

Automotive USB 2.0 Hub and Flash Media Card Controller Combo

Highlights

- · AEC-Q100 compliance
 - Microchip's parts are tested to meet or exceed the requirements of the AEC-Q100 automotive qualification standards
- PortMap
 - Flexible port mapping and port disable sequencing supports multiple platform designs
- PortSwap
 - Programmable USB differential-pair pin locations ease PCB design by aligning USB signal traces directly to connectors
- PHYBoost
 - Programmable USB transceiver drive strength for recovering signal integrity due to compromised system environment

Target Applications

- · Automotive integrated head unit
- · Automotive breakout box
- · Automotive media player dock
- · Automotive consumer connectivity ports
- · Portable device charging via USB
- · Rear seat infotainment access

Key Benefits

- Single-chip compound device: USB 2.0 hub controller with two hi-speed downstream ports and a flash media controller
- Hub and flash media reader/writer configuration from a single source:
 - Configuration of internal code using an external I²CTM EEPROM or SPI Flash
 - Execution of external code from SPI Flash
 - Support of custom vendor, product, and language IDs when using an external EEPROM
- Full power management with individual or ganged power control of each downstream port
- Transaction Translator (TT) in the hub supports operation of FS and LS peripherals
- Single 24 MHz crystal support
- · Integrated regulator for 1.8 V core operation
- External regulator mode for 1.8 V core operation
- · RoHS compliant packages
 - 48-pin (7x7 mm²) VQFN
- · Temperature ranges:
 - 48VQFN: -40 °C to +85 °C

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 Introduction	4
2.0 Pin Configuration	6
2.0 Pin Configuration	7
4.0 Logical Structure and Block Diagram	8
5.0 Pin Descriptions	10
6.0 Pin Reset States	19
7.0 Configuration Options	21
8.0 DC Parameters 9.0 AC Specifications	45
9.0 AC Specifications	50
10.0 Package Outline	52
Appendix A. Data Sheet Revision History	55
Appendix A: Data Sheet Revision History Appendix B: Acronyms Appendix C: References	59
Appendix C: References	60
The Microchip Web Site	61
Customer Change Notification Service	61
Customer Support	61
Product Identification System	62

1.0 INTRODUCTION

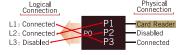
Microchip's USB82640 is designed, fabricated, tested, characterized and qualified for automotive applications.

The USB82640 is a USB 2.0 compliant, hi-speed hub and card reader combo solution. This fully-integrated, single chip solution provides USB expansion and flash media reader/writer integration. The Microchip USB82640 provides an ultra fast interface between a USB host and today's popular flash media formats. The controller allows read/write capability to flash media including the following:

- Secure DigitalTM (SD)
- SD High CapacityTM (SDHC)
- MultiMediaCardTM (MMC)
- Memory Stick[®] (MS)
- MS PROTM
- MS PRO-HGTM

The USB82640 offers a versatile, cost-effective and energy-efficient hub controller with 2 downstream USB 2.0 ports and a Secure Digital/Memory Stick flash media interface. The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB compound device. The flash media interface can support sustained transfer rates exceeding 35 MB/s if the media and host support those rates.

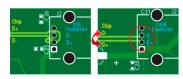
The USB82640 will attach to an upstream port as either a full-speed or full-/hi-speed hub. The hub supports low-speed, full-speed, and hi-speed (if operating as a full-/hi-speed hub) downstream devices on all of the enabled downstream ports.

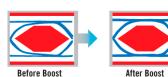

All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors on D+ and D- pins and all required pull-down and pull-up resistors. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

AEC-Q100 compliance: The USB82640 is specifically tailored for use in automotive applications requiring automotive grade robustness starting with the comprehension of proprietary design for reliability techniques within the silicon IC itself as well as for the package design.

- Automotive qualified technologies and processes are used to fabricate the products with enhanced monitors to continuously drive improvements in accordance with Microchip's zero-dpm methodology.
- Product qualification is focused on customer expectations and exceeds many of the automotive reliability standards including AEC-Q100.
- Microchip automotive services are provided during the life of the product from a dedicated organization of operations, quality, and product support personnel specialized in meeting the requirements of the automotive customer.

The USB82640 includes programmable features such as:


PortMap which provides flexible port mapping and disable sequences. The down-stream ports of a USB82640 hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB82640 automatically reorders the remaining ports to match the USB host controller's port numbering scheme.



USB Port Virtualization

PortSwap which adds per-port programmability to USB differential-pair pin locations. PortSwap allows direct alignment of USB signals (D+/D-) to connectors avoiding uneven trace length or crossing of the USB differential signals on the PCB.

PHYBoost which enables four programmable levels of USB signal drive strength in downstream port transceivers. PHYBoost attempts to restore USB signal integrity. The boost graphic shows an example of hi-speed USB eye diagrams before (PHYBoost at 0%) and after (PHYBoost at 12%) signal integrity restoration in a compromised system environment.

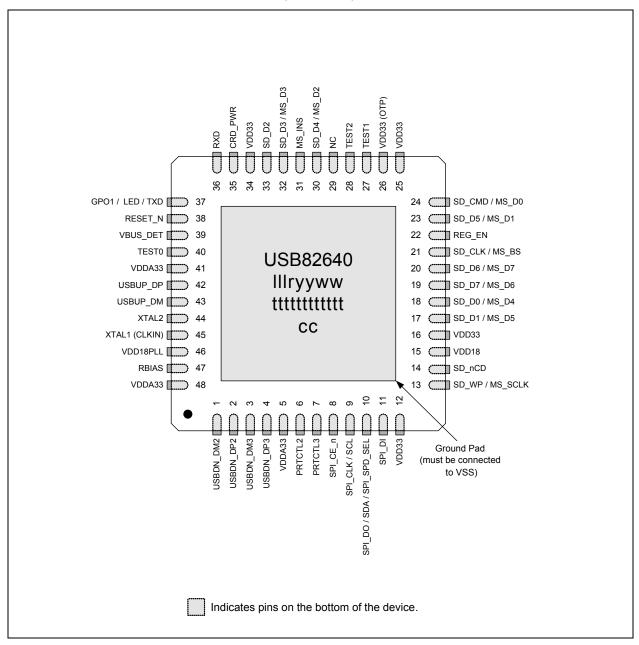
1.1 Device Features

1.1.1 HARDWARE FEATURES

- · Single-chip hub and flash media controller
- USB82640 supports the temperature range of -40 °C to +85 °C
- Transaction Translator (TT) in the hub supports operation of FS and LS peripherals
- · Full power management with individual or ganged power control of each downstream port
- · Optional support for external firmware access via SPI interface
- Code execution via SPI ROM which must meet the following qualifications:
 - 30 MHz or 60 MHz operation support
 - Single bit or dual bit mode support
 - Mode 0 or mode 3 SPI support

Compliance with the following flash media card specifications:

- · Secure Digital 2.0/MultiMediaCard 4.2
 - SD 2.0, SD-HS, SD-HC
 - TransFlashTM and reduced form factor media
 - 1/4/8 bit MMC 4.2
 - Supports storage addressability of up to 2 TB
- · Memory Stick 1.43
- Memory Stick Pro Format 1.02
- · Memory Stick Pro-HG Duo Format 1.01
 - Memory Stick, MS Duo, MS-HS, MS Pro-HG, MS Pro
- MS Duo 1.10
- Supports internal regulator for 1.8 V core operation
- · Supports external regulator for 1.8 V core operation


1.1.2 CONFIGURABLE FEATURES

Default configuration is implemented in the USB82640 following a reset. The USB82640 may also be configured by an external I²C EEPROM or external SPI ROM flash where the following features are supported.

- · Customizable vendor ID, product ID, and device ID
- · 12-hex digits maximum for the serial number string
- · 29-character manufacturer ID and product strings for flash media reader/writer
- Compound device support on a port-by-port basis
 - a port is permanently hardwired to a downstream USB peripheral device
- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the OEM's choice of circuit board component selection
- · Port power control and over-current detection/delay features
- · Configure the delay time for filtering the over-current sense inputs
- · Configure the delay time for turning on downstream port power
- · Bus- or self-powered selection
- · Hub port disable of non-removable configurations
- · Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location selection eases PCB layout by aligning USB signal lines directly to connectors
- · Programmable USB signal drive strength improves USB signal integrity using 4 levels of signal drive strength
- · Indicate the maximum current that the 2-port hub consumes from the USB upstream port
- · Manage the maximum current required for the hub controller

2.0 PIN CONFIGURATION

FIGURE 2-1: USB82640 48-PIN VQFN (TOP VIEW)

The package designators are:

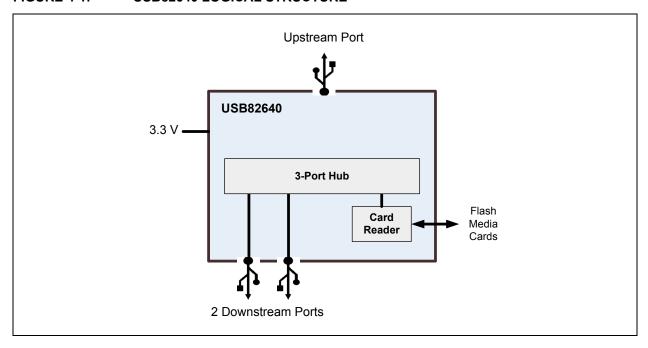
- III Lot Sequence Code
- · r Chip Revision Number
- · yy last two digits of Assembly Year
- · ww Assembly Work Week
- tttttttttttt Tracking Number (up to 12 characters)
- cc Country of Original Abbreviation (Optional up to 2 characters)

3.0 PIN TABLE

TABLE 3-1: USB82640 48-PIN TABLE (GROUPED BY FUNCTION)

	Secure Digital/Memory	Stick Interface (13 Pins)	
SD_D7/ MS_D6	SD_D6/ MS_D7	SD_D5/ MS_D1	SD_D4/ MS_D2
SD_D3/ MS_D3	SD_D2/	SD_D1/ MS_D5	SD_D0/ MS_D4
SD_CLK/ MS_BS	SD_CMD/ MS_D0	SD_nCD	MS_INS
SD_WP/ MS_SCLK			
	USB 2.0 Inter	face (10 Pins)	
USBUP_DP	USBUP_DM	XTAL1 (CLKIN)	XTAL2
RBIAS	(3) VDDA33	VDD18PLL	REG_EN
	2-Port USB In	terface (7 Pins)	
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3
USBDN_DP3	USBDN_DM3	VBUS_DET	-
	SPI Interfa	ace (4 Pins)	
SPI_CE_N	SPI_CLK/ SCL	SPI_DO/ SDA/ SPI_SPD_SEL	SPI_DI
	Misc (8 Pins)	
RESET_N	TEST0	TEST1	TEST2
GPO1/ LED/ TXD	RXD	CRD_PWR	NC
	Power	(6 Pins)	
(4) VDD33	VDD33	VDD18	-
	Tot	al 48	

