

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

 Series/Type:
 B32671L ... B32672L

 Date:
 July 2016

© EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Metallized polypropylene film capacitors (MKP)

High V AC, high temperature (wound)

B32671L ... B32672L

Typical applications

- Electronic ballasts (resonant circuits)
- SMPS
- High-frequency AC loads
- Pulse circuits

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1): 55/110/56

Construction

- Dielectric: metallized polypropylene (PP)
- Wound capacitor technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

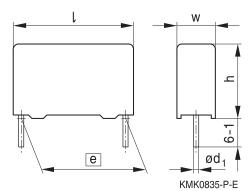
Features

- Very high AC voltages for all frequency ranges
- Very small dimensions
- High peak voltage for short time periods
- High peak current
- High pulse withstand capability
- RoHS-compatible
- Halogen-free capacitors available on request

Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request

Marking


- Manufacturer's logo
- Iot number, series number
- Rated capacitance (coded)
- Capacitance tolerance (code letter)
- Rated voltage
- Date of manufacture (coded)

Delivery mode

- Bulk (untaped)
- Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Dimensions in mm

Lead spacing	Lead diameter	Туре
<i>e</i> ±0.4	d ₁ ±0.05	
10	0.6	B32671L
15	0.8	B32672L

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

Overview of available types

Lead spacing	10 m	m					15 m	m						
Туре	B326						B32672L							
Page	4						6							
V _{RMS} (V AC)	200	250	250	500	600	700	160	200	250	250	500	600	700	900
V _R (V DC)	400	630	1000	1000	1600	2000	250	450	630	1000	1300	1600	2000	2000
C _R (nF)														
1.0														
1.2														
1.5														
2.2														
2.7														
3.3														
3.9														
4.7														
5.6														
6.2														
6.8														
8.2														
10														
12														
15														
22														
33														
47														
56														
68														
100														
150														L
220														L
330														
390														
470														
680														
1000														

B32671L

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 10 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
200	400	22	$4.0 \times 9.0 \times 13.0$	B32671L4223+***	4000	6800	4000
		33	$4.0\times 9.0\times 13.0$	B32671L4333+***	4000	6800	4000
		47	5.0 imes 11.0 imes 13.0	B32671L4473+***	3320	5200	4000
		68	5.0 imes 11.0 imes 13.0	B32671L4683+***	3320	5200	4000
_		100	$6.0\times12.0\times13.0$	B32671L4104+***	2720	4400	4000
250	630	15	$4.0\times 9.0\times 13.0$	B32671L6153+***	4000	6800	4000
		22	5.0 imes 11.0 imes 13.0	B32671L6223+***	3320	5200	4000
		33	5.0 imes 11.0 imes 13.0	B32671L6333+***	3320	5200	4000
		47	$6.0\times12.0\times13.0$	B32671L6473+***	2720	4400	4000
		56	$6.0 \times 12.0 \times 13.0$	B32671L6563+***	2720	4400	4000
250	1000	4.7	$4.0\times 9.0\times 13.0$	B32671L9472+***	4000	6800	4000
		6.8	$4.0\times 9.0\times 13.0$	B32671L9682+***	4000	6800	4000
		10	5.0 imes 11.0 imes 13.0	B32671L9103+***	3320	5200	4000
		15	5.0 imes 11.0 imes 13.0	B32671L9153+***	3320	5200	4000
_		22	$6.0 \times 12.0 \times 13.0$	B32671L9223+***	2720	4400	4000
500	1000	3.3	$4.0\times 9.0\times 13.0$	B32671L0332+***	4000	6800	4000
		3.9	$4.0\times 9.0\times 13.0$	B32671L0392+***	4000	6800	4000
		4.7	$4.0\times 9.0\times 13.0$	B32671L0472+***	4000	6800	4000
		5.6	5.0 imes 11.0 imes 13.0	B32671L0562+***	3320	5200	4000
		6.2	5.0 imes 11.0 imes 13.0	B32671L0622+***	3320	5200	4000
		6.8	5.0 imes 11.0 imes 13.0	B32671L0682+***	3320	5200	4000
		8.2	$6.0\times12.0\times13.0$	B32671L0822+***	2720	4400	4000
		10	$6.0\times12.0\times13.0$	B32671L0103+***	2720	4400	4000
		12	$6.0\times12.0\times13.0$	B32671L0123+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%

 $J = \pm 5\%$

*** = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 240 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 140 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length $3.2 \pm 0.3 \text{ mm}$)
- 000 = Straight terminals, untaped (lead length 6-1 mm)

B32671L

High V AC, high temperature (wound)

MKP → 10 ◄

Ordering codes and packing units (lead spacing 10 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
600	1600	1.2	$4.0\times 9.0\times 13.0$	B32671L1122+***	4000	6800	4000
		1.5	$4.0\times 9.0\times 13.0$	B32671L1152+***	4000	6800	4000
		2.2	5.0 imes 11.0 imes 13.0	B32671L1222+***	3320	5200	4000
		2.7	5.0 imes 11.0 imes 13.0	B32671L1272+***	3320	5200	4000
		3.3	$6.0\times12.0\times13.0$	B32671L1332+***	2720	4400	4000
		3.9	$6.0\times12.0\times13.0$	B32671L1392+***	2720	4400	4000
_		4.7	$6.0 \times 12.0 \times 13.0$	B32671L1472+***	2720	4400	4000
700	2000	1.0	$4.0\times 9.0\times 13.0$	B32671L8102+***	4000	6800	4000
		1.2	$4.0\times 9.0\times 13.0$	B32671L8122+***	4000	6800	4000
		1.5	$4.0\times 9.0\times 13.0$	B32671L8152+***	4000	6800	4000
		2.2	5.0 imes 11.0 imes 13.0	B32671L8222+***	3320	5200	4000
		2.7	5.0 imes 11.0 imes 13.0	B32671L8272+***	3320	5200	4000
		3.3	5.0 imes 11.0 imes 13.0	B32671L8332+***	3320	5200	4000
		3.9	$6.0\times12.0\times13.0$	B32671L8392+***	2720	4400	4000
		4.7	$6.0\times12.0\times13.0$	B32671L8472+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%
 - J = ±5%

*** = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 240 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 140 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length $3.2 \pm 0.3 \text{ mm}$)
- 000 = Straight terminals, untaped (lead length 6-1 mm)

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pcs./MOQ	pcs./	pcs./
V AC	V DC	nF	mm	below)		MOQ	MOQ
160	250	150	$5.0\times10.5\times18.0$	B32672L2154+***	4680	5200	4000
		220	$6.0\times11.0\times18.0$	B32672L2224+***	3840	4400	4000
		330	$7.0\times12.5\times18.0$	B32672L2334+***	3320	3600	4000
		470	$8.5 \times 14.5 \times 18.0$	B32672L2474+***	2720	2800	2000
		680	$9.0\times17.5\times18.0$	B32672L2684+***	2560	2800	2000
		1000	$11.0\times18.5\times18.0$	B32672L2105+***	_	2200	1000
200	450	68	$5.0\times10.5\times18.0$	B32672L4683+***	4680	5200	4000
		100	$5.0\times10.5\times18.0$	B32672L4104+***	4680	5200	4000
		150	$6.0\times11.0\times18.0$	B32672L4154+***	3840	4400	4000
		220	$7.0\times12.5\times18.0$	B32672L4224+***	3320	3600	4000
		330	$8.0\times14.0\times18.0$	B32672L4334+***	2920	3000	2000
		470	$9.0\times17.5\times18.0$	B32672L4474+***	2560	2800	2000
		680	$11.0\times18.5\times18.0$	B32672L4684+***	_	2200	1000
250	630	33	$5.0\times10.5\times18.0$	B32672L6333+***	4680	5200	4000
		47	$5.0\times10.5\times18.0$	B32672L6473+***	4680	5200	4000
		68	$6.0\times11.0\times18.0$	B32672L6683+***	3840	4400	4000
		100	$7.0\times12.5\times18.0$	B32672L6104+***	3320	3600	4000
		150	$8.5 \times 14.5 \times 18.0$	B32672L6154+***	2720	2800	2000
		220	$9.0\times17.5\times18.0$	B32672L6224+***	2560	2800	2000
		390	$11.0\times18.5\times18.0$	B32672L6394+***	_	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%
 - $J = \pm 5\%$

- *** = Packaging code:
 - 289 = Straight terminals, Ammo pack
 - 189 = Straight terminals, Reel
 - 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
 - 155 = Crimped down to lead spacing 7.5 mm, Reel
 - 003 = Straight terminals, untaped (lead length $3.2 \pm 0.3 \text{ mm}$)
 - 000 = Straight terminals, untaped (lead length 6-1 mm)

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pcs./MOQ	pcs./	pcs./
V AC	V DC	nF	mm	below)		MOQ	MOQ
250	1000	10	5.0 imes 10.5 imes 18.0	B32672L0103+***	4680	5200	4000
		15	5.0 imes 10.5 imes 18.0	B32672L0153+***	4680	5200	4000
		22	5.0 imes 10.5 imes 18.0	B32672L0223+***	4680	5200	4000
		33	$6.0\times11.0\times18.0$	B32672L0333+***	3840	4400	4000
		47	7.0 imes 12.5 imes 18.0	B32672L0473+***	3320	3600	4000
		68	8.5 imes 14.5 imes 18.0	B32672L0683+***	2720	2800	2000
		100	9.0 imes17.5 imes18.0	B32672L0104+***	2560	2800	2000
		150	11.0 imes 18.5 imes 18.0	B32672L0154+***	_	2200	1000
500	1300	6.8	$5.0\times10.5\times18.0$	B32672L7682+***	4680	5200	4000
		10	5.0 imes 10.5 imes 18.0	B32672L7103+***	4680	5200	4000
		22	7.0 imes 12.5 imes 18.0	B32672L7223+***	3320	3600	4000
		33	8.5 imes 14.5 imes 18.0	B32672L7333+***	2720	2800	2000
		47	9.0 imes 17.5 imes 18.0	B32672L7473+***	2560	2800	2000
_		68	$11.0\times18.5\times18.0$	B32672L7683+***	_	2200	1000
600	1600	6.2	5.0 imes10.5 imes18.0	B32672L1622+***	4680	5200	4000
		6.8	5.0 imes 10.5 imes 18.0	B32672L1682+***	4680	5200	4000
		8.2	$6.0\times11.0\times18.0$	B32672L1822+***	3840	4400	4000
		10	$6.0\times11.0\times18.0$	B32672L1103+***	3840	4400	4000
		12	$6.0\times12.0\times18.0$	B32672L1123+***	3840	4400	4000
		15	$7.0\times12.5\times18.0$	B32672L1153+***	3320	3600	4000
		22	8.5 imes 14.5 imes 18.0	B32672L1223+***	2720	2800	2000
		33	9.0 imes17.5 imes18.0	B32672L1333+***	2560	2800	2000
_		47	$11.0\times18.5\times18.0$	B32672L1473+***	—	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

+ = Capacitance tolerance code:

$$\mathsf{K} = \pm 10\%$$

$$\mathsf{J}=\pm5\%$$

*** = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 155 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length 3.2 ± 0.3 mm)
- 000 = Straight terminals, untaped (lead length 6-1 mm)

