

Sample &

Buy

SNIS177B - MARCH 2013 - REVISED SEPTEMBER 2015

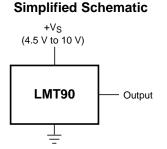
Support &

Community

....

LMT90 SOT-23 Single-Supply Centigrade Temperature Sensor

Technical


Documents

1 Features

- Cost-Effective Alternative to Thermistors
- Calibrated Directly in Degree Celsius (Centigrade)
- Linear + 10.0 mV/°C Scale Factor
- ±3°C Accuracy Guaranteed at 25°C
- Specified for Full -40° to 125°C range
- Suitable for Remote Applications
- Operates from 4.5 V to 10 V
- Less than 130-µA Current Drain
- Low Self-heating, Less Than 0.2°C in Still Air
- Non-linearity Less Than 0.8°C Over Temp

2 Applications

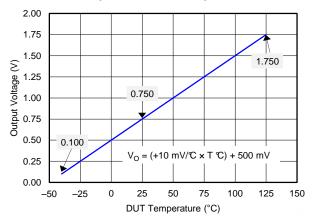
- Industrial
- HVAC
- Disk Drives
- Automotive
- Portable Medical Instruments
- Computers
- Battery Management
- Printers
- Power Supply Modules
- FAX Machines

3 Description

Tools &

Software

The LMT90 device is a precision integrated-circuit temperature sensor that can sense a -40°C to +125°C temperature range using a single positive supply. The output voltage of LMT90 is linearly proportional to Celsius (Centigrade) temperature (10 mV/°C) and has a DC offset of 500 mV. The offset allows reading negative temperatures without the need for a negative supply. The ideal output voltage of the LMT90 ranges from 100 mV to 1.75 V for a -40°C to 125°C temperature range. The LMT90 does not require any external calibration or trimming to provide accuracies of ±3°C at room temperature and $\pm 4^{\circ}$ C over the full -40° C to $+125^{\circ}$ C temperature range. Trimming and calibration of the LMT90 at the wafer level assure low cost and high accuracy. The linear output, 500-mV offset, and factory calibration of LMT90 simplify circuitry required in a single-supply environment where reading negative temperatures is required. The LMT90's quiescent current is less than 130 µA, thus self-heating is limited to a very low 0.2°C in still air.


The LMT90 is a cost-competitive alternative to thermistors.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LMT90	SOT-23 (3)	2.92 mm × 1.30 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Full-Range Centigrade Temperature Sensor (-40°C to +125°C)

Table	of	Con	tents
-------	----	-----	-------

8

1		ures	
2	Арр	lications	1
3	Des	cription	1
4	Rev	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	3
	6.1	Absolute Maximum Ratings	3
	6.2	ESD Ratings	3
	6.3	Recommended Operating Conditions	3
	6.4	Thermal Information	4
	6.5	Electrical Characteristics	4
	6.6	Typical Characteristics	5
7	Deta	ailed Description	7
	7.1	Overview	7
	7.2	Functional Block Diagram	7
	7.3	Feature Description	7

	8.1	Application Information	8
	8.2	Typical Application	. 9
	8.3	System Examples	10
9	Pow	er Supply Recommendations	10
10	Lay	out	10
	10.1	Layout Guidelines	10
	10.2	Layout Examples	11
11	Dev	ice and Documentation Support	12
	11.1	Community Resources	12
	11.2	Trademarks	12
	11.3	Electrostatic Discharge Caution	12
	11.4	Glossary	12
12		hanical, Packaging, and Orderable mation	12

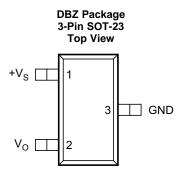
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (March 2013) to Revision B

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

ISTRUMENTS


XAS

Page

LMT90 SNIS177B – MARCH 2013– REVISED SEPTEMBER 2015

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION	
NO.	NAME	TIPE	DESCRIPTION	
1	+V _S	POWER	Positive power supply pin	
2	Vo	OUTPUT	Temperature sensor analog output	
3	GND	GND	Device ground pin, connected to power supply negative terminal	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply Voltage	-0.2	12	V
Output Voltage	-1	$(+V_{S} + 0.6)$	V
Output Current		10	mA
Maximum Junction Temperature, T _{JMAX}		150	°C
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
	Human body model (HBM) ⁽¹⁾	2000	V		
V((ESD)	Electrostatic discharge	Machine Model ⁽¹⁾	250	V

The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. Machine model is a 200-pF capacitor discharged directly into each pin.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
LMT90 ($T_{MIN} \le T_A \le T_{MAX}$)	-40	125	°C
Operating Temperature Range (Device is functional but performance is not specified)	-40	150	°C
Supply Voltage Range (+V _S)	4.5	10	V

(1) Soldering process must comply with the Reflow Temperature Profile specifications. Reflow temperature profiles are different for lead-free and non-lead-free packages. Refer to www.ti.com/packaging.

6.4 Thermal Information

	LMT90	
THERMAL METRIC ⁽¹⁾	DBZ (SOT-23)	UNIT
	3 PINS	
R _{0JA} Junction-to-ambient thermal resistance	450	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted, these specifications apply for $V_S = 5 V_{DC}$ and $I_{LOAD} = 0.5 \mu A$, in the circuit of Figure 14. All limits $T_A = T_J = 25^{\circ}C$, unless otherwise noted.

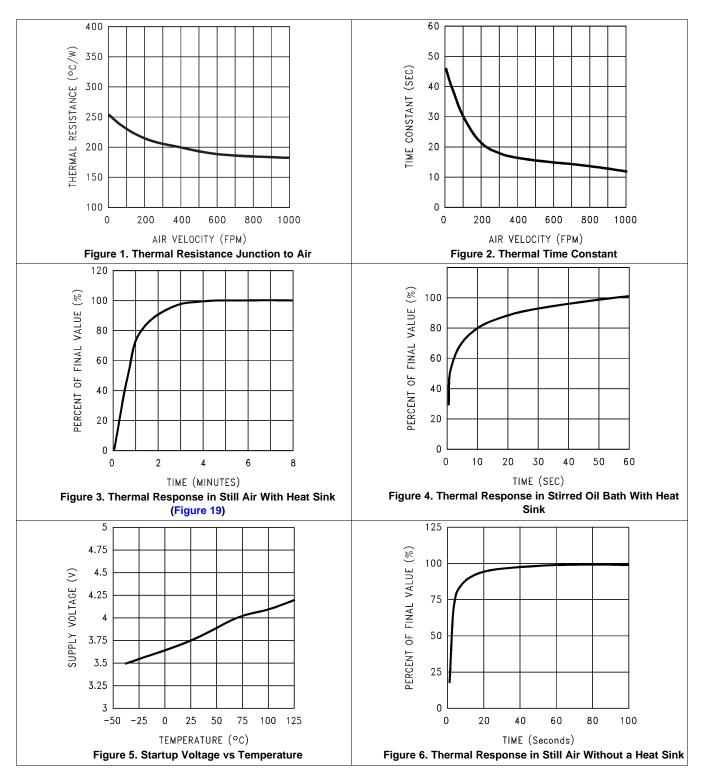
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX ⁽¹⁾	UNIT	
		-3		3	°C	
Accuracy ⁽²⁾	$T_A = T_{MAX}$	-4		4	°C	
	$T_A = T_{MIN}$	-4		4	°C	
Non-linearity ⁽³⁾	$T_A = T_J = T_{MIN}$ to T_{MAX}	-0.8		0.8	°C	
Sensor Gain (Average Slope)	$T_A = T_J = T_{MIN}$ to T_{MAX}	9.7		10.3	mV/°C	
Output Resistance			2000		Ω	
	$T_A = T_J = T_{MIN}$ to T_{MAX}			4000		
Line Desulation (4)	$4.5 \text{ V} \le \text{V}_{\text{S}} \le 10 \text{ V}$	-0.8		0.8	mV/V	
Line Regulation ⁽⁴⁾	$T_A = T_J = T_{MIN}$ to T_{MAX}	-1.2		1.2	mV/V	
Quiescent Current ⁽⁵⁾	$4.5 \text{ V} \le \text{V}_{\text{S}} \le 10 \text{ V}$			130	μA	
	$\begin{array}{l} 4.5 \ V \leq V_S \leq 10 \ V \\ T_A = T_J = T_{MIN} \ to \ T_{MAX} \end{array}$			180	μA	
Change of Quiescent Current ⁽⁵⁾	4.5 V \leq V _S \leq 10 V T _A = T _J = T _{MIN} to T _{MAX}			2	μA	
Temperature Coefficient of Quiescent Current	$T_A = T_J = T_{MIN}$ to T_{MAX}		2		µA/°C	
Long Term Stability ⁽⁶⁾	$T_{\rm J} = 125^{\circ}$ C, for 1000 hours		±0.08		°C	

(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).

(2) Accuracy is defined as the error between the output voltage and 10 mv/°C times the device's case temperature plus 500 mV, at specified conditions of voltage, current, and temperature (expressed in °C).

(3) Non-linearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.

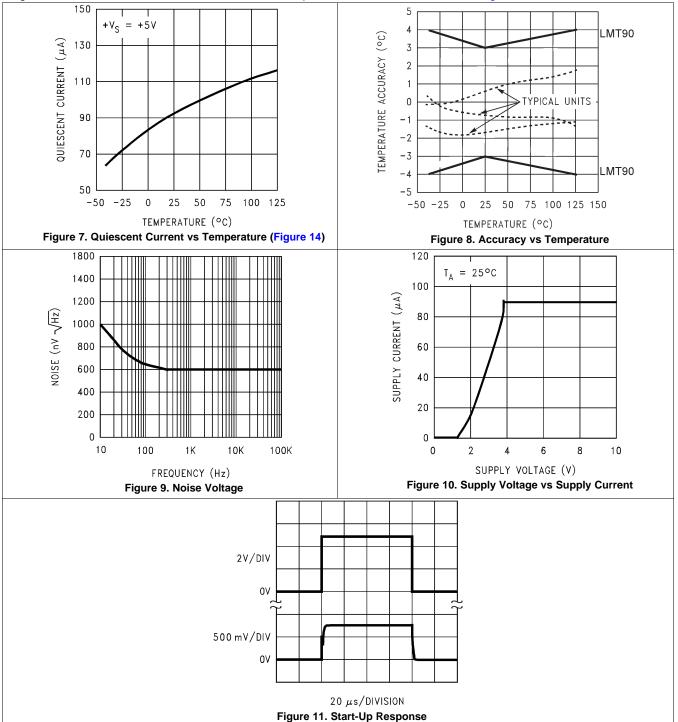
(4) Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.


(5) Quiescent current is defined in the circuit of Figure 14.

(6) For best long-term stability, any precision circuit will give best results if the unit is aged at a warm temperature, and/or temperature cycled for at least 46 hours before long-term life test begins. This is especially true when a small (Surface-Mount) part is wave-soldered; allow time for stress relaxation to occur. The majority of the drift will occur in the first 1000 hours at elevated temperatures. The drift after 1000 hours will not continue at the first 1000 hour rate.

6.6 Typical Characteristics

To generate these curves the LMT90 was mounted to a printed circuit board as shown in Figure 19.

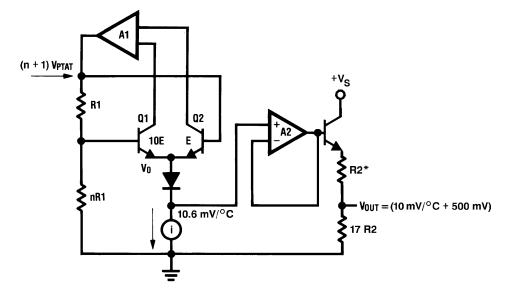


STRUMENTS

EXAS

Typical Characteristics (continued)

To generate these curves the LMT90 was mounted to a printed circuit board as shown in Figure 19.


7 Detailed Description

7.1 Overview

The LMT90 is a precision integrated-circuit temperature sensor that can sense a -40° C to 125° C temperature range using a single positive supply. The output voltage of the LMT90 has a positive temperature slope of 10 mV/° C. A 500-mV offset is included enabling negative temperature sensing when biased by a single supply.

The temperature-sensing element is comprised of a delta- V_{BE} architecture. The temperature-sensing element is then buffered by an amplifier and provided to the V_O pin. The amplifier has a simple class A output stage with typical 2-k Ω output impedance as shown in the *Functional Block Diagram*. The output impedance has a temperature coefficient of approximately 1300 ppm/°C. Over temperature the output impedance will max out at 4 k Ω .

7.2 Functional Block Diagram

*R2 ≈ 2k With a typical 1300 ppm/°C Drift.

7.3 Feature Description

7.3.1 LMT90 Transfer Function

The LM60 follows a simple linear transfer function in order to achieve the accuracy as listed in *Electrical Characteristics*:

 $V_{OUT} = 10 \text{ mV/°C} \times \text{T °C} + 500 \text{ mV}$

where

- T is the temperature in °C
- V_{OUT} is the LMT90 output voltage

(1)

7.4 Device Functional Modes

The LMT90's only functional mode is that it has an analog output directly proportional to temperature.

TEXAS INSTRUMENTS

www.ti.com

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMT90 has a wide supply range and a 10 mV/°C output slope with a 500-mV DC offset at 25 °C. Therefore, it can easily be applied in many temperature-sensing applications where a single supply is required for positive and negative temperatures.

8.1.1 Capacitive Loads

The LMT90 handles capacitive loading very well. Without any special precautions, the LMT90 can drive any capacitive load. The LMT90 has a nominal 2-k Ω output impedance (as can be seen in the *Functional Block Diagram*). The temperature coefficient of the output resistors is around 1300 ppm/°C. Taking into account this temperature coefficient and the initial tolerance of the resistors the output impedance of the LMT90 will not exceed 4 k Ω . In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. TI recommends that 0.1 µF be added from V_{IN} to GND to bypass the power supply voltage, as shown in Figure 13. In a noisy environment, it may be necessary to add a capacitor from the output to ground. A 1-µF output capacitor with the 4-k Ω output impedance will form a 40-Hz lowpass filter. Because the thermal time constant of the LMT90 is much slower than the 25-ms time constant formed by the RC, the overall response time of the LMT90.

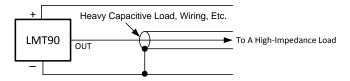


Figure 12. LMT90 No Decoupling Required for Capacitive Load

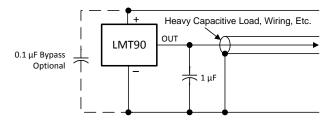
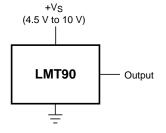



Figure 13. LMT90 With Filter for Noisy Environment

8.2 Typical Application

Figure 14. Full-Range Centigrade Temperature Sensor (-40°C to 125°C)

8.2.1 Design Requirements

For this design example, use the following design parameters in Table 1.

PARAMETER	VALUE	UNIT
Accuracy at 25°C	±3.0 (maximum)	°C
Accuracy Over –40°C to 125°C	±4.0 (maximum)	°C
Temperature slope	10	mV/°C
Power Supply Voltage Range	4.5 to 10	V
Output Impedance	4 (maximum)	kΩ

Table 1. Design Parameters

8.2.2 Detailed Design Procedure

The LMT90 is a simple temperature sensor that provides an analog output. Therefore design requirements related to layout out weigh other requirements in importance, refer to *Layout* for a detailed description.

8.2.3 Application Curve

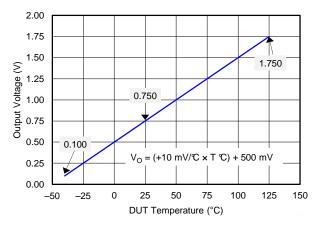
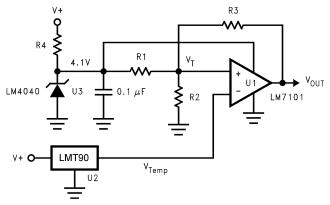



Figure 15. Plot of Output Transfer Function

8.3 System Examples

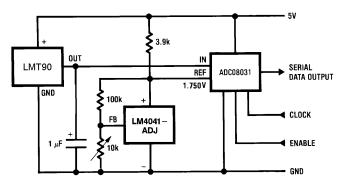


Figure 16. Centigrade Thermostat / Fan Controller

Figure 17. Temperature to Digital Converter (Serial Output) (125°C Full Scale)

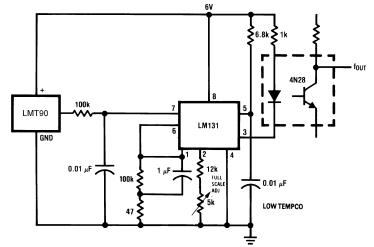


Figure 18. LMT90 With Voltage-To-Frequency Converter and Isolated Output (-40°C to 125°C; 100 Hz to 1750 Hz)

9 Power Supply Recommendations

In an extremely noisy environment, it may be necessary to add some filtering to minimize noise pickup. TI recommends that 0.1 μ F be added from V_{IN} to GND to bypass the power supply voltage, as shown in Figure 13.

10 Layout

10.1 Layout Guidelines

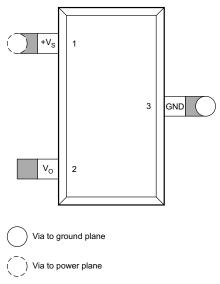
The LMT90 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about 0.2°C of the surface temperature.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LMT90 die would be at an intermediate temperature between the surface temperature and the air temperature.

To ensure good thermal conductivity the backside of the LMT90 die is directly attached to the GND pin. The lands and traces to the LMT90 will, of course, be part of the printed-circuit-board, which is the object whose temperature is being measured. These printed-circuit-board lands and traces will not cause the LMT90 temperature to deviate from the desired temperature.

Layout Guidelines (continued)

Alternatively, the LMT90 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT90 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as a conformal coating and epoxy paints or dips are often used to ensure that moisture cannot corrode the LMT90 or its connections.


Table 2. Temperature Rise of LMT90 Due to Self-Heating (Thermal Resistance, R_{OJA})

	SOT-23 no heat sink ⁽¹⁾	SOT-23 small heat fin ⁽²⁾
Still air	450°C/W	260°C/W
Moving air	—	180°C/W

(1) Part soldered to 30 gauge wire.

(2) Heat sink used is 1/2-inch square printed circuit board with 2-oz. foil with part attached as shown in Figure 19.

10.2 Layout Examples

1/2-inch square printed-circuit-board with 2-oz. foil or similar

Figure 19. PCB Layout

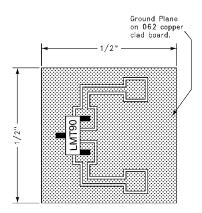


Figure 20. PCB Used for Heat Sink to Generate Thermal Response Curves

11 Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

2-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMT90DBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	T8C	Samples
LMT90DBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	T8C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

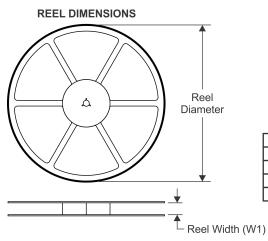
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

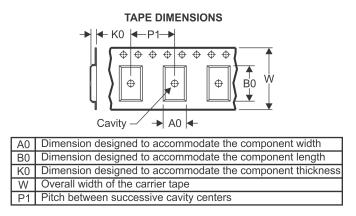
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

2-Oct-2014


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

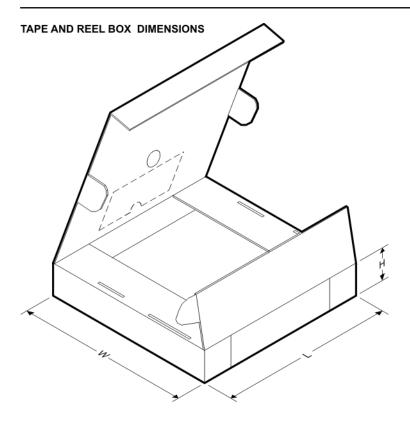

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMT90DBZR	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LMT90DBZT	SOT-23	DBZ	3	250	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Oct-2014


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMT90DBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LMT90DBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0

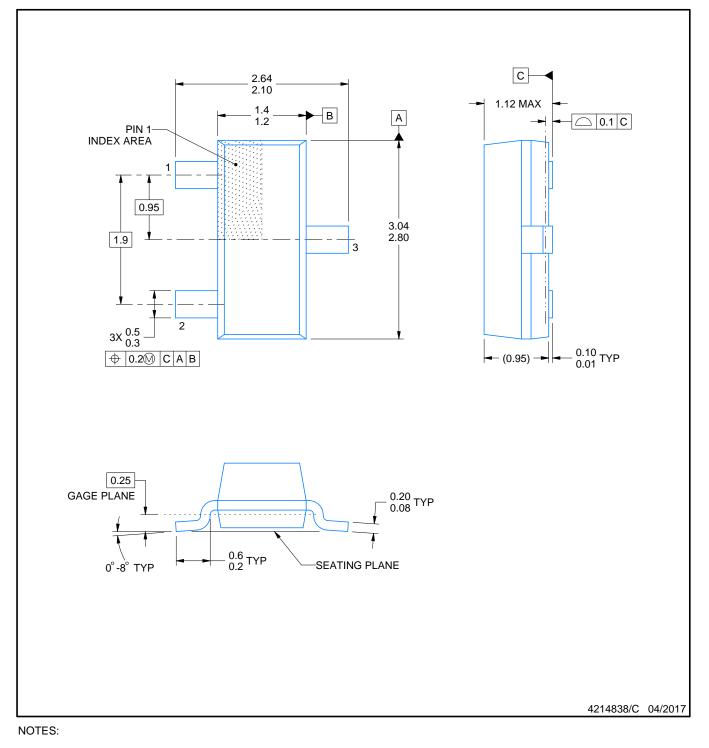
DBZ 3

GENERIC PACKAGE VIEW

SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203227/C

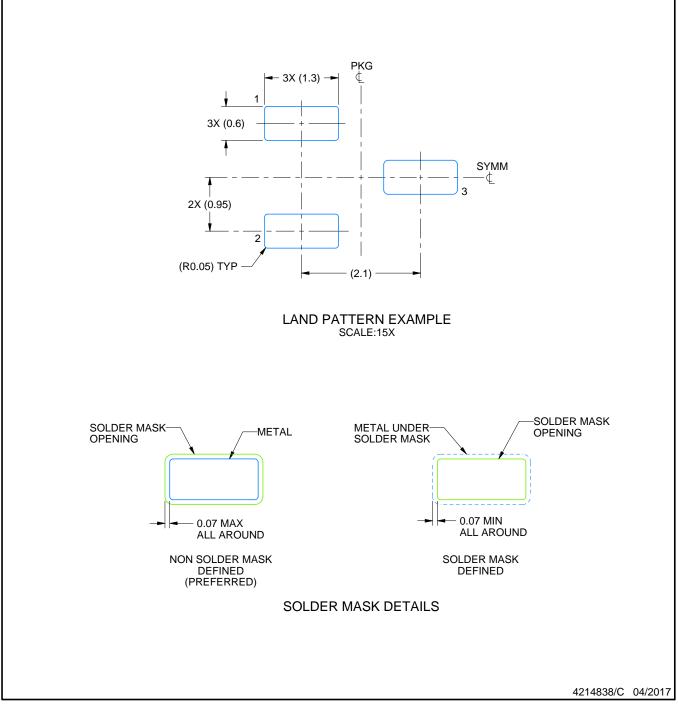

DBZ0003A

PACKAGE OUTLINE

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
This drawing is subject to change without notice.
Reference JEDEC registration TO-236, except minimum foot length.



DBZ0003A

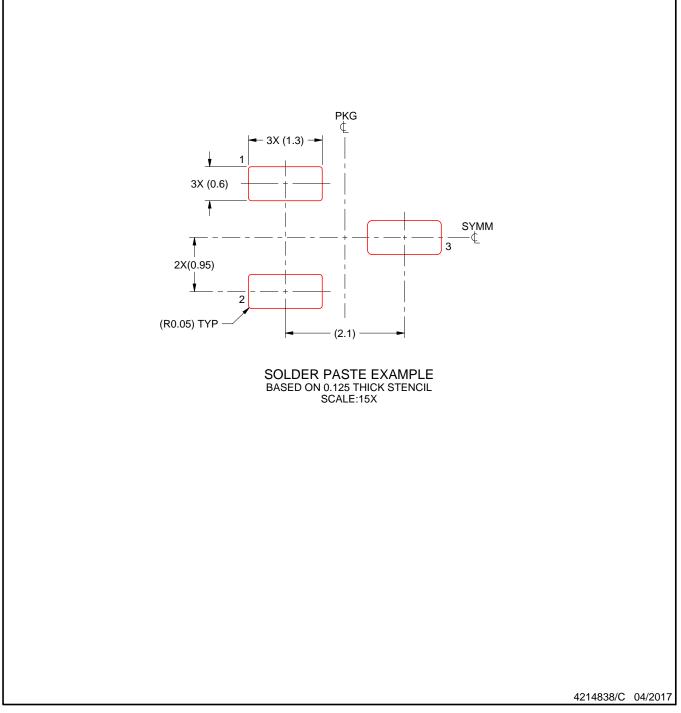
EXAMPLE BOARD LAYOUT

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBZ0003A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated