

Package: WLCSP, 11-pin, $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$

Key Features

- Low insertion loss: 0.3 dB at 1 GHz
- High peak voltage handling
- High linearity
- Ultra small package: WLCSP, 11-pin, $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
- No external DC blocking capacitor required (Unless external DC is applied to the RF ports)
- Wide Vdd voltage range
- 2 kV HBM ESD protection at all ports

Applications

- Antenna Tuning
- Band Switching
- Impedance Tuning

Ordering Information

Part Number	Description
RF1119APCBA-410	Evaluation Board
RF1119ASR	100-pc 7" Reel
RF1119ATR7	$2500-\mathrm{pc}, 7$ " Tape and Reel

Absolute Maximum Ratings

Parameter	Rating	Unit
Power supply voltage, V_{DD}	5.0	V
Control voltage, $\mathrm{V}_{\mathrm{CTL}}$	3.0	V
Enable voltage, V_{EN}	5.0	V
ESD voltage HBM VESD	2	kV
Storage temperature T_{st}	-40 to 150	${ }^{\circ} \mathrm{C}$
Operating temperature ToP	-30 to 85	${ }^{\circ} \mathrm{C}$
Max differential RF voltage between RFC and RF ports V_{RF}	39	$\mathrm{~V}_{P}$
RF Input power 50Ω	41.8	dBm

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Notes:

1. No operation above 6.0 volts.
2. Average power + PAR combined, $50 \Omega, 25^{\circ} \mathrm{C}$.
3. Defined as measured at ground plane under or adjacent to chip.

Nominal Operating Parameters

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
					Nominal conditions unless otherwise specified. $V_{D D}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CTL1 }} \& \mathrm{~V}_{\mathrm{CTL2}}=1.8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.8 \mathrm{~V}$, Temp $=25^{\circ} \mathrm{C}, 50 \Omega$.
Operating Frequency	400	-	3000	MHZ	
Supply Voltage VDD	2.4	3.5	4.5	V	
Supply Current IDD	-	85	100	$\mu \mathrm{A}$	Active Mode
	-	5	10	$\mu \mathrm{A}$	Low Power Mode, V_{en}, Vctl1 \& $\mathrm{V}_{\text {CtL2 }}=0 \mathrm{~V}$
EN Control Voltage High, Vhigh_en	1.2	1.8	$V_{D D}$	V	
Control Voltage High, V ${ }_{\text {HIGH_CTL }}$	1.2	1.8	2.8	V	
Control voltage - Low, VLow	0.0	0.0	0.45	V	
Control current - High, Inigh	-	-	5	$\mu \mathrm{A}$	
Control current - Low, ILow	-	-	5	$\mu \mathrm{A}$	

Electrical Specifications - Linear Parameters

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
					Nominal conditions unless otherwise specified. $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}} \& \mathrm{~V}_{\mathrm{CTL2}}=1.8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.8 \mathrm{~V}$, Temp $=25^{\circ} \mathrm{C}, 50 \Omega$
Insertion Loss (RFC to RFx) Switch ON	-	0.30	0.45	dB	1000 MHZ
	-	0.40	0.55	dB	1910 MHz
	-	0.50	0.70	dB	2700 MHz
Isolation (RFC to RFx) Switch OFF	26.0	30.0	-	dB	700 MHz
	25.0	30.0	-	dB	1000 MHz
	18.0	21.5	-	dB	1910 MHz
	16.0	19.5	-	dB	2700 MHz
Return Loss (RFC to RFx) Switch ON	20.0	25.0	-	dB	1000 MHz
Ron (RFC to RFx) Switch ON	-	1.7	2.1	Ω	
Coff (RFC to RFx) Switch OFF	-	0.14	0.18	pF	
Start-up time, tstart-up	-	6	20	$\mu \mathrm{s}$	50% VDD to large signal fully compliant
ON Switching speed, ton	-	2	5	$\mu \mathrm{s}$	50% control to 90% RF ON
OFF Switching speed, tofF	-	2	5	$\mu \mathrm{s}$	50% control to 10% RF OFF

Electrical Specifications - Nonlinear Parameters

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
					Nominal conditions unless otherwise specified. $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL1}} \& \mathrm{~V}_{\mathrm{CTL2}}=1.8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.8 \mathrm{~V}, \\ & \text { Temp }=25^{\circ} \mathrm{C}, 50 \Omega \end{aligned}$
Second Harmonics	-	-104	-90	dBc	915 MHz , Pin $=35 \mathrm{dBm}$
Third Harmonics	-	-90	-75	dBc	
Second Harmonics	-	-104	-85	dBc	1910 MHz , Pin $=33 \mathrm{dBm}$
Third Harmonics	-	-90	-75	dBc	
IIP2, Low	110	120	-	dBm	Refer to IIP2 conditions table
IIP2, High	120	130	-	dBm	Refer to IIP2 conditions table
IIP3	70	75	-	dBm	Refer to IIP3 conditions table
Receive Spurious $700-2700 \mathrm{MHz}$	-	-117	-112	dBm	No RF Signal
	-	-112	-107	dBm	RF - 915 MHz at 35 dBm
	-	-112	-107	dBm	RF - 1910 MHz at 33 dBm

RF1119A
SP4T (Single Pole Four Throw Switch)

Control Logic

State	Ven	V ctL	V ctL	RF Path
RF1	Vhigh_en	V Low	V Low	RFC to RF1
RF2	Vhigh_en	V Low	Vhigh_CtL	RFC to RF2
RF3	Vhigh_en	Vhigh_CtL	V Low	RFC to RF3
RF4	Vhigh_EN	Vhigh_CtL	V HIGH _CTL	RFC to RF4
LPM ${ }^{[1]}$	VLow	X	X	Low power mode

Note [1] - RF signal should not be applied in the low power mode.

IIP2 Test Conditions

Band	In-Band Freq	CW Tone 1		CW Tone 2	
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band I Low (IMT)	2140	1950	+20	190	-15
Band I High (IMT)	2140	1950	+26	4090	-20
Band II Low (PCS)	1960	1880	+20	80	-15
Band II High (PCS)	1960	1880	+26	3840	-20
Band V Low (Cell)	881.5	836.5	+20	45	-15
Band V High (Cell)	881.5	836.5	+26	1718	-20
Band VIII Low	942.5	897.5	+20	45	-15
Band VIII High	942.5	897.5	+26	1840	-20

IIP3 Test Conditions

| Band | In-Band Freq | CW Tone 1 | | CW Tone 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $[\mathbf{M H z}]$ | $[\mathbf{M H z}]$ | $[\mathbf{d B m}]$ | $[\mathbf{M H z]}$ | [dBm] |
| Band I High (IMT) | 2140 | 1950 | +20 | 1760 | -15 |
| Band II High (PCS) | 1960 | 1880 | +20 | 1800 | -15 |
| Band V High (Cell) | 881.5 | 836.5 | +20 | 791.5 | -15 |
| Band VIII High | 942.5 | 897.5 | +20 | 852.5 | -15 |

RF1119A
SP4T (Single Pole Four Throw Switch)

Pin Configuration

Pin Description

Pin	Name	Details
1	RF1	RF port 1
2	RF2	RF port 2
3	GND	Ground
4	VDD	Voltage Supply
5	CTL1	Control Voltage 1
6	CTL2	Control Voltage 2
7	EN	Enable
8	GND	Ground
9	RF4	RF port 4
10	RF3	RF port 3
11	RFC	Common RF port

Evaluation Board Schematic

Parts List

Part Number	Part	Part Description
U1	RF1119A	RF1119A, SP4T Switch
J1, J2, J3, J4 \& J5	SMA connector	Edge mount 0.068" SMA connector
C3	100 pF capacitor	$(0402) 100$ pF de-coupling capacitor
C1, C2, C4 \& C5	NP	No Placement - Do not populate
R1, R2, R3 \& R4	0Ω jumper	(0402) 0Ω resistor
R5	NP	No Placement - Do not populate
P1	2×4 RA header	2×4 right angled header with $0.1 "$ spacing

Application Guidelines

Decoupling Capacitors = The decoupling capacitor on $V_{D D}$ may be used for noise reduction. The value of the de-coupling capacitor should be selected based on the application.

DC Blocking Capacitors = DC blocking capacitor is not required on an RF port if no DC voltage exists on that port.

RF1119A
SP4T (Single Pole Four Throw Switch)
Package Outline and Branding Drawing (Dimensions in Millimeters)

Evaluation Board Layout

Layer 3

Layer 2

Bottom

EVB Layer Information

PCB Soldermask Pattern

PCB Stencil Pattern

Power ON and OFF Sequence

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the device. The control signals CTL1 and CTL2 should be set to 0 V unless VDD \& EN are set in the operating voltage range.

RF signal should not be applied on any of the RF ports when the V_{DD} is below 2.4 V and the EN is set below $\mathrm{V}_{\text {High_EN. }}$.

Power ON -

1. Apply voltage supply $-V_{D D}$
2. Apply Enable - VEN (VEN can be connected to VDD and applied at the same time)
3. Apply controls - CTL1 and CTL2
4. Wait $20 \mu \mathrm{~s}$ or greater and then apply RF

Change switch position from one RF port to another -

1. Remove RF
2. Change controls CTL1 and CTL2 to set the switch to desired RF port
3. Wait 5μ s or greater and then apply RF

Power OFF -

1. Remove RF
2. Remove controls - CTL1 \& CTL2
3. Remove Ven
4. Remove VDD

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- SVHC Free

REVISION HISTORY

Revision	Release Date	Description
DS140224	February 2014	First production release.
DS151020	October 2015	Add Ron and Coff limits.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.qorvo.com
Tel: 1-844-890-8163
Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

[^0]
[^0]: Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