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times I$	(composition see	pcs./MOQ	pcs./	pcs./
V AC	V DC	nF	mm	below)		MOQ	MOQ
700	2000	1.0	5.0 imes 10.5 imes 18.0	B32672L8102+***	4680	5200	4000
		1.2	$5.0\times10.5\times18.0$	B32672L8122+***	4680	5200	4000
		1.5	$5.0\times10.5\times18.0$	B32672L8152+***	4680	5200	4000
		2.2	$5.0\times10.5\times18.0$	B32672L8222+***	4680	5200	4000
		2.7	$5.0\times10.5\times18.0$	B32672L8272+***	4680	5200	4000
		3.3	$5.0\times10.5\times18.0$	B32672L8332+***	4680	5200	4000
		3.9	$5.0\times10.5\times18.0$	B32672L8392+***	4680	5200	4000
		4.7	$5.0\times10.5\times18.0$	B32672L8472+***	4680	5200	4000
		5.6	$6.0\times11.0\times18.0$	B32672L8562+***	3840	4400	4000
		6.2	$6.0\times11.0\times18.0$	B32672L8622+***	3840	4400	4000
		6.8	$6.0\times11.0\times18.0$	B32672L8682+***	3840	4400	4000
		8.2	$6.0\times12.0\times18.0$	B32672L8822+***	3840	4400	4000
		10	$7.0\times12.5\times18.0$	B32672L8103+***	3320	3600	4000
		12	$8.5 \times 14.5 \times 18.0$	B32672L8123+***	2720	2800	2000
		15	$8.5 \times 14.5 \times 18.0$	B32672L8153+***	2720	2800	2000
		22	$9.0\times17.5\times18.0$	B32672L8223+***	2560	2800	2000
		33	$11.0\times18.5\times18.0$	B32672L8333+***	_	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%
 - $J = \pm 5\%$

- *** = Packaging code:
 - 289 = Straight terminals, Ammo pack
 - 189 = Straight terminals, Reel
 - 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
 - 155 = Crimped down to lead spacing 7.5 mm, Reel
 - 003 = Straight terminals, untaped (lead length $3.2 \pm 0.3 \text{ mm}$)
 - 000 = Straight terminals, untaped (lead length 6-1 mm)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pcs./MOQ	pcs./	pcs./
V AC	V DC	nF	mm	below)		MOQ	MOQ
900	2000	1.0	$5.0\times10.5\times18.0$	B32672L9102+***	4680	5200	4000
		1.2	$6.0\times11.0\times18.0$	B32672L9122+***	3840	4400	4000
		1.5	$6.0\times11.0\times18.0$	B32672L9152+***	3840	4400	4000
		2.2	$7.0\times12.5\times18.0$	B32672L9222+***	3320	3600	4000
		2.7	$8.0 \times 14.0 \times 18.0$	B32672L9272+***	2920	3000	2000
		3.3	8.5 imes 14.5 imes 18.0	B32672L9332+***	2720	2800	2000
		3.9	9.0 imes 17.5 imes 18.0	B32672L9392+***	2560	2800	2000
		4.7	9.0 imes 17.5 imes 18.0	B32672L9472+***	2560	2800	2000
		5.6	$11.0 \times 18.5 \times 18.0$	B32672L9562+***	_	2200	1000
		6.2	11.0 imes 18.5 imes 18.0	B32672L9622+***	_	2200	1000
		6.8	$11.0\times18.5\times18.0$	B32672L9682K***	—	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%
 - $J = \pm 5\%$

*** = Packaging code:

High V AC, high temperature (wound)

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 155 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length $3.2 \pm 0.3 \text{ mm}$)
- 000 = Straight terminals, untaped (lead length 6-1 mm)

МКР

B32671L ... B32672L

High V AC, high temperature (wound)

Technical data

Reference standard: IEC 60384-16. All data given at T = 20 $^{\circ}$ C, otherwise is specified.

Operating temperature	Max. operatin	a temp	erature T	+125 °C			
range	Upper catego		-1-7	+110 °C			
lange	Lower catego		−55 °C				
	Rated temper	• •		+85 °C			
Dissipation factor tan δ	at	1	 27 nF< C _в ≤0.1 μF	0.1 μF < C _B ≤1 μF	>1 µF		
(in 10 ⁻³) at 20 °C	1 kHz		0.8	0.8	0.8		
(upper limit values)					0.0		
(upper infin values)	10 kHz		1.0	1.0	_		
	100 kHz		3.0	-			
Insulation resistance R _{ins}	100 GΩ (C _R ≤		,				
or time constant	30000 s (C _R >	> 0.33 μ	F)				
$\tau = C_{R} \cdot R_{ins} \text{ at } 20 ^{\circ}\text{C},$							
rel. humidity $\leq 65\%$							
(minimum as-delivered							
values)							
DC test voltage	1.6 · V _R , 2 s	1		Γ			
Category voltage V_c	T _{op} (°C)		tage derating	AC voltage derating			
(continuous operation	$T_{op} \le 85$	$V_{\rm C} = V_{\rm I}$		$V_{C,RMS} = V_{RMS}$			
with V_{DC} or V_{AC} at f $\leq 1 \text{ kHz}$)	85 <t<sub>op≤110</t<sub>	$V_{\rm C} = V_{\rm I}$	_R · (165–T _{op})/80	$V_{C,RMS} = V_{RMS} \cdot (165 - T_{op})/80$			
Operating voltage V _{op} for	T _{op} (°C)	DC vol	tage (max. hours)	AC voltage (max. hours)			
short operating periods	$T_{op} \le 100$	$V_{op} = 1$.25 · V _c (2000 h)	$V_{op} = 1.0 \cdot V_{C,RMS} (2)$	000 h)		
$(V_{DC} \text{ or } V_{AC} \text{ at } f \leq 1 \text{ kHz})$	100 <t<sub>op≤125</t<sub>	$V_{op} = 1$.25 · V _c (1000 h)	$V_{op} = 1.0 \cdot V_{C,RMS} (1)$	000 h)		
Reliability:							
Failure rate λ	1 fit (≤ 1 · 10 ⁻	⁹ /h) at 0	.5 · V _R , 40 °C				
Service life t _{SL}	200 000 h at	1.0 · V _R	, 85 °C				
	For conversion	n to oth	er operating condition	ons and temperatures	s, refer		
	to chapter "Q	uality, 2	Reliability".				
Failure criteria:							
Total failure	Short circuit or open circuit						
Failure due to variation	Capacitance change $ \Delta C/C > 10\%$						
of parameters	Dissipation fa	ctor tan	δ	> 4 · upper limit value	ues		
	Insulation res	istance	R _{ins}	< 1500 MΩ			

