPI)** 

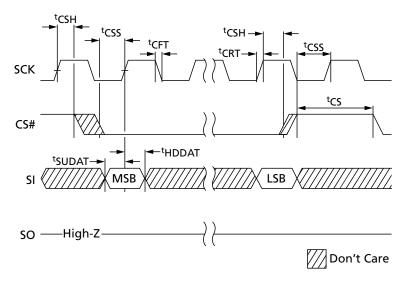

| Parameter                     | Тур   | Max                         | Description                                                                          |
|-------------------------------|-------|-----------------------------|--------------------------------------------------------------------------------------|
| NOP                           | _     | 41                          | Number of partial-page programming operations supported.                             |
| <sup>t</sup> ERS              | 4ms   | 10ms <sup>2</sup>           | BLOCK ERASE operation time.                                                          |
| <sup>t</sup> PROG             | 400µs | 900µs                       | PROGRAM PAGE operation time (ECC enabled).                                           |
| <sup>t</sup> RD               | -     | 100µs                       | Data transfer time from NAND Flash array to data register with internal ECC enabled. |
| <sup>t</sup> RST (RD/PGM/ERS) | _     | 5μs/10μs/500μs <sup>2</sup> | Resetting time for READ, PROGRAM, and ERASE operations.                              |


- Notes: 1. Four total partial-page programs to the same page. If ECC is enabled, the device is limited to one partial-page program per ECC user area, not exceeding four partial-page programs per page.
  - 2. 100,000 cycles.
  - 3. For first RESET condition after power up, tRST will be 1ms maximum.



### 4Gb x1: SPI NAND Flash Memory Electrical Specifications

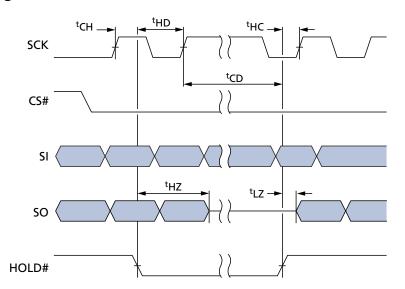
Figure 22: WP# Timing








### 4Gb x1: SPI NAND Flash Memory Electrical Specifications

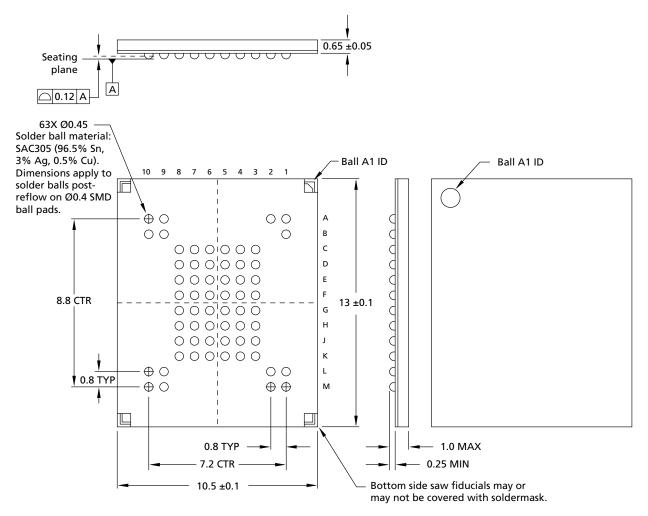

Figure 23: Serial Input Timing



**Figure 24: Serial Output Timing** 



Figure 25: Hold# Timing






# 4Gb x1: SPI NAND Flash Memory Package Dimensions

### **Package Dimensions**

#### Figure 26: 63-Ball VFBGA, Package Code HC



Note: 1. All dimensions are in millimeters.



## 4Gb x1: SPI NAND Flash Memory Revision History

### **Revision History**

Rev. G - 10/12

 Updated part number chart with option X for product longevity program (PLP) under Special Options

Rev. F - 11/11

 Changed command for op code 02h to PROGRAM LOAD, and changed command for op code 84h to PROGRAM LOAD RANDOM DATA in the SPI NAND Command Set table

Rev. E - 10/11

 $\bullet$  Updated the  $I_{CC}$  specification from 6mA TYP, 12mA MAX to 12mA TYP, 20mA MAX in the SPI Mode Electrical Characteristics table

Rev. D - 05/11

- $\bullet\,$  Corrected standby current unit from mA to  $\mu A$  in the SPI Mode Electrical Characteristics table
- $\bullet$  Changed the  $I_{CC}$  specification from 25 TYP, 35 MAX mA to 6 TYP, 12mA MAX in the SPI Mode Electrical Characteristics table

Rev. C - 02/11

• Added Parameter Page Data Structure Table

Rev. B - 07/10

· Converted to CMS

Rev. A - 08/09

· Initial release; Advance status

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer Comment Line: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains initial descriptions of products still under development.