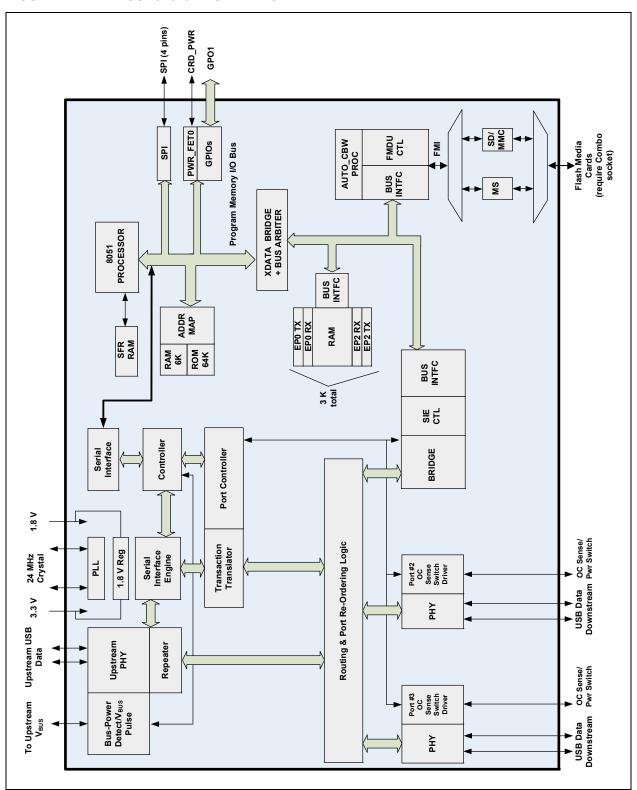
4.0 LOGICAL STRUCTURE AND BLOCK DIAGRAM


The USB82640 consists of two USB devices:

- · a hub and
- · a card reader

The hub is a three-port HS USB hub, with port1 internally connected to the card reader by default, and ports 2 and 3 can be made user-accessible, or disabled by hub configuration. The chip reports itself as a USB Compound device. Having two different devices compounded, the chip has two different sets of descriptors as appropriate per the corresponding device classes (Refer to the *Universal Serial Bus Mass Storage Class Specification Overview* [6]). Some of the device descriptors are mentioned in the Appendix (Selected Device Descriptors) on page 62.

The logical structure of the USB82640 is shown in Figure 4-1.


FIGURE 4-1: USB82640 LOGICAL STRUCTURE

More details about the USB82640 are presented in the block diagram in Figure 4-2 USB82640 Block Diagram on page q

.

FIGURE 4-2: USB82640 BLOCK DIAGRAM

5.0 PIN DESCRIPTIONS

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Chapter 7.0, Configuration Options on page 21. The acronyms used in this chapter can be referenced in Appendix B:, "Acronyms," on page 59.

An *N* at the end of a signal name indicates that the active (asserted) state occurs when the signal is at a low voltage level. When the *N* is not present, the signal is asserted when it is at a high voltage level. The terms assertion and negation are used exclusively in order to avoid confusion when working with a mixture of active low and active high signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

5.1 USB82640 Pin Description

TABLE 5-1: USB82640 PIN DESCRIPTIONS

Symbol	48-Pin VQFN	Buffer Type	Description	If Pins not Used Connection
		Secure D	igital Interface	
SD_D[7:0]	17 18 19 20 23 30 32 33	I/O12PU	Secure Digital Data 7-0 These are the bi-directional data signals SD_D0 - SD_D7. Note: The pull-up resistance is a current source that is limited to VDD.	Leave open
SD_CLK	21	O12	Secure Digital Clock This is an output clock signal to SD/MMC device.	Leave open
SD_CMD	24	I/O12PU	Secure Digital Command This is a bi-directional signal that connects to the CMD signal of the SD/MMC device.	Leave open
SD_nCD	14	I/O12PU	Secure Digital Card Detect	Leave open
SD_WP	13		Secure Digital Write Protected	Leave open
	Memory Stick Interface			
MS_BS	21	O12	Memory Stick Bus State This pin is connected to the bus state pin of the MS device. It is used to control the bus states 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.	
MS_INS	31	I/O12	Memory Stick Card Insertion	
MS_SCLK	13	O12	Memory Stick System Clock This pin is an output clock signal to the MS device.	

TABLE 5-1: USB82640 PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin VQFN	Buffer Type	Description	If Pins not Used Connection
MS_D[7:0]	20 19 17 18 32 30 23 24	I/O12PD	MS System Data In/Out These pins are the bi-directional data signals for the MS device. In serial mode, the most significant bit (MSB) of each byte is transmitted first by either MSC or MS device on MS_D0. MS_D0, MS_D2, and MS_D3 have weak pull-down resistors. MS_D1 has a pull down resistor if in parallel mode, otherwise it is disabled. In 4-or 8-bit parallel modes, there is a weak pull-down resistor on all MS_D7 - MS_D0 signals.	
		USB	Interface	
USBUP_DM USBUP_DP	43 42	I/O-U	USB Bus Data These pins connect to the upstream USB bus data signals (host port or upstream hub). USBUP_DM and USBUP_DP can be swapped using the PortSwap feature.	Leave open
USBDN_DM [3:2] USBDN_DP [3:2]	3 1 4 2	I/O-U	USB Bus Data These pins connect to the downstream USB bus data signals and can be swapped using the PortSwap feature.	Leave open
PRTCTL[3:2]	7 6	I/OD12PU	USB Power Enable As an output, these pins enables power downstream USB peripheral devices. See Section 5.3, "Port Power Control" for diagram and usage instructions. As an input, when the power is enabled, these pins monitor the over-current condition. When an over-current condition is detected, these pins turn the power off.	Leave open
VBUS_DET	39	I	Detect Upstream VBUS Power The Microchip hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event). When designing a detachable hub, connect this pin to the VBUS power pin of the USB port that is upstream of the hub. For self-powered applications with a perma- nently attached host, this pin should be pulled up, typically to VDD33. VBUS is a 3.3 V input. A resistor divider must be used when connecting to 5 V of USB power.	Pull up. Note: Pull down will disable entire USB82640 chip.
RBIAS	47	I-R	USB Transceiver Bias A 12.0 k Ω , ±1.0% resistor is attached from VSS to this pin in order to set the transceiver's internal bias currents.	N/A
XTAL1 (CLKIN)	45	ICLKx	24 MHz Crystal Input/External Clock Input This pin can be connected to one terminal of the crystal or it can be connected to an external 24 MHz clock when a crystal is not used.	N/A

USB82640

TABLE 5-1: USB82640 PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin VQFN	Buffer Type	Description	If Pins not Used Connection
XTAL2	44	OCLKx	24 MHz Crystal Output This is the other terminal of the crystal, or a no connect pin, when an external clock source is used to drive XTAL1 (CLKIN).	N/A Note: Leave it open, when an exter- nal clock source is used to drive XTAL1 (CLKIN).
VDD18PLL	46	-	1.8 V PLL Power Bypass This pin is the 1.8 V power bypass for the PLL. This pin requires an external bypass capacitor of 1.0 μF. If REG_EN is low, this pin serves as a power supply (1.8 V) for the device.	
VDDA33	5 41 48	-	 3.3 V Analog Power Pin 48 requires an external bypass capacitor of 4.7 μF. 	
SPI Interface				
SPI_CE_N	8	O12	SPI Chip Enable This is the active low chip enable output. If the SPI interface is enabled, drive this pin high in power down states.	Leave open
SPI_CLK/	9	I/O12	SPI Clock This is the SPI clock out to the serial ROM. See Section 5.4, "ROM BOOT Sequence" for diagram and usage instructions. During reset, this pin is driven low.	Leave open
SCL			When configured, this is the I ² C EEPROM clock pin.	Leave open

TABLE 5-1: USB82640 PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin VQFN	Buffer Type	Description	If Pins not Used Connection
SPI_DO/	10	I/O12 SPI Data Out This is the data out for the SPI port. See Section 5.4, "ROM BOOT Sequence" for diagram and usage instructions.		Leave open
SDA			This pin is the data pin when the device is connected to the optional I ² C EEPROM.	Leave open
SPI_SPD_SEL			This pin is used to pick the speed of the SPI interface. During RESET_N assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When RESET_N is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality. Additionally, the internal pull-down will be disabled. 0:30 MHz (deprecated and might be removed in future versions) 1:60 MHz If the latched value is 1, then the pin is tri-stated when the chip is in the suspend state. If the latched value is 0, then the pin is driven low during a suspend state.	Leave open
SPI_DI	11	I/O12PD	SPI Data In This is the data in to the controller from the SPI ROM. This pin has a weak internal pull-down applied at all times to prevent floating.	Leave open
			Misc	
GPO1/	37	I/O12	This general purpose pin is set to be used as an output.	Leave open
LED/			GPO1 can be used as an LED output	
TXD			This signal can be used as input to the TxD of UART in the device. Custom firmware is required to activate this alternate function.	
RXD	36	I/O12	This signal can be used as input to the RXD of UART in the device. Custom firmware is required to activate this alternate function.	Leave open
CRD_PWR	35	I/O200	Card power drive: 3.3 V (200 mA) This pin powers the multiplexed flash media interface (slot) for the SD/MMC interface. Bits 0, 1, 2, and 3 control FET 2 of Register A5h. See Section 7.3.2.11, "A4h-A5h: LUN 0 Power Configuration," on page 28 for more information.	Leave open

USB82640

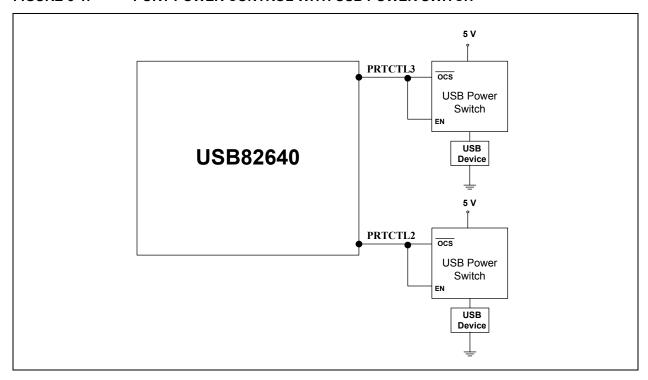
TABLE 5-1: USB82640 PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin VQFN	Buffer Type	Description	If Pins not Used Connection	
REG_EN	22	IPU	Regulator Enable This pin is internally pulled up to enable the internal 1.8 V regulators. In order to disable the regulators, this pin will need to be externally connected to ground. When the internal regulator is enabled, the 1.8 V power pins must be left unconnected, except for the required bypass capacitors.	N/A	
RESET_N	38	I	RESET input This active low signal is used by the system to reset the chip. The active low pulse should be at least 1 µs wide.	N/A	
TEST[2:0]	28 27 40	IPD	TEST Input Tie these test pins to ground for normal operation.	Connect to ground.	
	Digital/Power/Ground				
VDD18	15	1.8 V Digital Core Power Bypass This pin requires an external bypass capacitor of 1.0 μF. If REG_EN is low, this pin serves as a power supply (1.8 V) for the device.			
VDD33	12 16 25 34	-	3.3 V Power and Regulator Input Pin 16 requires an external bypass capacitor of 4.7 µF minimum.		
VDD33 (OTP)	26	-	- 3.3 V Power		
VSS	ePad	-	Ground Pad The ground pad is the only VSS for the device and must be tied to ground with multiple vias.		
NC(2)	29 36	-	No Connects No trace or signal should be routed/attached to these pins.	Leave open	

5.2 Buffer Type Descriptions

TABLE 5-2: USB82640 BUFFER TYPE DESCRIPTIONS

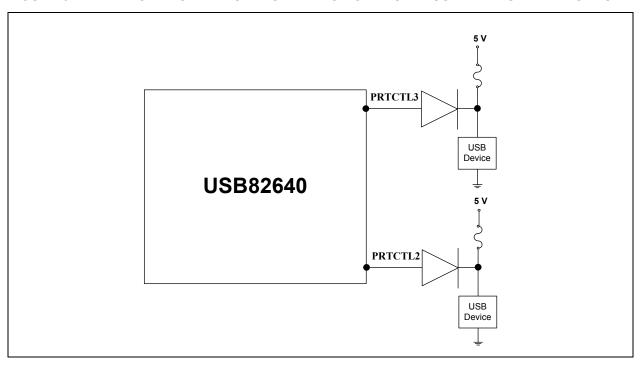
Buffer	Description		
1	Input		
IPU	Input with weak internal pull-up		
I/O12	Input/output buffer with 12 mA sink and 12 mA source		
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled		
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source, with an internal weak pull-down resistor		
I/O12PU	Open drain, 12 mA sink with pull-up. Input with Schmitt trigger		
I/OD12PU	Input/open drain output buffer with a 12 mA sink		
O12	Output buffer with a 12 mA sink and a 12 mA source		
ICLKx	XTAL clock input		
OCLKx	XTAL clock output		
I/O-U	Analog input/output defined in USB Specification [1]		
I-R	RBIAS		


5.3 Port Power Control

5.3.1 PORT POWER CONTROL USING USB POWER SWITCH

The USB82640 has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a 0. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.


FIGURE 5-1: PORT POWER CONTROL WITH USB POWER SWITCH

5.3.2 PORT POWER CONTROL USING A POLY FUSE

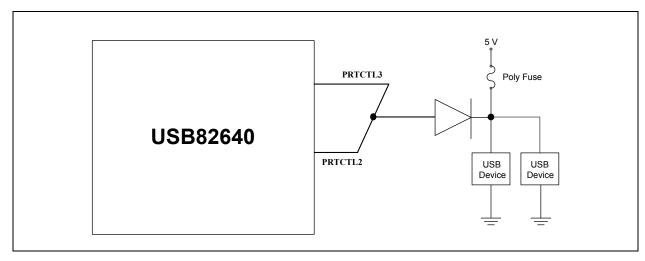

When using the USB82640 with a poly fuse, an external diode must be used (see Figure 5-2). When disabling port power, the USB82640 driver will drive a 0. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB82640 output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

FIGURE 5-2: PORT POWER CONTROL WITH SINGLE POLY FUSE AND MULTIPLE LOADS

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

FIGURE 5-3: PORT POWER CONTROL WITH GANGED CONTROL WITH POLY FUSE

5.4 ROM BOOT Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of 2DFU (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an I^2C ROM. The firmware looks for the signature ata2 at the offset of FCh-FFh and ecf1 at the offset of 17Ch-17Fh in the I^2C ROM. The firmware reads in the I^2C ROM to configure the hardware and software internally. See Section 7.3.2, "EEPROM Data Descriptor," on page 22 for configuration options details.

The SPI ROM required for the USB82640 is a recommended minimum of 1 Mbit and support 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor. SPI_SPD_SEL is used to choose the speed of the SPI interface. During RESET_N assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When RESET_N is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, and the internal pull-down is disabled.

The firmware can determine the speed of operation on the SPI port by checking the **SPI_SPEED** in the SPI_CTL Register (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

FIGURE 5-4: SPI ROM CONNECTION

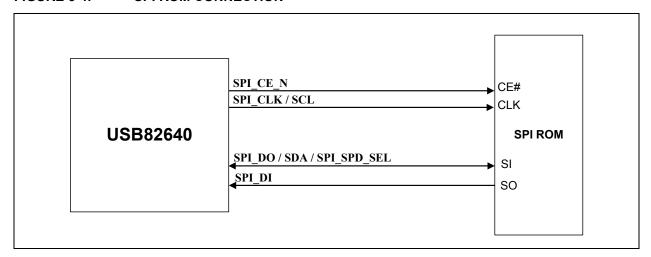
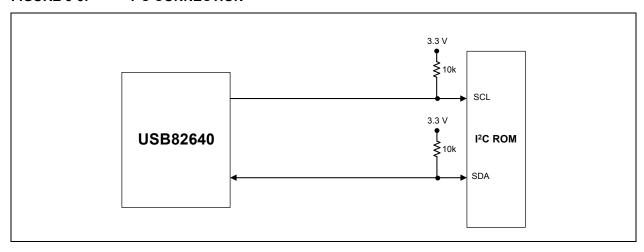



FIGURE 5-5: I²C CONNECTION

6.0 PIN RESET STATES

TABLE 6-1: LEGEND FOR PIN RESET STATES

Symbol	Description
0	Output driven low
1	Output driven high
IP	Input enabled
PU	Hardware enables pull-up
PD	Hardware enables pull-down
none	Hardware disables pad
-	Hardware disables function
Z	Hardware disables pad. Both output driver and input buffers are disabled.

6.1 Pin Reset States

TABLE 6-2: USB82640 RESET STATES

	Pin Name	Reset State			
Pin		Function	Input/ Output	PU/ PD	
1	USBDN_DM2	USBDN_DM2	IP	PD	
2	USBDN_DP2	USBDN_DP2	IP	PD	
3	USBDN_DM3	USBDN_DM3	IP	PD	
4	USBDN_DP3	USBDN_DP3	IP	PD	
6	PRTCTL2	PRTCTL	0	-	
7	PRTCTL3	PRTCTL	0	-	
8	SPI_CE_N	SPI_CE_N	1	-	
9	SPI_CLK/SCL	GPIO	0	-	
10	SPI_DO/SDA/SPI_SPD_SEL	GPIO	0	-	
11	SPI_DI	SPI_DI	IP	PD	
13	SD_WP/MS_SCLK	GPIO	0	-	
14	SD_nCD	GPIO	IP	PU	
17	SD_D1/MS_D5	none	Z	-	
18	SD_D0/MS_D4	none	Z	-	

USB82640

TABLE 6-2: USB82640 RESET STATES (CONTINUED)

	Pin Name	Reset State			
Pin		Function	Input/ Output	PU/ PD	
19	SD_D7/MS_D6	none	Z	-	
20	SD_D6/MS_D7	none	Z	-	
21	SD_CLK/MS_BS	none	Z	-	
22	REG_EN	none	IP	PU	
23	SD_D5/MS_D1	none	Z	-	
24	SD_CMD/MS_D0	none	Z	-	
27	TEST1	none	Z	-	
28	TEST2	none	Z	-	
29	NC	GPIO	IP	PU	
30	SD_D4/MS_D2	none	Z	-	
31	MS_INS	GPIO	IP	PU	
32	SD_D3/MS_D3	none	Z	-	
33	SD_D2	none	Z	-	
35	CRD_PWR	GPIO	Z	-	
36	RXD	GPIO	0	-	
37	GPIO1/LED/TXD	GPIO	0	-	
38	RESET_N	RESET_N	IP	-	
39	VBUS_DET	VBUS_DET	IP	-	
40	TEST0	TEST	IP	PD	
42	USBUP_DP	USBUP_DP	Z	-	
43	USBUP_DM	USBUP_DM	Z	-	

7.0 CONFIGURATION OPTIONS

7.1 Hub

Microchip's USB 2.0 hub is fully compliant with the *Universal Serial Bus 2.0 Specification* [1]. See Chapter 11 (Hub Specification) for general details regarding hub operation and functionality.

The hub provides 1 Transaction Translator (TT) that is shared by both downstream ports defined as a single-TT configuration. The TT contains 4 non-periodic buffers.

7.1.1 HUB CONFIGURATION OPTIONS

The Microchip hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub:

- · internal default settings
- · use settings stored on an external EEPROM or SPI Flash device

7.1.1.1 Power Switching Polarity

The hub will only support active high power controllers.

7.1.2 VBUS DETECT

According to Section 7.2.1 of the *USB 2.0 Specification* [1], a downstream port can never provide power to its D+ or D-pull-up resistors unless the upstream port's VBUS is in the asserted (powered) state. The **VBUS_DET** pin on the hub monitors the state of the upstream VBUS signal and will not pull-up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (not powered), the hub will remove power from the D+ pull-up resistor within 10 seconds.

7.2 Card Reader

The Microchip USB82640 is fully compliant with the following flash media card reader specifications:

- Secure Digital 2.0/MultiMediaCard Specification 4.2
 - SDSC, SDHC
 - TransFlashTM and reduced form factor media
 - 1/4/8 bit MMC 4.2
 - Supports storage addressability of up to 2 TB
- Memory Stick Specification 1.43
- Memory Stick PRO Format Specification 1.02
- Memory Stick PRO-HG Duo Format Specification 1.01
 - Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro

7.3 System Configurations

7.3.1 EEPROM/SPI INTERFACE

The USB82640 can be configured via a 2-wire (I^2C) EEPROM (512x8) or an external SPI flash device containing the firmware for the USB82640. If an external configuration device (NVSTORE) does not exist, the internal default values will be used. If one of the external devices is used for configuration, the OEM can update the values through the USB interface

The USBDM tool set is available in the Hub Card reader combo software release package.

7.3.2 EEPROM DATA DESCRIPTOR

TABLE 7-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
00h-19h	USB_SER_NUM	USB Serial Number	000008264001 (Unicode)
1Ah-1Bh	USB_VID	USB Card Reader Vendor ID	0424
1Ch-1Dh	USB_PID	USB Card Reader Product ID	4040
1Eh-21h	USB_LANG_ID	USB Language Identifier	0409 (see Note 1)
22h-5Dh	USB_MFR_STR	USB Manufacturer String	Generic (Unicode)
5Eh-99h	USB_PRD_STR	USB Product String	Ultra Fast Media Reader (Unicode)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (Reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	80h
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h-A3h	rsvd		
A4h	LUN_PWR_LB	LUN Power Lo byte	00h
A5h	LUN_PWR_HB	LUN Power Hi byte	0Ah
A6h-A7h	rsvd		
A8h	LED_BLK_INT	LED Blink Interval	02h
A9h	LED_BLK_DUR	LED Blink After Access	28h
AAh-B0h	rsvd		
B1h-B7h	DEV1_ID_STR	Device 1 Identifier String	MS
B8h-BEh	rsvd		
BFh-C5h	DEV3_ID_STR	Device 3 Identifier String	SD/MMC
C6h-CDh	INQ_VEN_STR	Inquiry Vendor String	Generic
CEh-D2h	INQ_PRD_STR	48VQFN Inquiry Product String	82640
D3h	DYN_NUM_LUN	Dynamic Number of LUNs	01h
D4h-D7h	LUN_DEV_MAP	LUN to Device Mapping	FFh, 00h, 00h, 00h

TABLE 7-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS (CONTINUED)

Address Register Name		Description	Internal Default Value
D8h-DAh	MS_BUS_TIMING	MS Bus Timing Control	00h, 06h, 0Dh (Note 2)
DBh-DDh	SD_MMC_BUS_TIMING	SD/MMC Bus Timing Control	59h, 56h, 97h (Note 2)
		Controller Configurations," on pa	•
	Internal Flash Media Co	the register values DEh-17Fh Introller Extended Configurationabled by setting bit 7 of bmAtt	tions:
100h-106h CLUN0_ID_STR		LUN 0 Identifier String	COMBO
107h-10Dh	CLUN1_ID_STR	LUN 1 Identifier String	COMBO
10Eh-114h	CLUN2_ID_STR	LUN 2 Identifier String	COMBO
115h-11Bh	CLUN3_ID_STR	LUN 3 Identifier String	COMBO
11Ch-122h	CLUN4_ID_STR	LUN 4 Identifier String	COMBO
123h-129h rsvd		Reserved for USB82640	
12Ah-145h rsvd			
146h DYN_NUM_ EXT_LUN		48VQFN Dynamic Num- ber of Extended LUNs	00h
147h-14Bh	LUN_DEV_MAP	48VQFN LUN to Device Mapping	FFh, FFh, FFh, FFh
14Ch-17Bh	rsvd	rsvd	
17Ch-17Fh NVSTORE_SIG2		Non-Volatile Storage Signature	ecf1

Note that the following applies to the system values and descriptions:

- rsvd = reserved for internal use; do not write to these registers
 - 1: Refer to the USB 2.0 Specification [1] for other language codes.
 - 2: This register value must not be changed from the default value.

TABLE 7-2: HUB CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	48VQFN Product ID Least Significant Byte	40h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	A1h
E3h	DID_MSB	Device ID Most Significant Byte	08h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:2	Boost_3:2	00h
F1h	PRT_SWP	PortSwap	00h
F2h	PRTM12	PortMap 12	00h
F3h	PRTM3	PortMap 3	00h

TABLE 7-3: OTHER INTERNAL CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
F4h	MS_SD_1_CLK_LIM	MS/SD Clock Limit for the Flash Media Controller	00h
F5h	rsvd		
F6h	MEDIA_SETTINGS	SD Timeout Configuration	00h
F7h-FBh rsvd			
FCh-FFh NVSTORE_SIG		Non-Volatile Storage Signature	ATA2

7.3.2.1 00h-19h: USB Serial Number Option

Byte	Name	Description
25:0	USB_SER_NUM	Maximum string length is 12 hex digits. Must be unique to each device.

7.3.2.2 1Ah-1Bh: USB Vendor Identifier Option

Byte	Name	Description
1:0	USB_VID	This ID is unique for every vendor, where the vendor ID is assigned by the USB Implementer's Forum.

7.3.2.3 1Ch-1Dh: USB Product Identifier Option

Byte	Name	Description
1:0	USB_PID	This ID is unique for every product, where the product ID is assigned by the vendor.

7.3.2.4 1Eh-21h: USB Language Identifier Option

Byte	Name	Description
3:0	USB_LANG_ID	English language code = 0409

7.3.2.5 22h-5Dh: USB Manufacturer String Length

Byte	Name	Description
59:0	USB_MFR_STR	Maximum string length is 29 characters.

7.3.2.6 5Eh-99h: USB Product String Length

Byte	Name	Description
59:0	USB_PRD_STR	This string will be used during the USB enumeration process in Windows®. The maximum string length is 29 characters.

USB82640

7.3.2.7 9Ah: USB BmAttribute (1 byte)

Bit	Name	Description
7:0	USB_BM_ATT	Self- or Bus-Power: Selects between self- and bus-powered operation. The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller). When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated. When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current. 80 = Bus-powered operation C0 = Self-powered operation A0 = Bus-powered operation with remote wake-up E0 = Self-powered operation with remote wake-up

7.3.2.8 9Bh: USB MaxPower (1 byte)

Bit	Name	Description
7:0	USB_MAX_PWR	USB Max Power per USB Specification [1]. Do NOT set this value greater than 100 mA.

7.3.2.9 9Ch-9Fh: Attribute Byte Descriptions

Byte	Name	Bit Number	Description
0	ATT_LB	3:0	Always read as 0
		4	Inquire Manufacturer and Product ID Strings
			1 : use the Inquiry Manufacturer and Product ID Strings. 0 : (default) - use the USB Descriptor Manufacturer and Product ID Strings.
		5	Always read as 0
		6	Reverse SD Card Write Protect Sense 1: (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low. 0: SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.
		7	Always read as 0
1	ATT_HLB	3:0	Always read as 0
		4	Activity LED True Polarity
			1 : Activity LED to Low True 0 : (default) Activity LED polarity to High True
		5	Common Media Insert/Media Activity LED
			The activity LED will function as a common media inserted/media access LED. The activity LED will remain in its idle state until media is accessed (default).
		6	Always read as 0
		7	rsvd
2	ATT_LHB	0	Attach on Card Insert/Detach on Card Removal 1 : attach on Insert is enabled 0 : (default) - attach on Insert is disabled
		1	Always read as 0
		2	Use LUN Power Configuration 1 : custom LUN Power Configuration stored in the NVSTORE is used 0 : (default) - default LUN Power Configuration is used.
		7:3	Always read as 0
3	ATT_HB	7:0	Always read as 0

7.3.2.10 A0h-A3h: Reserved

Byte	Name	Description
3:0	rsvd	

7.3.2.11 A4h-A5h: LUN 0 Power Configuration

The USB82640 has one internal FET which can be utilized for card power. Please reference to Section 7.3.4.9, "14Ch-17Bh: Reserved," on page 42 for information on the other internal FET. The settings are stored in NVSTORE and provide the following features:

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit is set to 200 mA (default) for the internal FET but can be set to 100 mA.

Each media uses two bytes to store its LUN power configuration. Bit 3 selects between internal or external. For internal FETs bits 0 through 2 are used for the power limit. Only 2 of the possible 8 values are currently specified.

TABLE 7-4: FET CONFIGURATION

FET	Туре	Bits	Bit Type	Description
0	FET Lo	3:0	Low Nibble	rsvd
1	Byte	7:4	High Nibble	
2	FET Hi Byte	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	rsvd

7.3.2.12 A6h-A7h: Reserved

BYTE	Name	Description
1:0	rsvd	

7.3.2.13 A8h: LED Blink Interval (1 byte)

Bit	Name	Description
7:0	LED_BLK_INT	The blink rate is programmable in 50 ms intervals. The high bit (7) indicates an idle state: 0: off 1: on The remaining bits (6:0) are used to determine the blink interval up to a max of 128 x 50 ms.

7.3.2.14 A9h: Blink Duration

Bit	Name	Description
7:0	LED_BLK_DUR	LED Blink After Access This byte is used to designate the number of seconds that the GPIO 1 LED will continue to blink after a drive access. Setting this byte to 05 will cause the GPIO 1 LED to blink for 5 seconds after a drive access.

7.3.3 DEVICE ID STRINGS

7.3.3.1 AAh-B0h: Reserved

Byte	Name	Description
6:0	rsvd	

7.3.3.2 B1h-B7h: Device 1 Identifier String

Byte	Name	Description
6:0	DEV1_ID_STR	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications that reorder and rename the LUNs. If this device is configured to be part of a COMBO LUN then this string is ignored for the appropriate CLUNx_ID_STR.

7.3.3.3 B8h-BEh: Reserved

Byte	Name	Description
6:0	rsvd	

7.3.3.4 BFh-C5h: Device 3 Identifier String

Byte	Name	Description
6:0	DEV3_ID_STR	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications where the OEM wishes to reorder and rename the LUNs. If this device is configured to be part of a COMBO LUN then this string is ignored for the appropriate CLUNx_ID_STR.

7.3.3.5 C6h-CDh: Inquiry Vendor String

Byte	Name	Description
7:0	INQ_VEN_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

7.3.3.6 CEh-D2h: Inquiry Product String

Byte	Name	Description
4:0	INQ_PRD_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

7.3.3.7 D3h: Dynamic Number of LUNs

Bit	Name	Description
7:0	DYN_NUM_LUN	This byte is used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces. If this field is set to FF, the program assumes that you are using the default value and icons will be configured per the default configuration.

7.3.3.8 D4h-D7h: LUN to Device Mapping

Byte	Name	Description
3:0	LUN_DEV_MAP	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces. If this field is set to FF, the program assumes that you are using the default values and LUNs will be configured per the default configuration.

7.3.3.9 D8h-DAh: MS Bus Timing Control

Byte	Name	Description
2:0	MS_BUS_TIMING	The values for these bytes are set internally and must not be altered.

7.3.3.10 DBh-DDh: SD/MMC Bus Timing Control

Byte	Name	Description
2:0	SD_1_MMC_BUS_ TIMING	The values for these bytes are set internally and must not be altered.

7.3.3.11 DEh: Vendor ID (LSB)

Bit	Name	Description
7:0	VID_LSB	Least Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

7.3.3.12 DFh: Vendor ID (MSB)

Bit	Name	Description
7:0	VID_MSB	Most Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

7.3.3.13 E0h: Product ID (LSB)

Bit	Name	Description
7:0	PID_LSB	Least Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

7.3.3.14 E1h: Product ID (MSB)

Bit	Name	Description
7:0	PID_MSB	Most Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

7.3.3.15 E2h: Device ID (LSB)

Bit	Name	Description
7:0	DID_LSB	Least Significant Byte of the Device ID. This is a 16-bit device release number in BCD (binary coded decimal) format.

7.3.3.16 E3h: Device ID (MSB)

Bit	Name	Description
7:0	DID_MSB	Most Significant Byte of the Device ID. This is a 16-bit device release number in BCD format.

USB82640

7.3.3.17 E4h: Configuration Data Byte 1 (CFG_DAT_BYT1)

Bit	Name	Description
7	SELF_BUS_PWR	Self- or Bus-Power: Selects between self- and bus-powered operation. The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller). When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated. When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current. 0: bus-powered operation 1: self-powered operation
6	rsvd	
5	HS_DISABLE	Hi-Speed Disable: Disables the capability to attach as either a Hi-/Full-Speed device, and forces attachment as Full-Speed only (i.e., no Hi-Speed support). 0: Hi-/Full-Speed 1: Full-Speed-Only (Hi-Speed disabled!)
4	rsvd	
3	EOP_DISABLE	EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the <i>USB 2.0 Specification</i> [1] for additional details. o: An EOP is generated at the EOF1 point if no traffic is detected. 1: EOP generation at EOF1 is disabled (normal USB operation). Generation of an EOP at the EOF1 point may prevent a host controller (operating in FS mode) from placing the USB bus in suspend.
2:1	CURRENT_SNS	Over-Current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a per port or ganged basis is dependent upon the hardware implementation. 00: ganged sensing (all ports together) 01: individual (port-by-port) 1x: over-current sensing is not supported (must only be used with bus-powered configurations)
0	PORT_PWR	Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation. 0: ganged switching (all ports together) 1: individual port-by-port switching

7.3.3.18 E5h: Configuration Data Byte 2 (CFG_DAT_BYT2)

Bit	Name	Description
7:6	rsvd	
5:4	OC_TIMER	OverCurrent Timer: Over-current timer delay. 00:50 ns 01:100 ns 10:200 ns 11:400 ns
3	COMPOUND	Compound Device: Allows OEM to indicate that the hub is part of a compound device per the <i>USB 2.0 Specification</i> [1]. The applicable port(s) must also be defined as having a "non-removable device". When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device. 0: no 1: yes, the hub is part of a compound device
2:0	rsvd	

7.3.3.19 E6h: Configuration Data Byte 3 (CFG_DAT_BYT3)

Bit	Name	Description
7:4	rsvd	
3	PRTMAP_EN	Port Mapping Enable: Selects the method used by the hub to assign port numbers and disable ports. 0: Standard Mode. Strap options or the following registers are used to define which ports are enabled, and the ports are mapped as port 'n' on the hub is reported as port 'n' to the host, unless one of the ports is disabled, then the higher numbered ports are remapped in order to report contiguous port numbers to the host. Register 300Ah: Port disable for self-powered operation (reset = 0x00). Register 300Bh: Port disable for bus-powered operation (reset = 0x00). 1: PortMap mode. The mode enables remapping via the registers defined below. Register 30FBh: PortMap 12 (reset = 0x00) Register 30FCh: PortMap 3 (reset = 0x00)
2:0	rsvd	

USB82640

7.3.3.20 E7h: Non-Removable Device

Bit	Name	Description
7:0	NR_DEVICE	Indicates which port(s) include non-removable devices. 0: port is removable 1: port is non-removable Informs the host if one of the active ports has a permanent device that is undetachable from the hub. The device must provide its own descriptor data. When using the internal default option, the NON_REM[1:0] pins will designate the appropriate ports as being non-removable. Bit 7 = rsvd Bit 6 = rsvd Bit 5 = rsvd Bit 4 = rsvd Bit 3 = controls physical port 3 Bit 2 = controls physical port 2 Bit 1 = controls physical port 1 Bit 0 = rsvd
		Note: Bit 1 must be set to a 1 by the firmware for proper identification of the card reader as a non-removable device.

7.3.3.21 E8h: Port Disable For Self-Powered Operation

Bit	Name	Description	
7:0	PORT_DIS_SP	Disables 1 or more ports. 0: port is available 1: port is disabled During self-powered operation this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order since the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function. Bit 7 = rsvd Bit 6 = rsvd Bit 5 = rsvd Bit 4 = rsvd Bit 2 = controls physical port 3 Bit 2 = controls physical port 2 Bit 1 = controls physical port 1 Bit 0 = rsvd Note: Bit 1 must be set to 0 in order for the card reader to enumerate.	

7.3.3.22 E9h: Port Disable For Bus-Powered Operation

7:0 PORT_DIS_BP Disables 1 or more ports. 0: port is available 1: port is disabled During self-powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function. When using the internal default option, the PRT_DIS[1:0] pins will disable the appropriate ports. Bit 7 = rsvd Bit 6 = rsvd Bit 5 = rsvd	Bit	Name	Description
Bit 4 = rsvd Bit 3 = controls physical port 3 Bit 2 = controls physical port 2 Bit 1 = controls physical port 1 Bit 0 = rsvd Note: Bit 1 must be set to 0 in order for the card reader to enumerate.	7:0	PORT_DIS_BP	0 : port is available 1 : port is disabled During self-powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function. When using the internal default option, the PRT_DIS[1:0] pins will disable the appropriate ports. Bit 7 = rsvd Bit 6 = rsvd Bit 5 = rsvd Bit 4 = rsvd Bit 3 = controls physical port 3 Bit 2 = controls physical port 2 Bit 1 = controls physical port 1 Bit 0 = rsvd

7.3.3.23 EAh: Max Power For Self-Powered Operation

Bit	Name		Description
7:0	MAX_PWR_SP	(VBUS) which silicon alocited circon of a perma	mA increments that the hub consumes from an upstream port hen operating as a self-powered hub. This value includes the hub ng with the combined power consumption (from VBUS) of all assouitry on the board. This value also includes the power consumption anently attached peripheral if the hub is configured as a compound d the embedded peripheral reports 0 mA in its descriptors.
		Note:	The USB 2.0 Specification [1] does not permit this value to exceed 100 mA.

7.3.3.24 EBh: Max Power For Bus-Powered Operation

Bit	Name	Description
7:0	MAX_PWR_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.
		Note: The USB 2.0 Specification [1] does not permit this value to exceed 100 mA.

7.3.3.25 ECh: Hub Controller Max Current For Self-Powered Operation

Bit	Name	Description	
7:0	HC_MAX_C_SP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.	
		Note: The <i>USB 2.0 Specification</i> [1] does not permit this value to exceed 100 mA.	
		A value of 50 (decimal) indicates 100 mA, which is the default value.	

7.3.3.26 EDh: Hub Controller Max Current For Bus-Powered Operation

Bit	Name	Description
7:0	HC_MAX_C_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value will include the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value will NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device. A value of 50 (decimal) would indicate 100 mA, which is the default value.

7.3.3.27 EEh: Power-On Time

Bit	Name	Description
7:0	POWER_ON_TIME	The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. If the host requests the power-on time, the system software uses this value to determine how long to wait before accessing a powered-on port.

7.3.3.28 EFh: Boost_Up

Bit	Name	Description
7:2	rsvd	
1:0	BOOST_IOUT	USB electrical signaling drive strength boost bit for the upstream port 'A'. 00: normal electrical drive strength = no boost 10: elevated electrical drive strength = low (approximately 4% boost) 10: elevated electrical drive strength = medium (approximately 8% boost) 11: elevated electrical drive strength = high (approximately 12% boost)
		Note: "Boost" could result in non-USB Compliant parameters. OEM should use a 00 value unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.

7.3.3.29 F0h: Boost_3:2

Bit	Name	Description	
7:6	rsvd		
5:4	BOOST_IOUT_3	Upstream USB electrical signaling drive strength boost bit for downstream port 3. 00: normal electrical drive strength = no boost 01: elevated electrical drive strength = low (approximately 4% boost) 10: elevated electrical drive strength = medium (approximately 8% boost) 11: elevated electrical drive strength = high (approximately 12% boost)	
3:2	BOOST_IOUT_2	Upstream USB electrical signaling drive strength boost bit for downstream port 2. 00: normal electrical drive strength = no boost 01: elevated electrical drive strength = low (approximately 4% boost) 10: elevated electrical drive strength = medium (approximately 8% boost) 11: elevated electrical drive strength = high (approximately 12% boost) Note: "Boost" could result in non-USB Compliant parameters. OEM should use a 00 value unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.	
1:0	rsvd		

7.3.3.30 F1h: PortSwap

Bit	Byte Name	Description
7:0	PRT_SWP	Swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors. 0: USB D+ functionality is associated with the DP pin and D- functionality is associated with the DM pin. 1: USB D+ functionality is associated with the DM pin and D- functionality is associated with the DP pin. Bit 7 = rsvd Bit 6 = rsvd Bit 5 = rsvd Bit 4 = rsvd Bit 3 = controls physical port 3 Bit 2 = controls physical port 2 Bit 1 = rsvd Bit 0 = controls physical port 0

7.3.3.31 F2h: PortMap 12

Bit	Byte Name			Description
7:0	PRTM12	ted to report how manumerical range or stream ports of the that the hub reporte. The host's port numport on the hub is the enabled (see PRTM.	nerated by any ports it assignment hub starting d having. ber is referrate physical part in Report number	a USB host controller, the hub is only permithas; the hub is not permitted to select a The host controller will number the downgright with the number 1, up to the number of ports ared to as <i>logical port number</i> and the physical port number. When remapping mode is egister 08h: Configuration Data Byte 3) the res can be remapped to different logical port
		used, s enabled	tarting from ports; this	sure that contiguous logical port numbers are n number 1 up to the maximum number of ensures that the hub's ports are numbered in e way a host will communicate with the ports.
		TABLE 7-5: P	ORTMAP	REGISTER FOR PORTS 1 & 2
		Bit [7:4]	0000	Physical port 2 is disabled
			0001	Physical port 2 is mapped to Logical port 1
			0010	Physical port 2 is mapped to Logical port 2
			0011	Physical port 2 is mapped to Logical port 3
			0100 to 1111	Illegal; Do not use
		Bit [3:0]	0000	Physical port 1 is disabled
			0001	Physical port 1 is mapped to Logical port 1
			0010	Physical port 1 is mapped to Logical port 2
			0011	Physical port 1 is mapped to Logical port 3
			0100 to 1111	Illegal; Do not use

7.3.3.32 F3h: PortMap 3

Bit	Byte Name			Description
7:0	PRTM3	ted to report how m numerical range or stream ports of the that the hub reporte The host's port num port on the hub is the enabled (see PRTM	merated by nany ports it assignment hub startinged having. nber is refer he physical, IAP_EN in R port number	a USB host controller, the hub is only permithas; the hub is not permitted to select a t. The host controller will number the downg with the number 1, up to the number of ports ared to as logical port number and the physical port number. When remapping mode is egister 08h: Configuration Data Byte 3) the res can be remapped to different logical port it).
		used, s enable	starting fron d ports; this	sure that contiguous logical port numbers are n number 1 up to the maximum number of ensures that the hub's ports are numbered in e way a host will communicate with the ports.
		TABLE 7-6: P	ORTMAP	REGISTER FOR PORT 3
		Bit [7:4]	0000	rsvd
			0001	rsvd
			0010	rsvd
			0011	rsvd
			0100 to 1111	Illegal; Do not use
		Bit [3:0]	0000	Physical port 3 is disabled
			0001	Physical port 3 is mapped to Logical port 1
			0010	Physical port 3 is mapped to Logical port 2
			0011	Physical port 3 is mapped to Logical port 3
			0100 to 1111	Illegal; Do not use

7.3.3.33 F4h: MS/SD Clock Limit for the Flash Media Controller

Byte Name	Туре	Bits	Description
MS_SD_CLK_LIM	Upper Nibble Bits	7:4	0 : SD/MMC - 48 MHz 1 : SD/MMC - 24 MHz 2 : SD/MMC - 20 MHz 3 : SD/MMC - 15 MHz
	Lower Nibble Bits	3:0	0 : MS - 60 MHz Default, no limit 1 : MS - 40 MHz 2 : MS - 20 MHz 3 : MS - 15 MHz

7.3.3.34 F5h: Reserved

Bit	Name	Description
7:0	rsvd	

7.3.3.35 F6h-FBh: Reserved

Byte	Name	Description
5:0	rsvd	The values for these bytes are set internally and must not be altered.

7.3.3.36 FCh-FFh: Non-Volatile Storage Signature

Byte	Name	Description
3:0	NVSTORE_SIG	This signature is used to verify the validity of the data in the first 256 bytes of the configuration area. The signature must be set to ATA2.

7.3.4 INTERNAL FLASH MEDIA CONTROLLER EXTENDED CONFIGURATIONS

Enable Registers 100h - 17Fh by setting bit 7 of bmAttribute.

7.3.4.1 100h-106h: Combo LUN 0 Identifier String

Byte	Name	Description
6:0	CLUN0_ID_STR	If the LUN to device mapping bytes have configured this LUN to be a combo LUNs, then these strings will be used to identify the LUN rather than the device identifier strings.

7.3.4.2 107h-10Dh: Combo LUN 1 Identifier String

Byte	Name	Description
6:0	CLUN1_ID_STR	If the LUN to device mapping bytes have configured this LUN to be a combo LUNs, then these strings will be used to identify the LUN rather than the device identifier strings.

7.3.4.3 10Eh-114h: Combo LUN 2 Identifier String

Byte	Name	Description
6:0	CLUN2_ID_STR	If the LUN to device mapping bytes have configured this LUN to be a combo LUNs, then these strings will be used to identify the LUN rather than the device identifier strings.

7.3.4.4 115h-11Bh: Combo LUN 3 Identifier String

Byte	Name	Description
6:0	CLUN3_ID_STR	If the LUN to device mapping bytes have configured this LUN to be a combo LUNs, then these strings will be used to identify the LUN rather than the device identifier strings.

7.3.4.5 11Ch-122h: Combo LUN 4 Identifier String

Byte	Name	Description
6:0	CLUN4_ID_STR	If the LUN to device mapping bytes have configured this LUN to be a combo LUNs, then these strings will be used to identify the LUN rather than the device identifier strings.

7.3.4.6 123h-145h: Reserved

Byte	Name	Description
34:0	rsvd	

7.3.4.7 146h: Dynamic Number of Extended LUNs

Bit	Name	Description
7:0	DYN_NUM_ EXT_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces. If this field is set to FF, the program assumes that you are using the default value and icons will be configured per the default configuration.

7.3.4.8 147h-14Bh: LUN to Device Mapping

Byte	Name	Description
4:0	LUN_DEV_MAP	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces. If this field is set to FF, the program assumes that you are using the default value and icons will be configured per the default configuration.

7.3.4.9 14Ch-17Bh: Reserved

Byte	Name	Description
47:0	rsvd	

7.3.4.10 17Ch -17Fh: Non-Volatile Storage Signature for Extended Configuration

Byte	Name	Description
3:0	NVSTORE_SIG2	This signature is used to verify the validity of the data in the upper 256 bytes if a 512-byte EEPROM is used, otherwise this bank is a read-only configuration area. The signature must be set to ecf1.

7.3.5 I^2C EEPROM

The I²C EEPROM interface implements a subset of the I²C Master Specification (refer to the Philips Semiconductor Standard I^2 C-Bus Specification [3] for details on I²C bus protocols). The device's I²C EEPROM interface is designed to attach to a single dedicated I²C EEPROM, and it conforms to the Standard-mode I²C Specification (100 kbit/s transfer rate and 7-bit addressing) for protocol and electrical compatibility.

Note: Extensions to the I²C Specification are not supported. The device acts as the master and generates the serial clock SCL, controls the bus access (determines which device acts as the transmitter and which device acts as the receiver), and generates the START and STOP conditions.

7.3.5.1 Implementation Characteristics

The device will only access an EEPROM using the sequential read protocol.

7.3.5.2 Pull-Up Resistor

The circuit board designer is required to place external pull-up resistors (10 k Ω recommended) on the SPI_DO/SDA/SPI_SPD_SEL and SPI_CLK/SCL lines (per *SMBus 1.0 Specification* [4] and EEPROM manufacturer guidelines) to VDD33 in order to assure proper operation.

7.3.5.3 I²C EEPROM Slave Address

Slave address is 1010000b. 10-bit addressing is NOT supported.

7.3.6 IN-CIRCUIT EEPROM PROGRAMMING

The EEPROM can be programmed via automatic test equipment (ATE) by pulling RESET_N low which tri-states the device's EEPROM interface and allows an external source to program the EEPROM.

7.4 Default Configuration Option

The Microchip device can be configured via its internal default configuration. Please see Section 7.3.2, "EEPROM Data Descriptor" for specific details on how to enable default configuration. Please refer to Table 7-1 for the internal default values that are loaded when this option is selected.

7.5 Reset

There are two different resets that the device experiences. One is a hardware reset (either from the internal POR (power-on reset) circuit or via the RESET N pin) and the second is a USB bus reset.

7.5.1 INTERNAL POR HARDWARE RESET

All reset timing parameters are guaranteed by design.

7.5.2 EXTERNAL HARDWARE RESET_N

A valid hardware reset is defined as assertion of RESET_N for a minimum of 1 μ s after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than IRST μ A of current from the upstream USB power source.

Assertion of RESET_N (external pin) causes the following:

- 1. All downstream ports are disabled, and PRTCTL power to downstream devices is removed.
- The PHYs are disabled, and the differential pairs will be in a high-impedance state.
- 3. All transactions immediately terminate; no states are saved.
- 4. All internal registers return to the default state (in most cases, 00h).
- 5. The external crystal oscillator is halted.
- 6. The PLL is halted.

7.5.2.1 RESET_N for EEPROM Configuration

FIGURE 7-1: RESET_N TIMING FOR EEPROM MODE

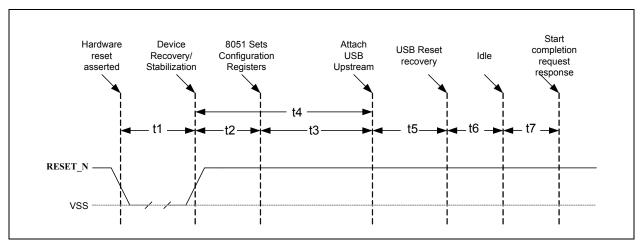


TABLE 7-7: RESET_N TIMING FOR EEPROM MODE

Name	Description	Min	Тур	Max	Units
t1	RESET_N asserted	1	-	-	μs
t2	Device recovery/stabilization	-	-	500	μs
t3	8051 programs device configuration	-	20	50	ms
t4	USB attach (see Note 3)	-	-	100	ms
t5	Host acknowledges attach and signals USB reset	100	-	-	ms
t6	USB idle	-	Undefined	-	ms
t7	Completion time for requests (with or without data stage)	-	-	5	ms

^{3:} All power supplies must have reached the operating levels mandated in Chapter 8.0, DC Parameters prior to (or coincident with) the assertion of RESET_N.

7.5.3 USB BUS RESET

In response to the upstream port signaling a reset to the device, the device does the following:

Note: The device does not propagate the upstream USB reset to downstream devices.

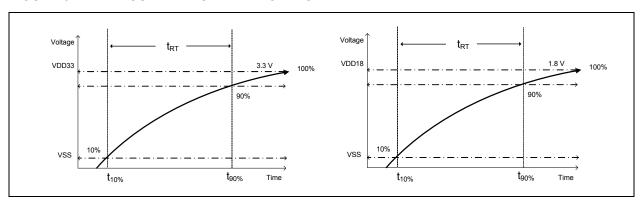
- 1. Sets default address to 0
- 2. Sets configuration to: unconfigured
- 3. Negates PRTCTL[3:2] to all downstream ports
- 4. Clears all TT buffers
- 5. Moves device from suspended to active (if suspended)
- 6. Complies with Section 11.10 of the USB 2.0 Specification [1] for behavior after completion of the reset sequence.

The host then configures the device and the device's downstream port devices in accordance with the USB 2.0 Specification.

8.0 DC PARAMETERS

8.1 Maximum Guaranteed Ratings

Parameter	Symbol	Min	Max	Units	Comments
Storage Temperature	T _{STOR}	-55	150	°C	
3.3 V supply voltage	V _{DD33,} V _{DDA33}	-0.5	4.0	V	
Voltage on CRD_PWD	-	-0.5	V _{DD33} + 0.3	V	When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63 V indefinitely, without damage to the device as long as V_{DD33} and V_{DDA33} are less than 3.63 V and T_A is less than 70 °C.
Voltage on any signal pin	-	-0.5	V _{DD33} + 0.3	V	
Voltage on XTAL1	-	-0.5	3.6	V	


Stresses above the specified parameters may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at any condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies the absolute maximum ratings must not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, a clamp circuit should be used.

8.2 Operating Conditions

Parameter	Symbol	Min	Max	Units	Comments
48-pin package operating temperature	T _A	-40	85	°C	Ambient temperature in still air. (See Note 1)
3.3 V supply voltage	V _{DD33} , V _{DDA33}	3.0	3.6	V	A 3.3 V regulator with an output tolerance of ±1% must be used if the output of the internal power FET's must support a 5% tolerance. See Note 2.
3.3 V supply rise time	t _{RT}	0	400	μs	(Figure 8-1, "Supply Rise Time Models")
1.8 V supply rise time	t _{RT}	0	400	μs	(Figure 8-1, "Supply Rise Time Models" and Note 2)
Voltage on any signal pin	-	-0.3	V _{DD33}	V	
Voltage on XTAL1	-	-0.3	2.0	V	

Note 1: The T_J (junction temperature) must not exceed 125 $^{\circ}$ C

FIGURE 8-1: SUPPLY RISE TIME MODELS

2: The 3.3 V supply should be at least at 75% of its operating condition before the 1.8 V supply is allowed to ramp up.

8.3 Package Thermal Specifications

TABLE 8-1: 48-PIN VQFN PACKAGE THERMAL PARAMETERS

Parameter	Symbol	Value	Unit	Comments
Thermal Resistance	Θ_{JA}	28	°C/W	Measured from the die to the ambient air
Junction-to-Top-of-Package	Ψ_{JT}	0.2	°C/W	-

Note: Thermal parameters are estimated for devices with the exposed pad soldered to thermal vias in a multi-layer 2S2P PCB per JESD51.

8.4 DC Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Comments
I, IPU, IPD Type Input Buffer						
Low Input Level	V_{ILI}			0.8	V	TTL Levels
High Input Level	V_{IHI}	2.0			V	
Pull Down	PD		72		μA	
Pull Up	PU		58		μA	
ICLK Input Buffer						
Low Input Level	V_{ILCK}			0.5	V	
High Input Level	V _{IHCK}	1.4			V	
Input Leakage	I _{IL}	-10		+10	μΑ	V _{IN} = 0 to V _{DD33}
Input Leakage (All I buffers)						
Low Input Leakage	I _{IL}	-10		+10	μA	V _{IN} = 0 V
High Input Leakage	I _{IH}	-10		+10	μΑ	V _{IN} = V _{DD33}
O12 Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 6 mA @ V _{DD33} = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -6 mA @ V _{DD33} = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to V _{DD33} (Note 3)

USB82640

Parameter	Symbol	Min	Тур	Max	Units	Comments
I/O12, I/O12PU & I/O12PD Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 6 mA @ V _{DD33} = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -6 mA @ V _{DD33} = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to V _{DD33} (Note 3)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IO-U						(Note 4)
I-R						(Note 5)
Integrated Power FET set to 200 mA						
Output Current (Note 6)	I _{OUT}		200		mA	Vdrop _{FET} ≈ 0.46 V
Short Circuit Current Limit	I _{SC}		181		mA	Vout _{FET} = 0 V
On Resistance (Note 6)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}		800		μs	C _{LOAD} = 10 µF
Supply Current Unconfigured						Note 7
Hi-Speed Host	I _{CCINTHS}	-	-	75	mA	
Full Speed Host	I _{CCINITES}	-	-	70	mA	
Supply Current Active HS Host (Note 8)	I _{CC}	-	-	330	mA	
Supply Current Suspend	I _{CSBY}	-	-	2500	μA	
Supply Current Reset	I _{RST}	-	-	2500	μA	

- 3: Output leakage is measured with the current pins in high impedance.
- 4: See the USB 2.0 Specification [1], Chapter 7, for USB DC electrical characteristics
- **5**: RBIAS is a 3.3 V tolerant analog pin.
- **6:** Output current range is controlled by program software. The software disables the FET during short circuit condition.
- 7: Supply currents do not include power FET currents.
- 8: HS Host, 2 ports active, MS Card active.

8.5 Capacitance

 T_A = 25 °C; fc = 1 MHz; V_{DD33} = 3.3 V, V_{DD18} = 1.8 V

TABLE 8-2: PIN CAPACITANCE

Parameter	Symbol	Limits			Unit	Test Condition	
raiametei	Symbol	Min	Тур	Max	Oilit	rest condition	
XTAL Pin Input Capacitance	C _{XTAL}	-	-	4	pF	All pins (except USB pins and	
Input Capacitance	C _{IN}	-	-	10	pF	pins under test) are tied to AC ground.	

9.0 AC SPECIFICATIONS

9.1 Oscillator/Clock

Parallel Resonant, Fundamental Mode, 24 MHz \pm 350 ppm.

FIGURE 9-1: TYPICAL CRYSTAL CIRCUIT

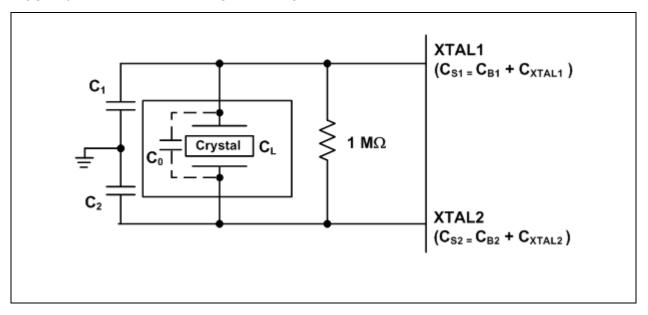
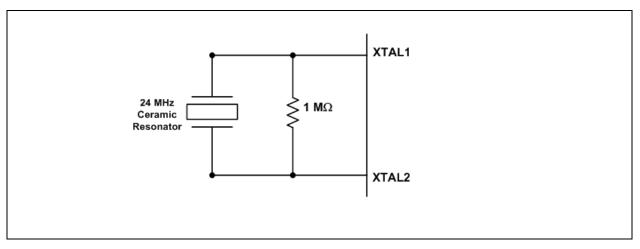


TABLE 9-1: CRYSTAL CIRCUIT LEGEND

Symbol	Description	In Accordance With
C ₀	Crystal shunt capacitance	Crystal manufacturer's specification (see Note 1)
CL	Crystal load capacitance	
C _B	Total board or trace capacitance	OEM board design
C _S	Stray capacitance	Microchip IC and OEM board design
C _{XTAL}	XTAL pin input capacitance	Microchip IC
C ₁	Load capacitors installed on OEM board	Calculated values based on Figure 9-2, "Capacitance
C ₂		Formulas" (see Note 2)

FIGURE 9-2: CAPACITANCE FORMULAS


$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$
 $C_2 = 2 \times (C_L - C_0) - C_{S2}$

- Note 1: C_0 is usually included (subtracted by the crystal manufacturer) in the specification for C_L and should be set to '0' for use in the calculation of the capacitance formulas in Figure 9-2, "Capacitance Formulas". However, the OEM PCB itself may present a parasitic capacitance between XTAL1 and XTAL2. For an accurate calculation of C_1 and C_2 , take the parasitic capacitance between traces XTAL1 and XTAL2 into account.
 - 2: Each of these capacitance values is typically approximately 18 pF.

9.2 Ceramic Resonator

24 MHz ± 350 ppm

FIGURE 9-3: CERAMIC RESONATOR USAGE WITH MICROCHIP IC

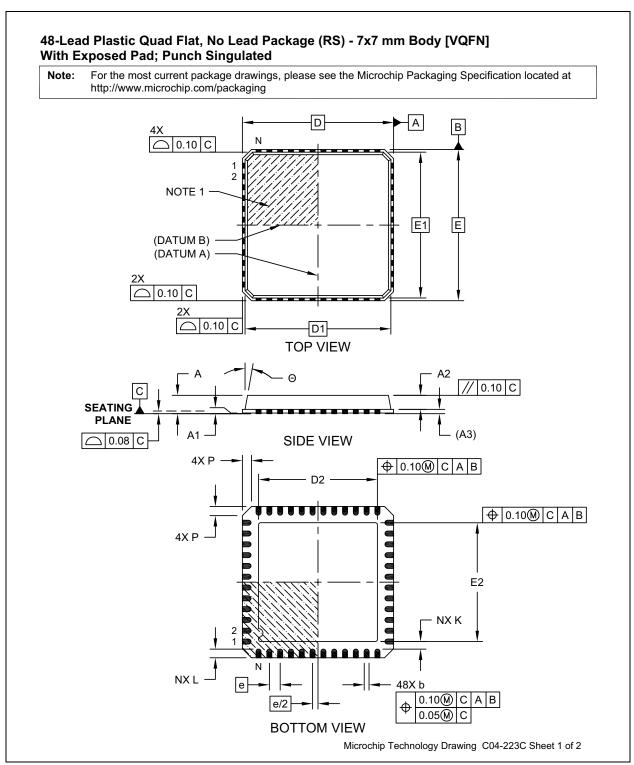
9.3 External Clock

50% Duty cycle \pm 10%, 24 MHz \pm 350 ppm, Jitter < 100 ps rms

The external clock is recommended to conform to the signaling level designated in the *JESD76-2 Specification* [6] on 1.8 V CMOS Logic. XTAL2 should be treated as a no connect.

9.3.1 I^2C EEPROM

Frequency is fixed at 58.6 kHz \pm 20%.


9.3.2 USB 2.0

The Microchip device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification [1]. Refer to this specification for more information.

10.0 PACKAGE OUTLINE

Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.

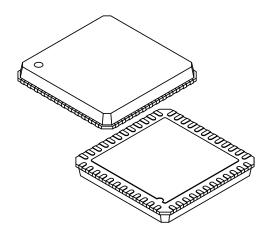

FIGURE 10-1: USB82640AM/AMR 48-PIN VQFN

FIGURE 10-2: USB82640AM/AMR 48-PIN VQFN CONTINUED

48-Lead Plastic Quad Flat, No Lead Package (RS) - 7x7 mm Body [VQFN] With Exposed Pad; Punch Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		48	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.01	0.05
Mold Cap Height	A2	0.60	0.65	0.70
Terminal Thickness	(A3)	A3) 0.20 REF		
Overall Width	Е	7.00 BSC		
Molded Top Width	E1	6.75 BSC		
Exposed Pad Width	E2	(See Exposed Pad Variations)		
Overall Length	D	7.00 BSC		
Molded Top Length	D1		6.75 BSC	
Exposed Pad Length	D2	(See Exp	osed Pad Va	ariations)
Corner Chamfer	Р	0.24	0.42	0.60
Terminal Width	b	0.18	0.23	0.30
Terminal Length	Ĺ	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-
Mold Draft Angle	θ	0°	-	12°

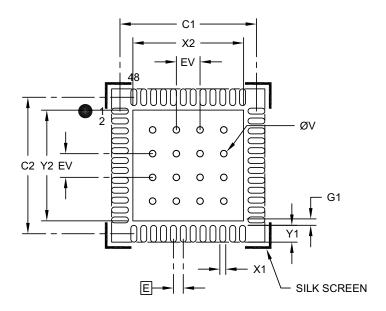
Exposed Pad Variations							
Symbol		D2			E2		
Variant							
С			4.20				
G	5.00	5.10	5.20	5.00	5.10	5.20	
Н			5.40				
K	5.40	5.50	5.60	5.40	5.50	5.60	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is punch singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M $\,$

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing $\,$ C04-223C Sheet 2 of 2

Note: Exposed Pad Variation H is valid for the USB82640.

FIGURE 10-3: USB82640AM/AMR 48-PIN VQFN LAND PATTERN

48-Lead Plastic Quad Flat, No Lead Package (RS) - 7x7 mm Body [VQFN] With Exposed Pad; Punch Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Į.	MILL	IMET	ERS	
Dimension L	imits	MIN	NOM	MAX
Contact Pitch	Е	0	.50 BS	C
Optional Center Pad Width	X2	Se	e Cen	ter
Optional Center Pad Length Y2			Variat	ions
Contact Pad Spacing	C1		6.90	
Contact Pad Spacing	C2		6.90	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			0.85
Contact Pad to Center Pad (X48)	G1	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Center Pad Variations						
Symbol		X2			Y2	
Variant	MIN	NOM	MAX	MIN	NOM	MAX
С			4.20			4.20
G			5.20			5.20
Н			5.40			5.40
K			5.60			5.60

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2223B

APPENDIX A: DATA SHEET REVISION HISTORY

TABLE 10-1: CUSTOMER REVISION HISTORY

REVISION LEVEL & DATE	SECTION/FIGURE/ ENTRY	CORRECTION
DS60001312A	All	 Version migrated to Microchip template. Microchip DS number inserted Revision A replaces the previous SMSC Rev 1.3. Trademark and last page according to Microchip guidelines. GPIO functionality removed as the functionality is not supported any more (except GPO1). Package drawing exchanged, QFN -> VQFN
	Cover Sheet	 'Single-chip USB 2.0 hub controller with 2 exposed hi-speed downstream ports for external peripheral expansion' and 'The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB compound device' -> 'Single-chip compound device: USB 2.0 hub controller with two hi-speed downstream ports and a flash media controller' Configures internal code using an external I2CTM EEPROM or SPI ROM -> Configuration of internal code using an external I2CTM EEPROM or SPI Flash Supports execution of external code from SPI Flash EEPROM -> Execution of external code from SPI Flash Supports custom vendor, product, and language IDs when using an external EEPROM -> Support of custom vendor, product, and language IDs when using an external EEPROM Removed: 8051 8-bit microprocessor Removed: GPIO configuration and polarity for special function use
	Section 1.1, "Device Features," on page 5	Section 1.1.2 and Section 1.1.3 merged Removed: GPIO configuration and polarity for special function use Removed: 8051 8-bit microprocessor implemented in the> loaded by where the following features are supported: added as Secure Digital 2.0 feature: Supports storage addressability of up to 2 TB
	Section 2.0, "Pin Configuration," on page 6	GPIOs removed.
	Section 3.0, "Pin Table," on page 7	GPIOs removed.
	Section 4.0, "Logical Structure and Block Diagram," on page 8	Figure 4-2 adapted, GPIOs removed.
	Section 5.0, "Pin Descriptions," on page 10	GPIOs and descriptions describing them removed. Term 'weak pull-up resistors' replaced by accurate description.

TABLE 10-1: CUSTOMER REVISION HISTORY (CONTINUED)

REVISION LEVEL & DATE	SECTION/FIGURE/ ENTRY	CORRECTION
DS60001312A cont.	Section 5.1, "USB82640 Pin Description," on page 10	Table 5-1: Row SPI_SPD_SEL: Value 30 MHz indicated as deprecated. Pin RESET_N: Buffer Type changed from IS to I.
	Section 5.2, "Buffer Type Descriptions," on page 15	Buffer IS removed
	Section 5.4, "ROM BOOT Sequence," on page 18	Support of 30 MHz removed.
	Section 6.0, "Pin Reset States," on page 19	Figure 6-1: removed Table 6-2: GPIOs removed.
	Section 7.1.1, "Hub Configuration Options," on page 21	Removed: ', and must be configured in order to correctly function when attached to a USB host controller'.
	Section 7.2, "Card Reader," on page 21	Added: Supports storage addressability of up to 2 TB
	Section 7.3, "System Configurations," on page 21	 Removed deprecated link to download page, replaced by a more generic term. Note 1 moved to bottom of Table 7-1. Table 7-1: Address range corrected: 14Eh-17Bh -> 14Ch-17Bh
	Section 7.3.1, "EEPROM/SPI Interface," on page 21	Description improved. Removed link to SMSC website.
	Section 7.3.2.9, "9Ch- 9Fh: Attribute Byte Descriptions," on page 27	Byte counting starts now with '0'.
	Section 7.3.3.35, "F6h-FBh: Reserved," on page 40	Byte number corrected
	Section 7.3.3.36, "FCh-FFh: Non- Volatile Storage Signature," on page 40	Byte number corrected
	Section 7.5.2.1, "RESET_N for EEPROM Configuration," on page 44	• Table 7-7: msec -> ms, μsec -> μs
	Section 8.2, "Operating Conditions," on page 46	Cross reference added in rows '3.3 V supply voltage' and '1.8 V supply rise time' pointing to note located below Figure 8-1.

TABLE 10-1: CUSTOMER REVISION HISTORY (CONTINUED)

REVISION LEVEL & DATE	SECTION/FIGURE/ ENTRY	CORRECTION
DS60001312A cont.	Section 8.4, "DC Electrical Characteristics," on page 47	 IS Type Input Buffer removed as this type of buffer is not available. Input Leakage: IS buffer type removed.
	Chapter 10.0, "GPIO Usage"	Section removed as GPIOs are not supported (except GPO1).
	Chapter 10.0	Package drawing exchanged (Microchip style)
	Product Identification System on page 62	ROM/Firmware combination 000727 added
Rev. 1.3	All	Lead-free information removed.
(06-10-13)	Page 2	Order numbers changed according to Microchip rules,
	Chapter 4	Logical structure added for better understanding the basic structure of the USB82640.
	Appendix B (Selected Device Descriptors)	Some device descriptor parameters of interest added.
	Appendix C (References)	Reference added for "Universal Serial Bus Mass Storage Class Specification Overview"
Rev. 1.3	All	Microchip logo and legend added.
(01-25-13)	All	USB82660 removed.
	Section 8.2, "Operating Conditions"	Table 8.2: 3.3 V supply rise time, 1.8 V supply rise time corrected: 400 ms -> 400 μs
Rev. 1.2	Section 5.1	Table 5.1: Symbol GPIO[25:18] corrected (formerly: GPIO[27:18]).
(01-25-12)	Section 5.4	The valid EEPROM signature corrected: ATA2 -> ata2
Rev. 1.2 (12-22-11)	Section 7.3.3.33, "F4h: MS/SD Clock Limit for the Flash Media Controller"	SD card settings are done at Upper Nibble Bits and not at Lower Nibble Bits, MS assigned to Lower Nibble Bits.
	Chapter 10	Both tables: GPIO4: SCK -> SCL
Rev. 1.2	Section 7.3.3.35	Updated register description to indicate new function.
(06-20-11)	Table 7.1	Cleaned up Table 7.1 for clarity.
Rev. 1.1 (10-12-10)	Page 2	Ordering information completed.
Rev. 1.1 (07-07-10)	Section 5.1, "USB82640 Pin Descriptions"	GPIO8 and GPIO10 pin description: Some values adapted.
	Section 7.3.2, "EEPROM Data Descriptor"	Table 7.1: Value corrected for LUN Power Hi Byte.
	Section 7.3.2.11, "A4h-A5h: LUN 0 Power Configuration"	Default values adapted.

USB82640

TABLE 10-1: CUSTOMER REVISION HISTORY (CONTINUED)

REVISION LEVEL & DATE	SECTION/FIGURE/ ENTRY	CORRECTION
Rev. 1.1 (07-07-10) cont	Section 7.3.4.9, "14Ch-17Bh: Reserved"	Default values adapted.
	Section Chapter 8, "DC Parameters"	XTAL2 and hysteresis removed. Typical values added, Min values removed. TBD replaced by correct values in section referring to 48QFN.
	Section 8.1, "Maximum Guaranteed Ratings" and Section 8.2, "Operating Conditions"	Row that shows Voltage on USB+ and USB- pins removed as the USB pins are covered in row 'Voltage on any signal pin'.
Rev. 1.0 (08-25-09)	Initial Release	

APPENDIX B: ACRONYMS

The following is a list of the general terms used throughout this document:

TABLE 10-2: ACRONYMS

Acronym	Description
ACK	Handshake packet indicating a positive acknowledgment
EOF	End of (micro) Frame
EOP	End of Packet
FMC	Flash Media Controller
FS	Full-Speed Device
HS	Hi-Speed Device
I ² C TM	Inter-Integrated Circuit, I ² C TM is a trademark of Philips Corporation
LS	Low-Speed Device
LUN	Logical Unit Number
MMC	MultiMediaCard
MSC	Memory Stick Controller
ocs	Over-current Sense
PHY	Physical Layer
PLL	Phase-Locked Loop
VQFN	Very Thin Quad Flat No Leads
RoHS	Restriction of Hazardous Substances directive
RXD	Received eXchange Data
SDC	Secure Digital Controller
TXD	Transmit eXchange Data
UART	Universal Asynchronous Receiver-Transmitter
UCHAR	Unsigned Character
UNIT	Unsigned Integer

USB82640

APPENDIX C: REFERENCES

- [1] Universal Serial Bus Specification, Version 2.0, April 27, 2000 (12/7/2000 and 5/28/2002 Errata) USB Implementers Forum, Inc. http://www.usb.org
- [2] USB Mass Storage Class Specification Overview, Revision 1.4, February 18, 2010, USB Implementers Forum, Inc.
 - http://www.usb.org
- [3] I²C-Bus Specification Version 1.1 NXP (formerly a division of Philips). http://www.nxp.com
- [4] System Management Bus Specification, version 1.0 SMBus. http://smbus.org/specs/
- [5] MicroChip 24AA02/24LC02B (Revision C) Microchip Technology Inc. http://www.microchip.com/
- [6] JEDEC Specifications: JESD76-2 (June 2001) and J-STD-020D.1 (March 2008)

 JEDEC Global Standards for the Microelectronics Industry.http://www.jedec.org/standards-documents

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

 $\underline{\text{To order or obtain information, e.g., on}} \text{ pricing or delivery, refer to the factory or the listed sales office.}$

	[X] T nperature Range	$egin{array}{ccccc} X & & & & & & & & & & & & & & & & & & $	XXXXXX ROM/ Firmware
Device:	USB82	640	
Temperature Range:	Α	= -40°C to +85°C	
Package:	М	= VQFN (48-pin)	
Tape and Reel Option:	Blank R	= Standard packaging (tray) = Tape and Reel ⁽¹⁾	
Pattern	D	= Product Version	
ROM/Firmware		7 = ROM/Firmware combination 7 = ROM/Firmware combination	

Examples:

- a) USB82640AMR-D-000527 -40°C to + 85°C, VQFN (48-pin), Tape & Reel, A, 000527
- USB82640AM-D-000727 -40°C to + 85°C, VQFN (48-pin), Tray, A, 000727
- Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Reel size is 2,500.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-719-6

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/

support Web Address:

www.microchip.com
Atlanta
Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200

Fax: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

01/27/15