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

" k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V²/µs.

Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

Lead spacing	10 mm					
Туре	B32671L					
V _{RMS} (V AC)	200	250		500	600	700
V _R (V DC)	400	630	1000	1000	1600	2000
C _R (nF)	dV/dt in V/µs	•		·	·	·
1.0	-	-	-	-	_	11000
1.2	-	-	-	_	6000	10000
1.5	-	-	-	_	5600	9500
2.2	_	—	-	_	5200	9000
2.7	-	-	-	—	5000	8600
3.3	-	-	-	4700	4700	8500
3.9	-	-	-	4300	4500	8200
4.7	-	-	810	3800	4000	8000
5.6	_	—	_	3400	_	_
6.2	_	—	_	3200	_	_
6.8	-	-	810	3100	_	-
8.2	-	-	-	2700	_	-
10	-	-	810	2500	_	-
12	-	-	-	2300	_	-
15	-	540	810	—	_	-
22	400	540	810	_	_	-
33	400	540	_	_	_	-
47	400	540	-	-	_	-
56	_	540	_	-	_	-
68	400	-	_	_	_	-
100	400	-		—	_	-

dV/dt values

B32671L ... B32672L

High V AC, high temperature (wound)

dV/dt values

Lead spacing	15 mm							
Туре	B32672	Ľ						
V _{RMS} (V AC)	160	200		250	500	600	700	900
V _R (V DC)	250	450	630	1000	1300	1600	2000	2000
C _R (nF)	dV/dt in	V/µs						
1.0	_	_	_	_	_	_	10000	15000
1.2	—	_	—	_	_	_	9400	14100
1.5	—	_	—	_	_	_	9000	13500
2.2	-	_	—	_	_	_	7500	11000
2.7	-	_	—	_	_	_	7100	10600
3.3	-	—	—	—	_	-	6800	10000
3.9	-	—	—	—	_	-	6000	9000
4.7	-	_	—	_	_	_	5500	8200
5.6	-	—	—	—	_	-	5000	7500
6.2	-	—	—	—	_	3600	4700	7000
6.8	-	—	—	—	1000	3500	4500	6700
8.2	-	_	—	_	_	3100	4200	_
10	-	_	—	445	1000	2800	3900	_
12	-	—	—	—	_	2600	3600	_
15	-	—	—	445	_	2300	3300	_
22	-	—	—	445	1000	2000	2900	_
33	-	—	300	445	1000	1700	2300	_
47	-	—	300	445	1000	1400	—	_
56	—	—	—	—	_	_	—	_
68	_	200	300	445	1000	-	—	_
100	-	200	300	445	_	-	—	_
150	170	200	300	445	_	-	—	_
220	170	200	300	—	_	_	-	_
330	170	200	—	—	_	-	—	_
390		_	300		_	_	—	
470	170	200	_	_	_	_	_	_
680	170	200	—	_	_	_	_	_
1000	170	—	—	_	_	_	—	

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

k₀ values

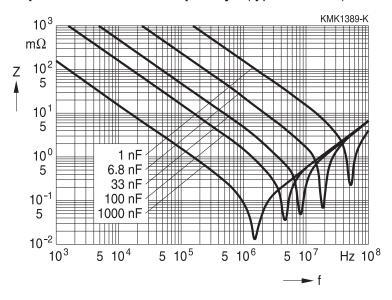
Lead spacing	10 mm					
Туре	B32671L					
V _{RMS} (V AC)	200	250		500	600	700
V _R (V DC)	400	630	1000	1000	1600	2000
C _R (nF)	k_0 in V ² /µs					
1.0	_	—	—	_	_	25000000
1.2	-	—	—	_	14400000	23000000
1.5	-	_	_	_	14000000	22500000
2.2	-	_	_	_	13800000	22000000
2.7	-	—	_	_	13600000	21500000
3.3	-	_	_	9400000	13300000	21000000
3.9	-	—	_	8600000	13100000	20900000
4.7	-	_	400000	8200000	12000000	20800000
5.6	-	_	_	7600000	_	
6.2	-	_	_	6800000	_	
6.8	-	_	400000	6200000	_	
8.2	-	_	_	5400000	_	
10	-	_	400000	5000000	_	
12	-	_	_	4600000	_	
15	-	200000	400000	_	—	
22	150000	200000	400000	_	—	
33	150000	200000	_	—	_	
47	150000	200000	_	—	_	
56	_	200000	_		_	
68	150000	_	_	—	_	
100	150000	_	_	_	_	

B32671L ... B32672L

High V AC, high temperature (wound)

k₀ values

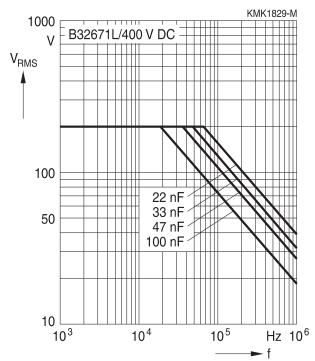
Lead spacing	15 mm									
Туре	B32672L									
V _{RMS} (V AC)	160	200	250		500	600	700	900		
V _R (V DC)	250	450	630	1000	1300	1600	2000	2000		
C _R (nF)	k_0 in V ² /µs									
1.0	-	—	—	—	-	—	20300000	30000000		
1.2	-	—	—	—	-	—	19600000	29400000		
1.5	-	—	—	—	-	—	19200000	28000000		
2.2	-		—	—	_	—	18600000	27500000		
2.7	-		—	—	_	—	18200000	27300000		
3.3	_		_	—	-	_	18000000	27000000		
3.9	-	_	_	—	-	_	16800000	25200000		
4.7	-		—	—	_	—	15800000	23500000		
5.6	-		—	—	_	—	13100000	19500000		
6.2	-	—	—	—	-	11520000	12700000	19000000		
6.8	-	—	—	—	3000000	11200000	12300000	18400000		
8.2	-	_	_	—	-	9920000	11800000	_		
10	-	_	_	1000000	3000000	8960000	11100000	_		
12	-	_	_	—	-	8320000	10600000	_		
15	-	_	_	1000000	-	7360000	10400000	_		
22	-	—	—	1000000	3000000	6400000	9300000	_		
33	-	_	500000	1000000	3000000	5440000	9000000	_		
47	-	_	500000	1000000	3000000	4480000	_	_		
56	-	—	—	—	-	—	—	_		
68	-	120000	500000	1000000	3000000	—	—	_		
100	-	120000	500000	1000000	-	_	_	_		
150	100000	120000	500000	1000000	-	_	_	_		
220	100000	120000	500000	—	-	-	—	_		
330	100000	120000	_	—	-	_	_	_		
390	-	_	500000	—	_	_	_	_		
470	100000	120000	_	—	_	_	_	_		
680	100000		_	—	_	_	_			
1000	100000	_	—	_	_	_	_	_		

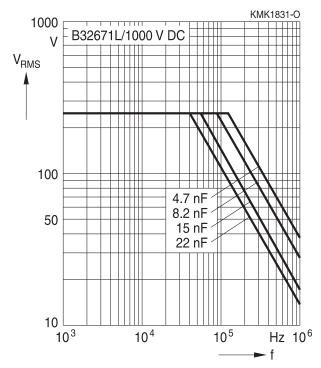


B32671L ... B32672L

High V AC, high temperature (wound)

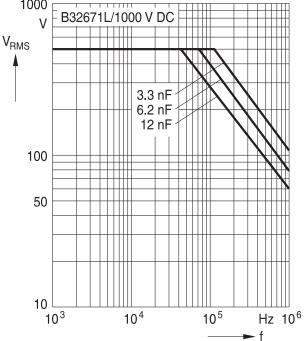
Impedance Z versus frequency f (typical values)




Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor F_T .

Lead spacing 10 mm

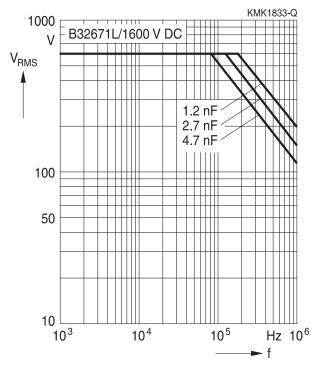

400 V DC/200 V AC



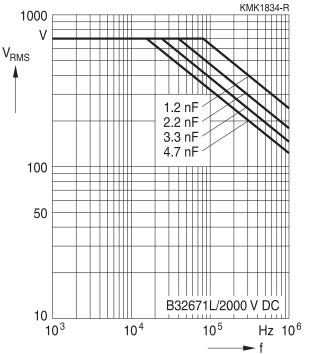
1000 V DC/250 V AC

630 V DC/250 V AC

Please read *Cautions and warnings* and *Important notes* at the end of this document.


B32671L

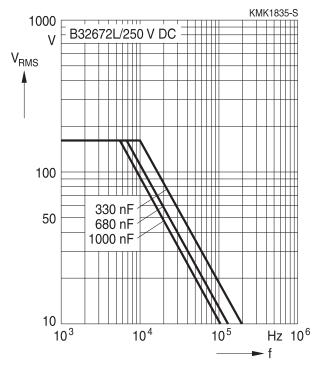
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100 \text{ °C}$) For $T_A > 100 \text{ °C}$, please use derating factor F_T .

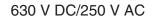

Lead spacing 10 mm

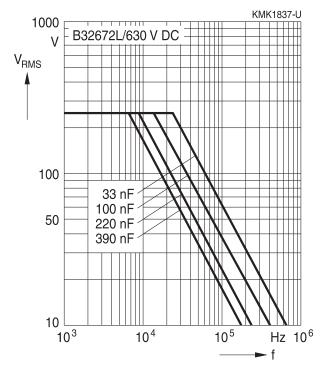
1600 V DC/600 V AC

2000 V DC/700 V AC

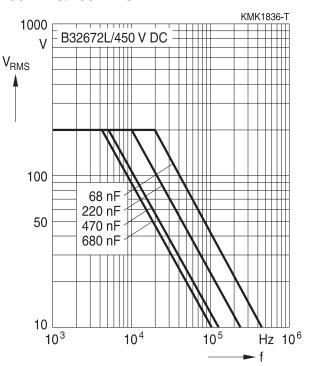
High V AC, high temperature (wound)

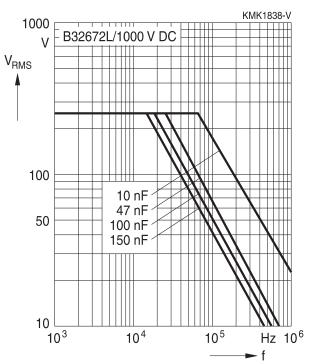





Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms T_A \leq 100 °C) For T_A >100 °C, please use derating factor F_T.

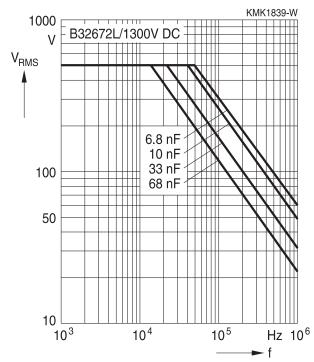
Lead spacing 15 mm


250 V DC/160 V AC

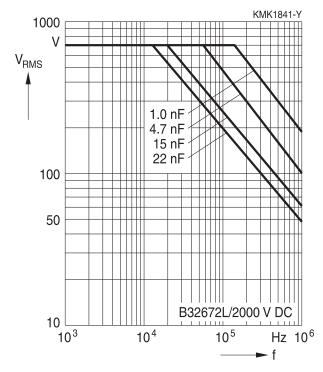


450 V DC/200 V AC

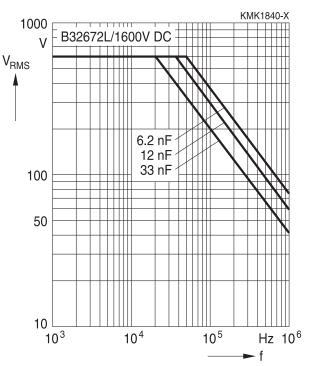
1000 V DC/250 V AC

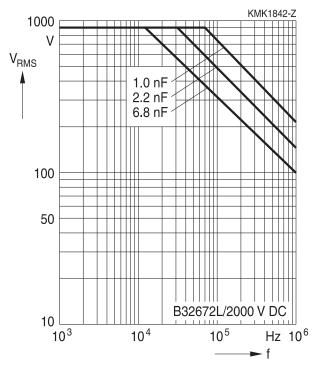


High V AC, high temperature (wound)

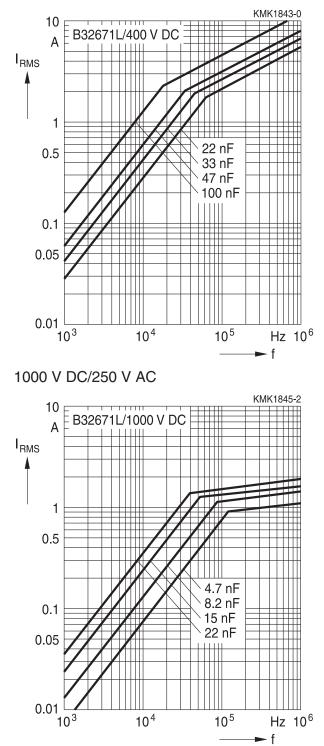

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms T_A \leq 100 °C) For T_A >100 °C, please use derating factor F_T.

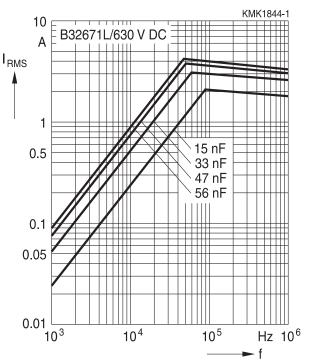
Lead spacing 15 mm

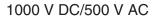

1300 V DC/500 V AC

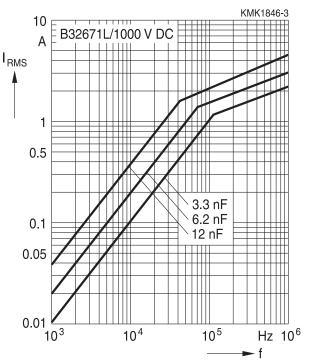

2000 V DC/700 V AC

1600 V DC/600 V AC

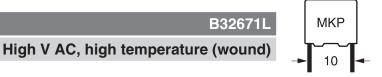



Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor F_T .

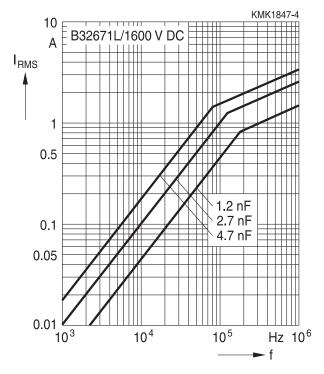

Lead spacing 10 mm

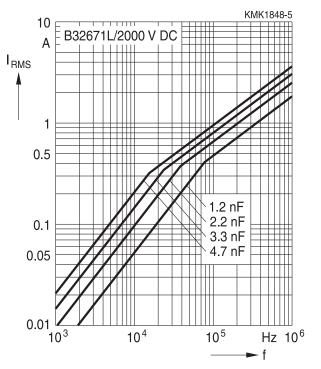

400 V DC/200 V AC

630 V DC/250 V AC



Please read *Cautions and warnings* and *Important notes* at the end of this document.

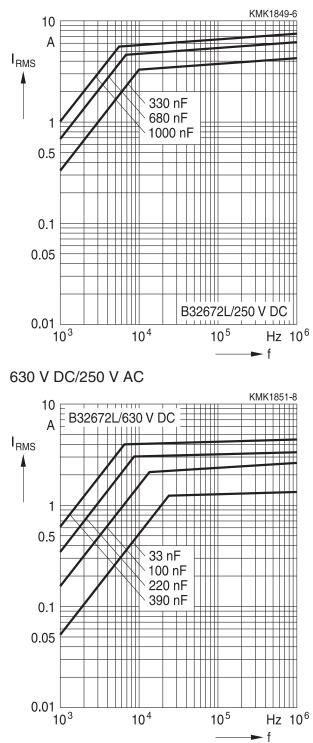


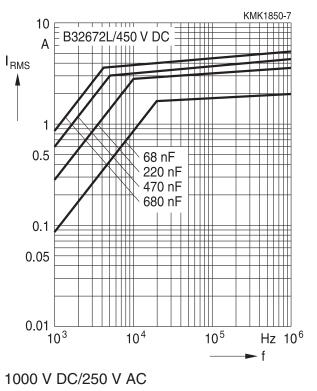

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor F_T .

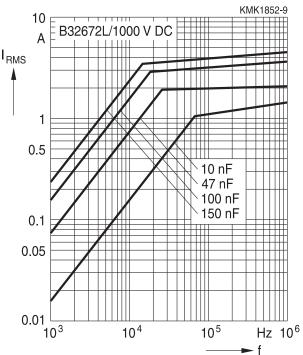
Lead spacing 10 mm

1600 V DC/600 V AC

2000 V DC/700 V AC



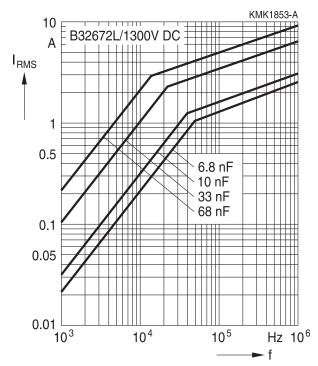

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor F_T .


Lead spacing 15 mm

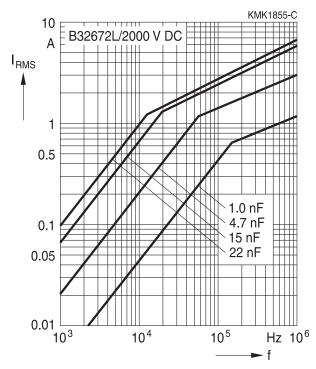
250 V DC/160 V AC

450 V DC/200 V AC

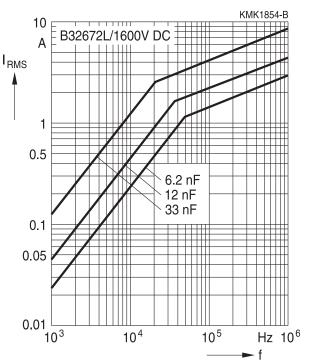
Please read *Cautions and warnings* and *Important notes* at the end of this document.

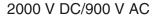


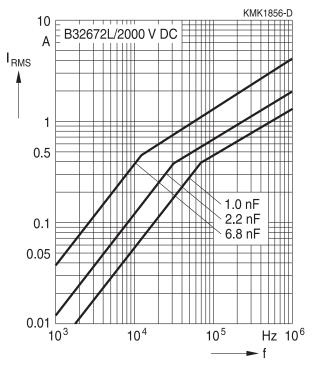
High V AC, high temperature (wound)


Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor F_T .

Lead spacing 15 mm

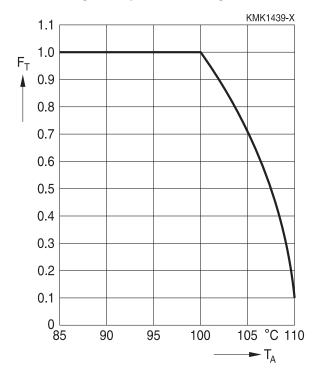

1300 V DC/500 V AC




2000 V DC/700 V AC

1600 V DC/600 V AC

Please read *Cautions and warnings* and *Important notes* at the end of this document.

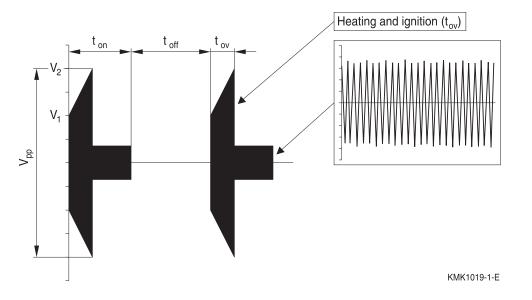


Maximum AC voltage (V_{RMS}), current (I_{RMS}) vs. frequency and temperature for $T_A > 100 \ ^{\circ}C$

The graphs described in the previous section for the permissible AC voltage (V_{RMS}) or current (I_{RMS}) vs. frequency are given for a maximum ambient temperature $T_A \leq 100 \text{ }^{\circ}\text{C}$. In case of higher ambient temperatures (T_A), the self-heating (Δ T) of the component must be reduced to avoid that temperature of the component (T_{op}= T_A + Δ T) reaches values above maximum operating temperature. The factor F_T shall be applied in the following way:

 $I_{RMS} (T_A) = I_{RMS,T_A \le 100 °C} \cdot F_T(T_A)$ $V_{RMS} (T_A) = V_{RMS,T_A \le 100 °C} \cdot F_T(T_A)$

And F_{T} is given by the following curve:



Operation at overvoltages during heating and ignition of lamps ($T_A \leq 40 \ ^\circ$ C)

In lighting applications, the capacitors can be subjected to overvoltages during the heating and ignition periods. An overvoltage occurs when the operation voltage exceeds the permissible AC voltage at the resonant frequency f_r .

For a repetitive application of on/off switching pulses (as for example in the life tests applied by electronic ballast manufacturers), limits have to be imposed on the time periods under overvoltage and on the duty cycle, in order to keep the capacitance value within the required margins:

- The overvoltage time t_{ov} should be less than 1 sec.
- The K₀ calculated in the overvoltage period (see general technical information) shall be lower than the maximum K₀ provided.
- The maximum duty cycle of the overvoltage is given by

$$\frac{t_{OV}}{t_{on} + t_{off}} \le \left(\frac{V_{RMS}}{V_{RMS,OV}}\right)^2 \cdot 0.5$$

where $V_{RMS,ov}$ is the RMS voltage during period t_{ov}

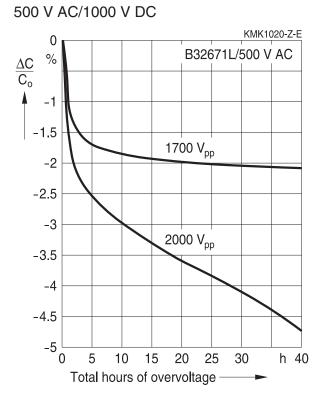
$$V_{\rm rms,OV} = \sqrt{\frac{V_1^2 + V_1 \cdot V_2 + V_2^2}{6}}$$

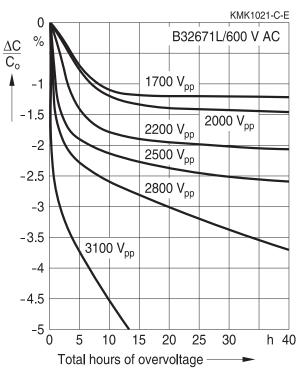
and V_{RMS} is the permissible AC voltage for continuous operation at the resonant frequency f_r (given by the "permissible AC voltage versus frequency f" graphics in the previous pages).


The drift of capacitance depends on the V_{pp} attained, and the total time under overvoltage, which is calculated in hours as follows:

(N_i · t_{ov}) / 3600

where N_i is the number of overvoltage impulses and t_{ov} is expressed in seconds.

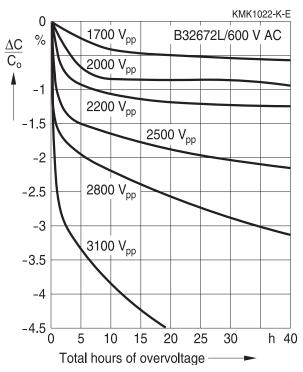

The maximum drift of capacitance as a function of both parameters is provided graphically in the following pages.



Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage

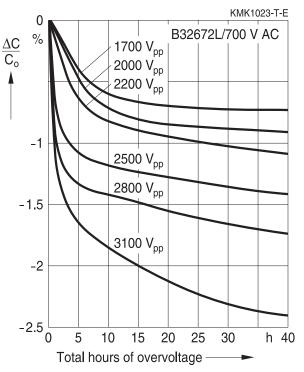
Lead spacing 10 mm

600 V AC/1600 V DC



MKP → 15 ◄-

Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage


Lead spacing 15 mm

600 V AC/1600 V DC

700 V AC/2000 V DC

High V AC, high temperature (wound)

B32671L ... B32672L

High V AC, high temperature (wound)

Testing and Standards

Test	Reference	Conditions of test		Performance requirements
Electrical Parameters	IEC 60384-16	Voltage proof, 1.6 V Insulation resistanc Capacitance, C Dissipation factor, ta	e, R _{INS}	Within specified limits
Robustness of termina- tions	IEC 60068-2-21	Tensile strength (test Ua1)TensileWire diameter $0.5 < d1 \le 0.8 \text{ mm}$ 10 N		Capacitance and tan δ within specified limits
Resistance to soldering heat	IEC 60068-2-20, test Tb, method 1A	Solder bath temperation 260 ± 5 °C, immers 10 seconds		$\Delta C/C_0 \le 2\%$ $ \Delta \tan \delta \le 0.002$
Rapid change of temperature	IEC 60384-16	T_A = lower category T_B = upper category Five cycles, duratio	/ temperature	
Vibration	IEC 60384-16	Test Fc: vibration sinusoidal Displacement: 0.75 mm Accleration: 98 m/s ² Frequency: 10 Hz 500 Hz Test duration: 3 orthogonal axes, 2 hours each axe		No visible damage
Bump	IEC 60384-16	Test Eb: Total 4000 390 m/s ² mounted o 6 ms duration	•	No visible damage $ \Delta C/C_0 \le 2\%$ $ \Delta \tan \delta \le 0.002$ $R_{INS} \ge 50\%$ of initial limit
Climatic sequence	IEC 60384-16	Dry heat Tb / 16 h. Damp heat cyclic, 1 +55 °C / 24h / 95% Cold Ta / 2h Damp heat cyclic, 5 +55 °C / 24h / 95%	100% RH	No visible damage $ \Delta C/C_0 \le 3\%$ $ \Delta \tan \delta \le 0.001$ $R_{INS} \ge 50\%$ of initial limit
Damp Heat Steady State	IEC 60384-16	Test Ca 40 °C / 93% RH / 56 days		No visible damage $ \Delta C/C_0 \le 3\%$ $ \Delta \tan \delta \le 0.001$ $R_{INS} \ge 50\%$ of initial limit
High temperature high humidity with load		60 °C / 95% RH / 1000 hours with $V_{\text{R,DC}}$		No visible damage $ \Delta C/C_0 \le 10\%$ $ \Delta \tan \delta \le 0.002$ $R_{INS} \ge 50\%$ of initial limit

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

Test	Reference	Conditions of test	Performance requirements
Endurance	IEC60384-16	85 °C/ 1.25 V _B / 2000 hours	No visible damage
			$ \Delta C/C_0 \le 5\%$
			$ \Delta \tan \delta \le 0.002$
			$R_{INS} \ge 50\%$ of initial limit
Endurance IEC60384-16		110 °C/ 1.25 V _c / 2000 hours	No visible damage
			$ \Delta C/C_0 \le 10\%$
			$ \Delta \tan \delta \le 0.002$
			$R_{INS} \ge 50\%$ of initial limit

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.