IRIS or Auto Focus (AF) Controller & Driver with 40 KB Flash Memory

1. Overview

LC898123F40XC is a system LSI integrating an onchip 32bit DSP, a Flash Memory and peripherals including analog circuits for IRIS or AF (Auto Focus) control and H-bridge and linear drivers.

2. Features

- Onchip 32 bit DSP
 - · Built-in software digital servo filter
 - Built-in software Gyro filter
- Flash Memory
 - 40 kByte Flash memory to store data and DSP program
- Peripherals
 - · Hall AD converter
 - 14 bit
 - Input 4 ch
 - DA converter for Hall Offset setting • 8 bit / 1 ch
 - DA converter for Hall Bias
 - 8 bit
 - Output 1 ch
 - · Built-in Serial I/F circuit
 - (2-wire Bus with clock stretch function) (1MHz) • Built-in Hall Amp
 - (Gain of Opamp : ×5, ×10, ×13, ×20, ×40, ×60)
 - · Built-in OSC(Oscillator)
 - typ 41 MHz
 - · Built-in LDO (Low Drop-Out regulator)
 - · Digital Gyro I/F for various types of gyro (SPI Bus)
- Package
 - WLP35
 - (3.22mm × 2.30mm, thickness : 0.45mm w/ BC)

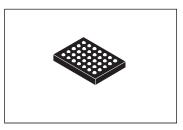
See detailed ordering and shipping information on page 12 of this data sheet.

- Pb-Free
- \cdot Halogen Free

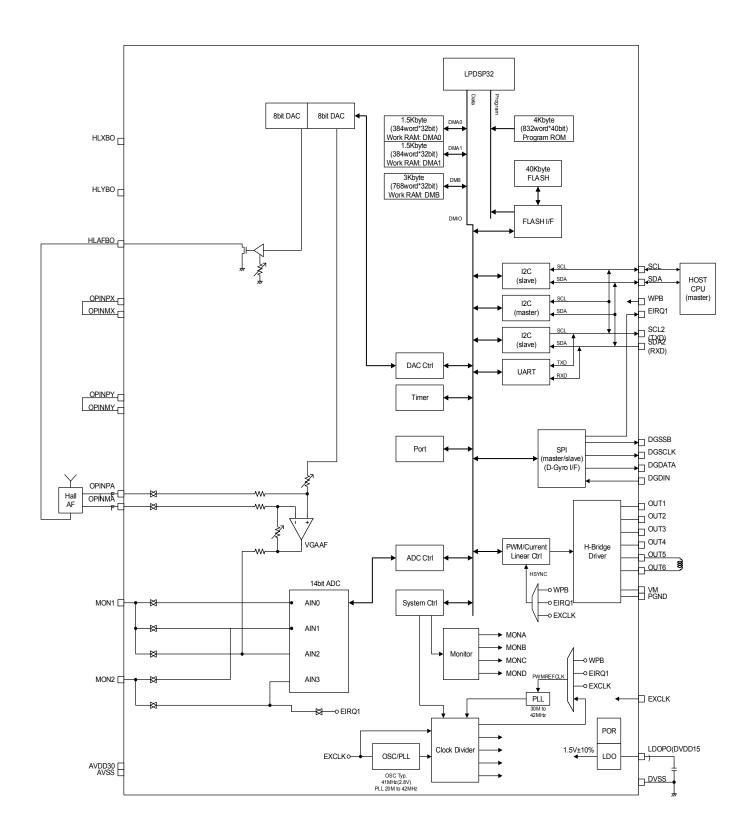
ORDERING INFORMATION

Motor Driver

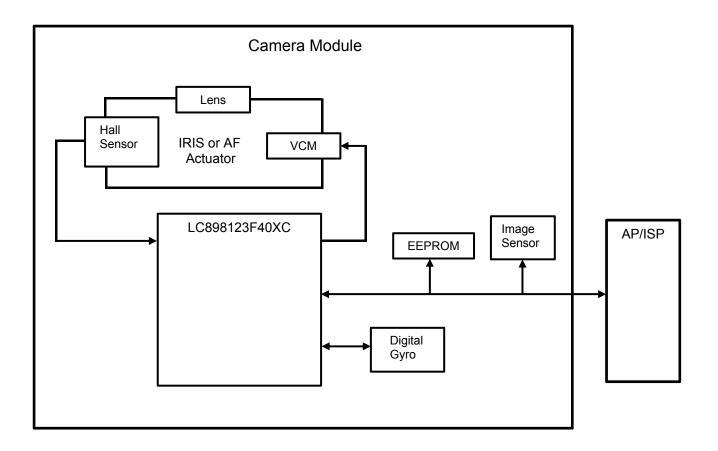
- OP-AF(unidirection)
 - Constant current linear driver (×1 ch, $I_{full} = 150 \text{ mA}$) • OP-AF(bidirection)
 - Constant current linear driver (×1 ch, $I_{full} = 150 \text{ mA}$) • CL-AF


Constant current linear driver (×1 ch, $I_{full} = 150 \text{ mA}$) H-bridge PWM driver (×1 ch, Iomax 150 mA)

- Power supply voltage
 - AD/DA/VGA/LDO/OSC : AVDD30 = 2.6V to 3.3V
 - Digital I/O (except Gyro I/F) : AVDD30 = 2.6V to 3.3V
 - Driver :
 - VM = Constant current : 1.75 to 3.3V H Bridge PWM : 2.6 to 3.3V
 - Core Logic / Gyro I/F IO : generated by onchip LDO DVDD15 = typ 1.55V output


ON Semiconductor®

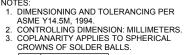
www.onsemi.com



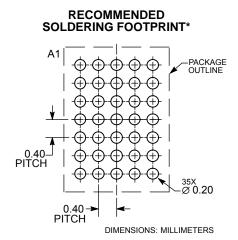
WLCSP35, 3.22x2.3

3. Block Diagram

4. Application Diagram


5. Package Dimensions

unit : mm


WLCSP35, 3.22x2.3 CASE 567LJ ISSUE O

NOTES:

	MILLIMETERS					
DIM	MIN MAX					
Α		0.45				
A1	0.03	0.13				
b	0.15	0.25				
D	3.22	BSC				
Е	2.30	BSC				
е	0.40	BSC				

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

6. Pin Assign

G	OUT4	OUT3	OUT2	OUT1	VM
F	MON1	SDA2 (RXD)	WPB	PGND	OUT6
E	MON2	SCL2 (TXD)	DVSS	EXCLK	OUT5
D	DVDD15	EIRQ1	AVSS	SDA	SCL
С	AVDD30	HLAFBO	AVSS	HLYBO	HLXBO
В	DGDATA	DGSSB	OPINMAF	OPINMY	ΟΡΙΝΜΧ
A	DGSCLK	DGDIN	OPINPAF	OPINPY	OPINPX
	1	2	3	4	5

BOTTOM VIEW

Analog V_{DD} Analog GND Digital GND Logic Core V_{DD} (Output)

7. Pin Desctiption

Pin Num	Pin	I/O Atr	I/O Pwr (V)	Primary Function (just after Reset)	Sub Functions	Init
A1	DGSCLK	В	1.55	Digital Gyro I/F Clock Input Digital Gyro I/F Clock Output	Digital Gyro Clock Output Internal Signal Monitor	Z
A2	DGDIN	В	1.55	Digital Gyro Data Input (4 Wired)	I2C Data I/O for DAC Monitor Internal Signal Monitor	Z
A3	OPINPA F	Ι	2.8	AF Hall Opamp Input Plus		
A4	F OPINPY	Ι	2.8	connect to OPINMY(B4)	_	
A4 A5	OPINPT	I	2.8	connect to OPINMY (B4)		
B1	DGDATA	В	1.55	GPIO Input	Digital Gyro I/F Data Output (4 Wired) Digital Gyro I/F Data I/O (3 Wired) Internal Signal Monitor	Z
B2	DGSSB	В	1.55	Digital Gyro I/F Chip Select Input DigitalGyro I/F Chip Select Output	Digital Gyro I/F Chip Select Output Internal Signal Monitor	Z
В3	OPINMA F	Ι	2.8	AF Hall OpAmp Input Minus	-	_
B4	OPINMY	Ι	2.8	connect to OPINPY(A4)	_	_
B5	OPINMX	I	2.8	connect to OPINPX (A5)	_	
Cl	AVDD30	P		Analog Power (2.6 to 3.3V)		_
C2	HLAFBO	0	2.8	AF Hall Bias Output	_	-
C3	AVSS	P		Analog GND	_	-
C4	HLYBO	0	2.8	Open	_	_
C5	HLXBO	0	2.8	Open	_	_
D1	DVDD15	Р	-	Internal LDO Power Output	_	-
D2	EIRQ1	В	2.8	External IRQ1	I2C Data I/O for DAC Monitor UART Data Output (TXD) SPI I/F Chip Select Output Internal Signal Monitor	D
		_		External Clock Input	Servo Monitor Analog Input	_
D3	AVSS	Р	-	Analog GND	_	-
D4	SDA	В	2.8	I2C Data	_	Z
D5 E1	SCL MON2	B	2.8	I2C Clock (Debugger Data Input)	- I2C Data I/O for DAC Monitor UART Data Input (RXD) Servo Monitor Analog Out Internal Signal Monitor	
E2	SCL2 (TXD)	В	2.8	I2C Clock for 2nd I2C	I2C Data I/O for DAC Monitor UART Data Output Internal Signal Monitor	Z
E3	DVSS	Р	-	Logic GND	_	-
E4	EXCLK	В	2.8	External Clock Input External IRQ1	I2C Data I/O for DAC Monitor Internal Signal Monitor	D
E5	OUT5	0	2.8	AF Driver Output (H-Bridge, Linear)	_	-
F1	MON1	В	2.8	(Debugger Data Output)	I2C Data I/O for DAC Monitor UART Data Output (TXD) Servo Monitor Analog Out Internal Signal Monitor	L
F2	SDA2 (RXD)	В	2.8	I2C Data for 2nd I2C	I2C Data I/O for DAC Monitor UART Data Input Internal Signal Monitor	Z
F3	WPB	Ι	2.8	Write Protect for Flash		D
F4	PGND	Р	-	Driver GND	_	-
F5	OUT6	0	2.8	AF Driver Output (H-Bridge, Linear)	_	-
G1	OUT4	0	2.8	Open	-	-
G2	OUT3	0	2.8	Open	-	_
G3	OUT2	0	2.8	Open	-	_
G4	OUT1	0	2.8	Open	_	-
G5	VM	Р	_	Driver Power (2.6V to 3.3V)	-	_

8. Electrical Characteristics

8-1 Logic

1) Absolute Maximum Rating at $V_{SS}=0V$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{AD} 30 max	Ta ≤ 25°C	-0.3 to +4.6	V
Input voltage (Except DGDATA,DGSSB,DGSCLK,DGDIN)	V _{AI} 30	Ta ≤ 25°C	-0.3 to V _{Al} 30+0.3	V
Input voltage (DGDATA,DGSSB,DGSCLK,DGDIN)	V _{LDO} 18	$Ta = -30 \text{ to } +85^{\circ}C$	-0.3 to +1.872	V
Storage temperature	Tstg		-55 to +125	°C
Operating temperature	Topr		-30 to +85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2) Allowable Operating Ratings at Ta=-30 to +85°C, VSS=0V

3.0V Power Supply (AVDD30)

Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage	$V_{AD}30$	2.6	2.8	3.3	V
Input voltage range	V _{IN}	0	—	V _{AD} 30	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Parame		Symbol	Conditions	Min	Тур	Max	Unit	Applicable Pin
High-level voltage	input	VIH	CMOS	1.36			v	SCL2(TXD), SDA2(RXD),
Low-level voltage	input	VIL	schmitt			0.39	V	EXCLK
High-level voltage	input	VIH	CMOS	1.26			V	DGDIN, DGSSB,
Low-level voltage	input	VIL	schmitt			0.35		DGSCLK, DGDATA
High-level voltage	input	VIH	CMOS	1.40				
Low-level voltage	input	VIL	schmitt			0.40	V	SCL, SDA
High-level voltage	input	VIH	CMOS	1.48				
Low-level voltage	input	VIL	schmitt			0.37		EIRQ1, WPB
High-level voltage	input	VIH	CMOS	1.40				MON1 MON2
Low-level voltage	input	VIL	supported			0.51		MON1, MON2
High-level voltage	output	VOH	IOH=-2mA	AVDD30 -0.4			v	SCL2(TXD), SDA2(RXD), EXCLK, EIRQ1, MON1, MON2
High-level voltage	output	VOH	IOH=-0.1mA	1.32			V	DGDIN, DGSSB, DGSCLK, DGDATA
Low-level voltage	output	VOL	IOL=2mA			0.2	v	SCL2(TXD), SDA2(RXD), DGDIN, DGSSB, DGSCLK, DGDATA, EXCLK, SDA, SCL
Low-level voltage	output	VOL	IOL=2mA			0.4	V	MON1,MON2,EIRQ1
Analog input	voltage	VAI		AVSS		AVDD30	V	OPINPAF, OPINMAF
PullUp resisto	r	Rup		50		200	kΩ	MON1, MON2, EIRQ1, SCL2(TXD), SD2(RXD)
PullUp resisto	r	Rup		180		800	kΩ	DGDATA, DGDIN, DGSSB, DGSCLK
PullDown res	istor	Rdn		50		220	kΩ	MON1, MON2, EIRQ1, SCL2(TXD), SDA2(RXD), EXCLK, WPB
PullDown res	istor	Rdn		120		500	kΩ	DGDATA, DGDIN, DGSSB, DGSCLK

3) DC Characteristics : Input/Output level at V_{SS}= 0V, V_{DD}=2.6 to 3.6V, Ta =-30 to +85°C

4) Non-volatile Memory Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Endurance	EN				1000	Cycles
Data retention	RT		10			Years

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8-2 Driver

1) Absolute Maximum Rating

Parameter	Symbol	Condition	Ratings	Unit
Power supply voltage	VMmax		4.6	V
Output peak current	Iopeak	OUT5, OUT6 t \leq 10ms, ON-duty \leq 20%	200	mA
Output continuous current	Iomax	OUT5, OUT6	157.5	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2) Allowable Operating Ratings

Parameter	Symbol	Condition	Ratings	Unit
Ambient temperature	Topg		-30 to +85	°C
Power supply voltage	VM	Constant Current	1.75 to 3.3	V
Power supply voltage	VM	H-Bridge PWM	2.6 to 3.3	V

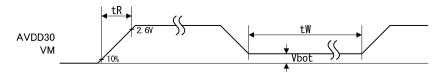
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3) H-Bridge Driver Output at Ta=25°C, AV_{DD}30=VM=2.8V

Parameter	Symbol	Condition	typ	Unit
Output ON resistance	Ronu		0.5	Ω
OUT1 to OUT4	Rond		1.0 (*1)	Ω
Output ON resistance	Ronu		1.1	Ω
OUT5, OUT6	Rond		1.3 (*1)	Ω

4) Constant Current Driver Output at Ta=25°C, AVDD30=VM=2.8V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Current		OP-AF (unidirection) Full code	142.5	150	157.5	mA mA
OUT5, OUT6	I _{full}	OP-AF (bidirection) CL-AF Full code	142.5	150	157.5	mA
Compliance Voltage	upliance Voltage	OP-AF (unidirection)	0.4			V
OUT5, OUT6	Vcomp	OP-AF (bidirection) CL-AF	0.5			V


OP-AF (unidirection)

VCM resistance (Rvcm) = (VM – Vcomp_Min) / Io [Ω] OP-AF(bidirection) / CL-AF VCM resistance (Rvcm) = (VM – (Ronu*Io + Vcomp_Min)) / Io [Ω] Output ON resistance (Ron) = VM/Io – Rvcm [Ω]

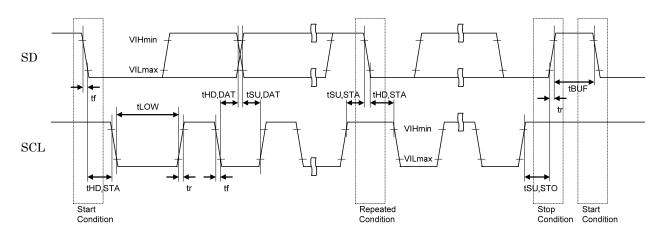
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


9. AC Characteristics

9-1 Power Sequence

Item	Symbol	Min	Тур	Max	Units
Rise time	tR			3	ms
Wait time	tW	100			ms
Bottom Voltage	Vbot			0.2	V

Injection order between AVDD30 and VM is below.



WPB must be open or pull down normally. When Erase or Program is made to Flash, WPB have to be High. SDA, SCL, EXCLK, WPB tolerate 3V input at the time of power off.

The data in the flash memory may be rewritten unintentionally if you do not keep specifications. And it is forbidden to power off during flash access. The data in the flash memory may be rewritten unintentionally.

9-2 Two Wire Serial Interface Timing

The communication protocol is compatible with I^2C (Fast mode Plus). This circuit has clock stretch function.

Item	Symbol	Pin name	Min	Тур	Max	Units
SCL clock frequency	Fscl	SCL			1000	kHz
START condition hold time	tHD,STA	SCL SDA	0.26			μs
SCL clock Low period	tLOW	SCL	0.5			μs
SCL clock High period	tHIGH	SCL	0.26			μs
Setup time for repetition START condition	tSU,STA	SCL SDA	0.26			μs
Data hold time	tHD,DAT	SCL SDA	0 (*1)		0.9	μs
Data setup time	tSU,DAT	SCL SDA	50			ns
SDA, SCL rising time	tr	SCL SDA			120	ns
SDA, SCL falling time	tf	SCL SDA			120	ns
STOP condition setup time	tSU,STO	SCL SDA	0.26			μs
Bus free time between STOP and START	tBUF	SCL SDA	0.5			μs

(*1) Although the I²C specification defines a condition that 300 ns of hold time is required internally, LC898123F40XC is designed for a condition with typ. 40 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)		
LC898123F40XC-VH	WLCSP35, 3.22x2.3 (Pb-Free / Halogen Free)	4000 / Tape & Reel		

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf//Patent-Marking.pdf. ON Semiconductor serves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any Edical consenduator and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintende