

bq27425-G2

SLUSB23B -OCTOBER 2012-REVISED JUNE 2015

bq27425-G2 System-Side Impedance Track™ Fuel Gauge With Integrated Sense Resistor

1 Features

- Single-Series Cell Li-Ion Battery Fuel Gauge
 - Resides on System Board
 - Supports Embedded or Removable Batteries
 - Powered Directly From Battery With Integrated
 LDO
 - Low-Value Integrated Sense Resistor (10 mΩ, Typical)
- Easy-to-Configure Fuel Gauging Based on Patented Impedance Track™ Technology
 - Reports Remaining Capacity and State of Charge (SOC) With Smoothing Filter
 - Automatically Adjusts for Battery Aging, Self-Discharge, Temperature, and Rate Changes
 - Battery State-of-Health (Aging) Estimation
- Microcontroller Peripheral Supports:
 - 400-kHz I²C Serial Interface
 - Configurable SOC Interrupt or Battery Low Digital Output Warning
 - Internal Temperature Sensor or Host-Reported Temperature

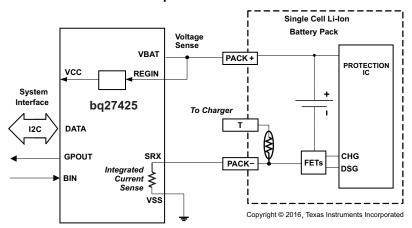
2 Applications

- · Smart Phones, Feature Phones, and Tablets
- Digital Still and Video Cameras
- Handheld Terminals
- MP3 or Multimedia Players

3 Description

The Texas Instruments bq27425-G2 fuel gauge is an easy-to-configure microcontroller peripheral that provides system-side fuel gauging for single-cell Lilon batteries. The device requires minimal user configuration and system microcontroller firmware development.

The fuel gauge uses the patented Impedance Track™ algorithm for fuel gauging, and provides information such as remaining battery capacity (mAh), state-of-charge (%), and battery voltage (mV).


Battery fuel gauging with the bq27425-G2 fuel gauge requires connections only to PACK+ (P+) and PACK- (P-) for a removable battery pack or embedded battery circuit. The 15-pin, 2.69 mm × 1.75 mm, 0.5-mm pitch chip scale package (DSBGA) is ideal for space-constrained applications.

Device Information⁽¹⁾

DEVICE NAME		PACKAGE	BODY SIZE (NOM)		
	bq27425-G2	DSBGA (15)	2.69 mm × 1.75 mm		

 For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	1 8.1 Overview	9
1		10
		10
	2 8.4 Device Functional Modes	12
	8.5 Programming	15
	8.6 Register Maps	27
Ų	9 Application and Implementation	28
	9.1 Application Information	28
	9.2 Typical Application	29
1	10 Power Supply Recommendations	<mark>31</mark>
	10.1 Power Supply Decoupling	31
1	n Reset 5 11 Layout	31
	5 11.1 Layout Guidelines5	31
	Characteristics 5 11.2 Layout Example	32
4	ristics	33
	rement) 12.1 Community Resources	
	6 12.2 Trademarks	33
6	6 12.3 Electrostatic Discharge Caution	33
ible Interface	tible Interface 12.4 Glossary	33
	⁷ 13 Mechanical, Packaging, and Orderable	
7	7 Information	33
9	9 13.1 Packaging	33

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (February 2013) to Revision B

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Changes from Original (October 2012) to Revision A

Page

•	AVAILABLE OPTIONS table: Replaced "Contact Factory" with orderable quantities for bq27425YZFR-G2A and	
	bq27425YZFT-G2B	3
•	AVAILABLE OPTIONS table: Added CHEM_ID column	3
•	Recommended Operating Conditions: Added SHUTDOWN mode specifications	4
•	OPERATING MODES: Added text "In SHUTDOWN mode,"	12
•	Changed Figure 6, POWER MODE DIAGRAM. Added OFF and SHUTDOWN modes to diagram	13
•	Changed the CHEM_ID subcommand section: (CHEM_ID: 0x0008)	17
•	Data Block Summary: Updated Default Value column to show -G2B version differences in (Green Text)	24
•	Data Block Summary: Changed Units value from Reserve Cap-mAh and Design Capacity from "mA" to "mAh"	24
•	Data Block Summary: Updated several Class/Subclass descriptions to correct [RAM] vs [NVM] indication	24

5 Device Comparison Table

PART NUMBER	BATTERY TYPE	CHEM_ID (1)	FIRMWARE VERSION (2)	COMMUNICATION FORMAT	
bq27425YZFR-G2A	LiCoO ₂	0x128			
bq27425YZFT-G2A	(4.2 V maximum charge)	0.000	2.05	I ² C	
bq27425YZFR-G2B	LiMn ₂ O ₄	0v242	(0x0205)	10	
bq27425YZFT-G2B	(4.3 to 4.35 V maximum charge)	0x312			

- (1) Refer to the CHEM_ID subcommand to confirm the battery chemistry type.
- (2) Refer to the FW_VERSION subcommand to confirm the firmware version.

6 Pin Configuration and Functions

Pin Functions

	PIN	I/O ⁽¹⁾	DESCRIPTION		
NAME NO.		1/01/	DESCRIPTION		
BAT	E2	I	Cell-voltage measurement input. ADC input. Recommend 4.8 V maximum for conversion accuracy.		
BIN	C3	1	Battery-insertion detection input. A logic high-to-low transition is detected as a battery insertion event. Recommend using a pullup resistor >1 M Ω (1.8 M Ω , typical) to V _{CC} for reduced power consumption. An internal pullup resistor option is also available using the <i>Operation Configuration [BI_PU_EN]</i> register bit.		
CE	D2	I Chip Enable. Internal LDO is disconnected from REGIN when driven low.			
GPOUT	A2	0	General Purpose open-drain output. May be configured as a Battery Low indicator or perform SOC interrupt (SOC_INT) function.		
	A1, B2	NA	No internal connection. May be left floating.		
NC	C2, D3, E3	Ю	Reserved for factory use. Must be left floating for proper operation.		
REGIN	E1	Р	Regulator input. Decouple with 0.1-μF ceramic capacitor to V _{SS} .		
SCL	A3	1	Slave I^2C serial communications clock input line for communication with system (Master). Use with 10-k Ω pullup resistor (typical).		
SDA	В3	I/O	Slave I ² C serial communications data line for communication with system (Master). Open-drain IO. Use with 10-kΩ pullup resistor (typical).		
SRX	B1	IA	Integrated Sense Resistor and Coulomb Counter input typically connected to battery PACK– terminal. For best performance decouple with 0.1-μF ceramic capacitor to V _{SS} .		
V _{CC}	D1	Р	Regulator output and bq27425 processor power. Decouple with 1- μ F ceramic capacitor to V _{SS} .		
V _{SS}	C1	P, IA	Device ground and Integrated Sense Resistor termination.		

(1) IO = Digital input/output, IA = Analog input, P = Power connection

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{REGIN}	Regulator input	-0.3	6	V
V_{CC}	Supply voltage	-0.3	2.75	V
V_{IOD}	Open-drain I/O pins (SDA, SCL, GPOUT)	-0.3	6	V
V_{BAT}	BAT input pin	-0.3	6	V
V_{I}	Input voltage to all other pins (SRX, BIN)	-0.3	$V_{CC} + 0.3$	V
T_A	Operating free-air temperature	-40	85	°C
T _{stg}	Storage temperature	-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	\/
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	V

- JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

 $T_A = 25$ °C and $V_{REGIN} = V_{BAT} = 3.6$ V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
\/	Cumply valtage	No operating restrictions	2.8		4.5	V
V_{REGIN}	Supply voltage	No NVM writes	2.45		2.8	V
C _{REGIN}	External input capacitor for internal LDO between REGIN and V _{SS}	Nominal capacitor values specified. Recommend a 5% ceramic X5R		0.1		μF
C _{LDO25}	External output capacitor for internal LDO between V _{CC} and V _{SS}	type capacitor located close to the device.	0.47	1		μF
I _{CC}	NORMAL operating-mode current ⁽¹⁾	Fuel gauge in NORMAL mode. I _{LOAD} > Sleep Current		118		μΑ
I _{SLP}	SLEEP mode operating mode current ⁽¹⁾	Fuel gauge in SLEEP mode. I _{LOAD} < Sleep Current		23		μΑ
I _{HIB}	HIBERNATE operating-mode current ⁽¹⁾	Fuel gauge in HIBERNATE mode. I _{LOAD} < <i>Hibernate Current</i>		8		μΑ
I _{SHD}	SHUTDOWN mode current ⁽¹⁾	Fuel gauge in SHUTDOWN mode. CE Pin < V _{IL(CE)} maximum		1		μΑ
$V_{OL(OD)}$	Output low voltage on open-drain pins (SCL, SDA, GPOUT)	I _{OL} = 1 mA			0.4	V
$V_{OH(OD)}$	Output high voltage on open-drain pins (SDA, SCL, GPOUT)	External pullup resistor connected to V _{CC}	V _{CC} - 0.5			V
V _{IL}	Input low voltage, all digital pins				0.6	V
\/	Input high voltage (SDA, SCL)		1.2			V
V_{IH}	Input high voltage (BIN)		1.2			V
V _{A2}	Input voltage (BAT)		V _{SS} – 0.125		5	V
V _{A3}	Input voltage (SRX) (1)(2)		V _{SS} - 0.04		0.04	V
I _{lkg}	Input leakage current (I/O pins)				0.3	μΑ
t _{PUCD}	Power-up communication delay			250		ms

Specified by design. Not production tested.

Limited by I_{SRX} maximum recommend input current with some margin for the Integrated Sense Resistor tolerance. (2)

7.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)

		bq27425-G2	
	THERMAL METRIC ⁽¹⁾	YZF [DSBGA]	UNIT
		15 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	70	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	17	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	20	°C/W
ΨЈТ	Junction-to-top characterization parameter	1	°C/W
ΨЈВ	Junction-to-board characterization parameter	18	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953

7.5 Electrical Characteristics: Power-On Reset

 $T_A = -40$ °C to 85°C, typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going voltage on V _{CC} (Regulator output)		1.98	2.20	2.31	V
V_{HYS}	Power-on reset hysteresis		43	115	185	mV

7.6 2.5-V LDO Regulator

 $T_A = -40$ °C to 85°C, $C_{LDO25} = 1 \mu F$, $V_{REGIN} = 3.6 V$ (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	NOM	MAX	UNIT
		$2.7 \text{ V} \le \text{V}_{\text{REGIN}} \le 4.5 \text{ V}, \text{I}_{\text{OUT}} \le 5 \text{ mA}$	2.4	2.5	2.6	
V _{REG25}	Regulator output voltage	$2.45 \text{ V} \leq \text{V}_{\text{REGIN}} < 2.7 \text{ V} \text{ (low battery)}, \\ I_{\text{OUT}} \leq 3 \text{ mA}$	2.4			V
$V_{IH(CE)}$	CE High-level input voltage	VREGIN = 2.7 to 4.5 V	2.65			\/
$V_{IL(CE)}$	CE Low-level input voltage	VREGIN = 2.7 to 4.5 V			0.8	٧

7.7 Integrating ADC (Coulomb Counter) Characteristics

 $T_A = -40$ °C to 85°C; typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{SR}	Input voltage (1)(2)	$V_{SR} = V_{(SRX)} - V_{SS}$	-0.04		0.04	V
t _{SR_CONV}	Conversion time	Single conversion		1		S
	Resolution		14		15	bits
V _{OS(SR)}	Input offset			10		μV
INL	Integral nonlinearity error			±0.007	±0.034	% FSR
Z _{IN(SR)}	Effective input resistance ⁽¹⁾		2.5			МΩ
I _{lkg(SR)}	Input leakage current ⁽¹⁾	T _A = 25°C			0.3	μΑ

⁽¹⁾ Specified by design. Not tested in production.

Product Folder Links: bq27425-G2

⁽²⁾ Limited by I_{SRX} maximum recommend input current with some margin for the Integrated Sense Resistor tolerance.

7.8 Integrated Sense Resistor Characteristics

 $T_A = -40$ °C to 85 °C; typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SRX _{RES}	Resistance of Integrated Sense Resistor from SRX to V _{SS} ⁽¹⁾⁽²⁾	T _A = 25°C		10		$m\Omega$
		Long term RMS, average device utilization.			2000	mA
I _{SRX}	Recommended Sense Resistor input $current^{(1)(3)}$	Peak RMS current, 10% device utilization. (3)			2500	mA
		Peak pulsed current, 250 ms maximum, 1% device utilization. (3)			3500	mA

- (1) Specified by design. Not tested in production.
- (2) Firmware compensation applied for temperature coefficient of resistor.
- (3) Device utilization is the long term usage profile at a specific condition compared to the average condition.

7.9 ADC (Temperature and Cell Measurement) Characteristics

 $T_A = -40$ °C to 85°C; typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN(ADC)}	Input voltage		0.05		1	V
G _{TEMP}	Temperature sensor voltage gain			-2		mV/°C
t _{ADC_CONV}	Conversion time				125	ms
	Resolution		14		15	bits
V _{OS(ADC)}	Input offset			1		mV
7	Effective innut resistance (DAT)(1)	Not measuring cell voltage	8			ΜΩ
Z _{ADC}	Effective input resistance (BAT) ⁽¹⁾	Measuring cell voltage		100		kΩ
I _{lkg(ADC)}	Input leakage current ⁽¹⁾	T _A = 25°C			0.3	μΑ

⁽¹⁾ Specified by design. Not tested in production.

7.10 EEPROM Memory Characteristics

 $T_A = -40$ °C to 85°C; typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Array Size			256		bytes
Data retention ⁽¹⁾		10			years
Programming write cycles ⁽¹⁾		100K			cycles

(1) Specified by design. Not production tested

7.11 Timing Requirements: I²C-Compatible Interface Communication

 $T_A = -40$ °C to 85°C; typical values at $T_A = 25$ °C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

		MIN	NOM MAX	UNIT
t _r	SCL or SDA rise time		300	ns
t _f	SCL or SDA fall time		300	ns
t _{w(H)}	SCL pulse duration (high)	600		ns
t _{w(L)}	SCL pulse duration (low)	1.3		μS
t _{su(STA)}	Setup for repeated start	600		ns
$t_{d(STA)}$	Start to first falling edge of SCL	600		ns
$t_{su(DAT)}$	Data setup time	100		ns
t _{h(DAT)}	Data hold time	0		ns
t _{su(STOP)}	Setup time for stop	600		ns
t _(BUF)	Bus free time between stop and start	66		μS
f _{SCL}	Clock frequency ⁽¹⁾		400	kHz

(1) If the clock frequency (f_{SCL}) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at 400 kHz. (See ²C Interface and ²C Command Waiting Time)

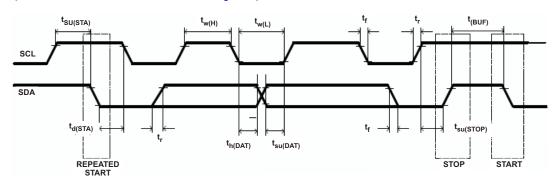
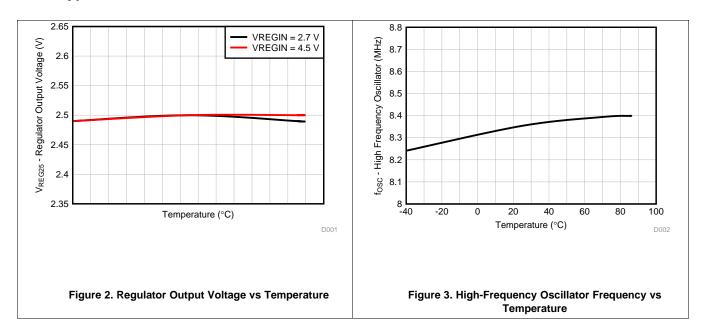
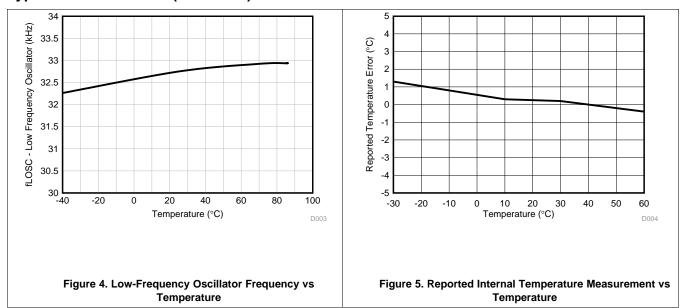



Figure 1. I²C-Compatible Interface Timing Diagrams


7.12 Typical Characteristics

Copyright © 2012–2015, Texas Instruments Incorporated

Typical Characteristics (continued)

8 Detailed Description

8.1 Overview

The bq27425 device accurately predicts the battery capacity and other operational characteristics of a single Libased rechargeable cell. The device can be interrogated by a system processor to provide cell information, such as state-of-charge (SOC).

Information is accessed through a series of commands, called *Standard Commands*. Further capabilities are provided by the additional *Extended Commands* set. Both sets of commands, indicated by the general format *Command()*, are used to read and write information contained within the control and status registers, as well as its data locations. Commands are sent from system to gauge using the I²C serial communications engine, and can be executed during application development, system manufacture, or end-equipment operation.

The key to the high-accuracy gas gauging prediction is Texas Instruments proprietary Impedance Track™ algorithm. This algorithm uses cell measurements, characteristics, and properties to create state-of-charge predictions that can achieve high accuracy across a wide variety of operating conditions and over the lifetime of the battery.

The bq27425 device measures charging and discharging of the battery by monitoring the voltage across a small-value integrated sense resistor (10 m Ω , typical) located between the system V_{SS} and the battery's PACK-terminal. When a cell is attached to the fuel gauge, cell impedance is computed, based on cell current, cell open-circuit voltage (OCV), and cell voltage under loading conditions.

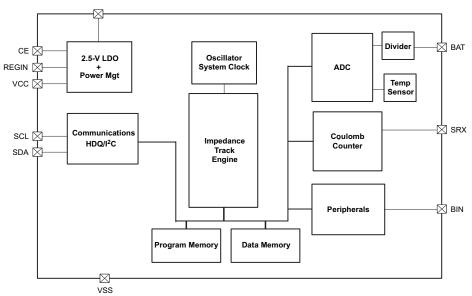
The device uses an integrated temperature sensor for estimating cell temperature. Alternatively, the host processor can provide temperature data for the fuel gauge.

To minimize power consumption, the fuel gauge has several power modes: INITIALIZATION, NORMAL, SLEEP, and HIBERNATE. The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events, though a system processor can initiate some of these modes directly. See *Operating Modes*.

NOTE

The following formatting conventions are used in this document:

Commands: italics with parentheses() and no breaking spaces, for example, Control()


Data Flash: italics, bold, and breaking spaces, for example, Design Capacity

Register bits and flags: *italics* with brackets [], for example, *[TDA]*Data Flash bits: *italics*, bold, and brackets [], for example, *[LED1]*Modes and states: ALL CAPITALS, for example, UNSEALED mode

Copyright © 2012–2015, Texas Instruments Incorporated

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Fuel Gauging

The bq27425 is an easy-to-configure fuel gauge that measures the cell voltage, temperature, and current to determine battery state-of-charge (SOC). The fuel gauge monitors the charging and discharging of the battery by sensing the voltage across an integrated small-value resistor (10 m Ω , typical) between the SRX and V_{SS} pins and in series with the cell. By integrating charge passing through the battery, the battery SOC is adjusted during battery charge or discharge.

The total battery capacity is found by comparing states of charge before and after applying the load with the amount of charge passed. When an application load is applied, the impedance of the cell is measured by comparing the OCV obtained from a predefined function for present SOC with the measured voltage under load. Measurements of OCV and charge integration determine chemical SOC and chemical capacity (Qmax). The initial Qmax values are taken from the **Design Capacity**. The fuel gauge acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along with SOC and the Qmax value, to determine FullChargeCapacity() and StateOfCharge(), specifically for the present load and temperature. FullChargeCapacity() is reported as capacity available from a fully charged battery under the present load and temperature until Voltage() reaches the **Terminate Voltage**. NominalAvailableCapacity() and FullAvailableCapacity() are the uncompensated (no or light load) versions of RemainingCapacity() and FullChargeCapacity(), respectively.

8.3.2 Fuel Gauging Configurations

The fuel gauge features easy-to-configure data NVM to speed-up fuel gauging design. Users are required to configure **Design Capacity**, **Termination Voltage**, and **Operation Configuration** (see **Operation Configuration** (Op Config) Register for details) to achieve optimal performance. The Impedance Track™ algorithm uses these parameters along with built-in parameters to achieve accurate battery fuel gauging.

Several built-in parameters are used in the Impedance Track™ algorithm to identify different modes of battery:

- Charging: Chg Current Threshold (default = DesignCapacity / 13.3)
- Discharging: Dsg Current Threshold (default = DesignCapacity / 16.7)
- Relax: Quit Current Threshold (default = DesignCapacity / 25.0)

To achieve accurate fuel gauging, the fuel gauge uses a Constant Power Model for fuel gauging. This model uses the average discharge power from the beginning of the discharge cycle until present time to compute load-compensated capacity such as *RemainingCapacity()* and *FullChargeCapacity()* in the Impedance Track™ algorithm.

Feature Description (continued)

8.3.2.1 SOC Smoothing Feature

Rapid changes in operating conditions, such as temperature or discharge current, can lead to sudden changes in the algorithm's immediate calculation of *RemainingCapacity()*, *FullChargeCapacity()*, and *StateOfCharge()*. SOC Smoothing provides filtered data to the host resulting in more gradual changes to SOC-related data when conditions vary and can provide a better end-user experience. The feature is enabled through *Op Config [SMOOTHEN]*.

8.3.3 GPOUT Pin

The GPOUT pin is a multiplexed pin and the polarity of the pin output can be selected through the **[GPIO_POL]** bit of the **Operation Configuration**. The function is defined by **Op Config [BATLOWEN]**. If set, the Battery Low Indicator (BAT_LOW) function for GPOUT pin is selected. If cleared, the SOC interrupt (SOC_INT) function is selected for GPOUT.

When the BAT_LOW function is activated, the signaling on the multiplexed pin follows the status of the [SOC1] bit in the Flags() register. The fuel gauge has two flags accessed by the Flags() function that warn when the battery SOC has fallen to critical levels. When StateOfCharge() falls below the first capacity threshold, specified in SOC1 Set Threshold, the [SOC1] (State of Charge Initial) flag is set. The flag is cleared once StateOfCharge() rises above SOC1 Set Threshold. The GPOUT pin automatically reflects the status of the [SOC1] flag when Op Config [BATLOWEN] = 0.

When StateOfCharge() falls below the second capacity threshold, SOCF Set Threshold, the [SOCF] (State of Charge Final) flag is set, serving as a final discharge warning. Similarly, when StateOfCharge() rises above SOCF Clear Threshold and the [SOCF] flag has already been set, the [SOCF] flag is cleared.

When the SOC_INT function is activated, the GPOUT pin generates 1-ms pulse width under various conditions as described in Table 1.

	ENABLE CONDITION	PULSE WIDTH	DESCRIPTION
Change in SOC	(SOCI Delta) ≠ 0	1 ms	During charge, when the SOC is greater than (>) the points, 100% − n × (SOCI Delta) and 100%; During discharge, when the SOC reaches (≤) the points 100% − n × (SOCI Delta) and 0%; where n is an integer starting from 0 to the number generating SOC no less than 0% Examples: For SOCI Delta = 1% (default), the SOC_INT intervals are 0%, 1%, 2%,, 99%, and 100%. For SOCI Delta = 10%, the SOC_INT intervals are 0%, 10%, 20%,, 90%, and 100%.
State Change	(SOCI Delta) ≠ 0	1 ms	Upon detection of entry to a charge or a discharge state. Relaxation is not included.
Battery Removal	[BIE] bit is set in Op Config	1 ms	When battery removal is detected by the BIN pin.

Table 1. SOC INT Function Definition

8.3.4 Battery Detection (BIN)

The function of *Op Config [BIE]* bit is described in the Table 2. When battery insertion is detected and INITIALIZATION mode is completed, the fuel gauge transitions to NORMAL mode to start Impedance Track™ fuel gauging. When battery insertion is not detected, the fuel gauge remains in INITIALIZATION mode.

Copyright © 2012–2015, Texas Instruments Incorporated

Table 2. Battery Detection

Op Config [BIE]	BATTERY INSERTION REQUIREMENT	BATTERY REMOVAL REQUIREMENT
1	(1) Host drives BIN pin from logic high to low to signal battery insertion. or (2) A weak pullup resistor can be used (between BIN and V _{CC} pins). When battery pack with a pulldown resistor is connected, it can generate a logic low to signal battery insertion.	(1) Host drives BIN pin from logic low to high to signal battery removal. or (2) When battery pack with a pulldown resistor is removed, the weak pullup resistor can generate a logic high to signal battery removal.
0	Host sends <i>BAT_INSERT</i> subcommand to signal battery insertion.	Host sends <i>BAT_REMOVE</i> subcommand to signal battery removal.

8.4 Device Functional Modes

8.4.1 Operating Modes

The fuel gauge has different operating modes: POR, INITIALIZATION, NORMAL, CONFIG UPDATE, SLEEP, and HIBERNATE. Upon power up from OFF or SHUTDOWN, a Power On Reset (POR) occurs and the fuel gauge begins INITIALIZATION. In NORMAL mode, the fuel gauge is fully powered and can execute any allowable task. Configuration data in RAM and NVM can be updated by the host using the CONFIG UPDATE mode. In SLEEP mode the fuel gauge turns off the high-frequency oscillator clock to enter a reduced-power state, periodically taking measurements and performing calculations. In HIBERNATE mode the fuel gauge is in a very-low-power state, but can be woken up by communication or certain IO activity.

In SHUTDOWN mode, the LDO is disabled so internal power and all volatile data is lost. Because no gauging occurs in SHUTDOWN mode, additional gauging error can be introduced if the system has significant battery charge or discharge activity before re-INITIALIZATION.

Device Functional Modes (continued)

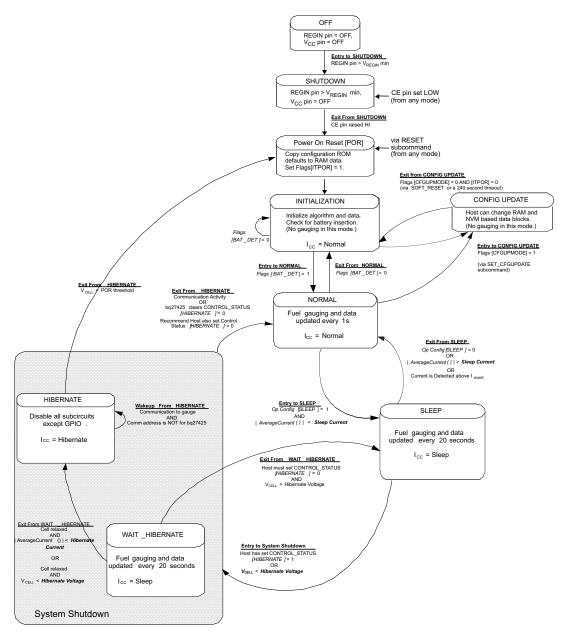


Figure 6. Power Mode Diagram

Device Functional Modes (continued)

8.4.1.1 POR and INITIALIZATION Modes

Upon Power On Reset (POR), the fuel gauge copies ROM-based configuration defaults to RAM and begins INITIALIZATION mode where essential data is initialized and will remain in INITIALIZATION mode as halted-CPU state when an adapter, or other power source is present to power the bq27425 (and system), yet no battery has been detected. The occurrence of POR or a *Control() RESET* subcommand will set the Flags() [ITPOR] status bit to indicate that RAM has returned to ROM default data. When battery insertion is detected, a series of initialization activities begin including an OCV measurement. In addition *CONTROL_STATUS* [QMAX_UP] and [RES_UP] bits are cleared to allow fast learning of Qmax and impedance.

Some commands, issued by a system processor, can be processed while the bq27425 is halted in this mode. The gauge will wake up to process the command, and then return to the halted state awaiting battery insertion. The current consumption of INITIALIZATION mode is similar to NORMAL mode.

8.4.1.2 CONFIG UPDATE Mode

If the application requires different configuration data for the bq27425. The host can update both NVM and RAM based parameters using the *Control()* SET_CFGUPDATE subcommand to enter CONFIG UPDATE mode as indicated by the *Flags()* [CFGUPMODE] status bit. In this mode, fuel gauging is suspended while the host uses the Extended Data Commands to modify the configuration data blocks. To resume fuel gauging, the host sends a *Control()* SOFT_RESETsubcommand to exit CONFIG UPDATE mode and clear both *Flags()* [ITPOR] and [CFGUPMODE] bits. After a time-out of approximately 240 seconds (4 minutes), the gauge will automatically exit CONFIG UPDATE mode if it has not received a *SOFT RESET* subcommand from the host.

8.4.1.3 NORMAL Mode

The fuel gauge is in NORMAL mode when not in any other power mode. During this mode, *AverageCurrent()*, *Voltage()* and *Temperature()* measurements are taken once per second, and the interface data set is updated. Decisions to change states are also made. This mode is exited by activating a different power mode.

Because the gauge consumes the most power in NORMAL mode, the Impedance Track™ algorithm minimizes the time the fuel gauge remains in this mode.

8.4.1.4 SLEEP Mode

SLEEP mode is entered automatically if the feature is enabled (*Operation Configuration [SLEEP]*) = 1) and *AverageCurrent()* is less than the programmable level *Sleep Current* (default = 10 mA). Once entry into SLEEP mode has been qualified, but before entering it, the bq27425 performs an ADC autocalibration to minimize offset.

During SLEEP mode, the bq27425 periodically takes data measurements and updates its data set. However, a majority of its time is spent in an idle condition.

The bq27425 exits SLEEP if any entry condition is broken, specifically when: *AverageCurrent()* rises above *Sleep Current* (default = 10 mA).

8.4.1.5 HIBERNATE Mode

HIBERNATE mode could be used when the system equipment needs to enter a very low-power state, and minimal gauge power consumption is required. This mode is ideal when a system equipment is set to its own HIBERNATE, SHUTDOWN, or OFF modes.

Before the fuel gauge can enter HIBERNATE mode, the system must set the [HIBERNATE] bit of the CONTROL_STATUS register. The gauge waits to enter HIBERNATE mode until it has taken a valid OCV measurement and the magnitude of the average cell current has fallen below **Hibernate Current**. The gauge can also enter HIBERNATE mode if the cell voltage falls below **Hibernate Voltage**. The gauge will remain in HIBERNATE mode until the system issues a direct I²C command to the gauge. I²C communication that is not directed to the gauge will only briefly wake it up and the gauge immediately returns to HIBERNATE mode.

It is the system's responsibility to wake the bq27425 after it has gone into HIBERNATE mode and to prevent a charger from charging the battery before the [OCVTAKEN] bit is set which signals an OCV reading is taken. After waking, the gauge can proceed with the initialization of the battery information.

Submit Documentation Feedback

Copyright © 2012–2015, Texas Instruments Incorporated

8.5 Programming

8.5.1 Standard Data Commands

The fuel gauge uses a series of 2-byte standard commands to enable system reading and writing of battery information. Each standard command has an associated command-code pair, as indicated in Table 3. Because each command consists of two bytes of data, two consecutive I²C transmissions must be executed both to initiate the command function, and to read or write the corresponding two bytes of data. Additional options for transferring data, such as spooling, are described in FC Interface. Standard commands are accessible in NORMAL operation. Read/Write permissions depend on the active access mode, SEALED or UNSEALED (for details on the SEALED and UNSEALED states, see Access Modes.)

NOTE

Data values read by the host may be invalid during initialization for a period of up to 3 seconds.

Table 3. Standard Commands

NAME		COMMAND CODE	UNIT	SEALED ACCESS
Control()	CNTL	0x00 and 0x01	NA	RW
Temperature()	TEMP	0x02 and 0x03	0.1°K	RW
Voltage()	VOLT	0x04 and 0x05	mV	R
Flags()	FLAGS	0x06 and 0x07	NA	R
NominalAvailableCapacity()		0x08 and 0x09	mAh	R
FullAvailableCapacity()		0x0A and 0x0B	mAh	R
RemainingCapacity()	RM	0x0C and 0x0D	mAh	R
FullChargeCapacity()	FCC	0x0E and 0x0F	mAh	R
AverageCurrent()		0x10 and 0x11	mA	R
Debug1()		0x16 and 0x17	num	R
AveragePower()		0x18 and 0x19	mW	R
StateOfCharge()	SOC	0x1C and 0x1D	%	R
IntTemperature()		0x1E and 0x1F	0.1°K	R
StateOfHealth()	SOH	0x20 and 0x21	%	R
Debug2()		0x2C and 0x2D	num	R
Debug3()		0x32 and 0x33	num	R
OperationConfiguration()	OpConfig	0x3A and 0x3B	NA	R
DesignCapacity()		0x3C and 0x3D	mAh	R

Submit Documentation Feedback

Product Folder Links: bq27425-G2

8.5.1.1 Control(): 0x00 and 0x01

Issuing a *Control()* command requires a subsequent 2-byte subcommand. These additional bytes specify the particular control function desired. The *Control()* command allows the system to control specific features of the bq27425 during normal operation and additional features when the bq27425 is in different access modes, as described in Table 4.

Table 4. Control() Subcommands

CNTL FUNCTION	CNTL DATA	SEALED ACCESS	DESCRIPTION
CONTROL_STATUS	0x0000	Yes	Reports the status of device.
DEVICE_TYPE	0x0001	Yes	Reports the device type (0x0425).
FW_VERSION	0x0002	Yes	Reports the firmware version of the device.
PREV_MACWRITE	0x0007	Yes	Returns previous MAC command code.
CHEM_ID	0x0008	Yes	Reports the chemical identifier of the Impedance Track™ configuration
BAT_INSERT	0x000c	Yes	Forces the Flags() [BAT_DET] bit set when the Op Config [BIE] bit is 0.
BAT_REMOVE	0x000d	Yes	Forces the Flags() [BAT_DET] bit clear when the Op Config [BIE] bit is 0.
SET_HIBERNATE	0x0011	Yes	Forces CONTROL_STATUS [HIBERNATE] to 1.
CLEAR_HIBERNATE	0x0012	Yes	Forces CONTROL_STATUS [HIBERNATE] to 0.
SET_CFGUPDATE	0x0013	No	Forces Flags() [CFGUPMODE] to 1 and gauge enters CONFIG UPDATE mode.
SEALED	0x0020	No	Places the bq27425 in SEALED access mode.
RESET	0x0041	No	Performs a full device reset.
SOFT_RESET	0x0042	No	Gauge exits CONFIG UPDATE mode.

8.5.1.1.1 CONTROL_STATUS: 0x0000

Instructs the fuel gauge to return status information to Control() addresses 0x00 and 0x01. The status word includes the following information.

Table 5. CONTROL STATUS Bit Definitions

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
High Byte	RSVD	RSVD	SS	CALMODE	CCA	BCA	QMAX_UP	RES_UP
Low Byte	RSVD	HIBERNATE	RSVD	SLEEP	LDMD	RUP_DIS	VOK	RSVD

High Byte

RSVD = Reserved.

SS = Status bit indicating the bq27425 is in the SEALED state. Active when set.

CALMODE = Status bit indicating the bq27425 is in calibration mode. Active when set.

CCA = Status bit indicating the Coulomb Counter Auto-Calibration routine is active. The CCA routine will take place approximately 3 minutes and 45 seconds after the initialization as well as periodically as conditions permit. Active when set.

BCA = Status bit indicating the board calibration routine is active. Active when set.

QMAX_UP = Status bit indicating Qmax has Updated. True when set. This bit is cleared after power-on reset or when Flags()

[BAT_DET] bit is set. When this bit is cleared, it enables fast learning of battery Qmax.

RES_UP = Status bit indicating that resistance has been updated. True when set. This bit is cleared after power on reset or when Flags() [BAT_DET] bit is set. Also this bit can only be set after Qmax is updated. ([QMAX_UP] is set). When this bit is cleared, it enables fast learning of battery impedance.

Low Byte

HIBERNATE = Status bit indicating a request for entry into HIBERNATE from SLEEP mode has been issued. True when set. Default is 0.

SLEEP = Status bit indicating the bq27425 is in SLEEP mode. True when set.

LDMD = Status bit indicating the algorithm is using constant-power model. True when set. Default is 1.

Note: The bq27425 always uses constant-power model.

RUP_DIS = Status bit indicating the bq27425 Ra table updates are disabled. Updates are disabled when set.

VOK = Status bit indicating cell voltages are OK for Qmax updates. True when set.

8.5.1.1.2 DEVICE_TYPE: 0x0001

Instructs the fuel gauge to return the device type to addresses 0x00 and 0x01. The value returned is 0x0425.

8.5.1.1.3 FW_VERSION: 0x0002

Instructs the fuel gauge to return the firmware version to addresses 0x00 and 0x01. See for the expected data value.

8.5.1.1.4 PREV_MACWRITE: 0x0007

Instructs the fuel gauge to return the previous command written to addresses 0x00 and 0x01. The value returned is limited to less than 0x0015.

8.5.1.1.5 CHEM_ID: 0x0008

Instructs the fuel gauge to return the chemical identifier for the Impedance Track™ configuration to addresses 0x00 and 0x01. See for the expected data value.

8.5.1.1.6 BAT_INSERT: 0X000C

This subcommand forces the Flags() [BAT_DET] bit to set when the battery insertion detection is disabled through **Op Config [BIE]** = 0. In this case, the gauge does not detect battery insertion from the BIN pin logic state, but relies on the BAT_INSERT host subcommand to indicate battery presence in the system. This subcommand also starts Impedance TrackTM gauging.

Product Folder Links: bq27425-G2

8.5.1.1.7 BAT_REMOVE: 0X000D

This subcommand forces the *Flags()* [*BAT_DET*] bit to clear when the battery insertion detection is disabled through *Op Config [BIE]* = 0. In this case, the gauge does not detect battery removal from the BIN pin logic state, but relies on the *BAT REMOVE* host subcommand to indicate battery removal from the system.

8.5.1.1.8 SET HIBERNATE: 0x0011

Instructs the fuel gauge to force the CONTROL_STATUS [HIBERNATE] bit to 1. If the necessary conditions are met, this enables the gauge to enter the HIBERNATE power mode after the transition to SLEEP power state is detected. The [HIBERNATE] bit is automatically cleared upon exiting from HIBERNATE mode.

8.5.1.1.9 CLEAR HIBERNATE: 0x0012

Instructs the fuel gauge to force the *CONTROL_STATUS* [HIBERNATE] bit to 0. This prevents the gauge from entering the HIBERNATE power mode after the transition to SLEEP power state is detected. It can also be used to force the gauge out of HIBERNATE mode.

8.5.1.1.10 SET_CFGUPDATE: 0x0013

Instructs the fuel gauge to set the Flags() [CFGUPMODE] bit to 1 and enter CONFIG UPDATE mode. This command is only available when the fuel gauge is UNSEALED.

NOTE

A SOFT_RESET subcommand is typically used to exit CONFIG UPDATE mode to resume normal gauging.

8.5.1.1.11 SEALED: 0x0020

Instructs the fuel gauge to transition from UNSEALED state to SEALED state. The fuel gauge should always be set to SEALED state for use in end equipment.

8.5.1.1.12 RESET: 0x0041

This command instructs the fuel gauge to perform a full device reset and reinitialize RAM data to the default values from ROM. The gauge sets the *Flags()* [ITPOR] bit and enters the INITIALIZE mode. See Figure 6. This command is only available when the fuel gauge is UNSEALED.

8.5.1.1.13 SOFT_RESET: 0x0042

This command instructs the fuel gauge to perform a partial (soft) reset from any mode with an OCV measurement. The *Flags()* [ITPOR, CFGUPMODE] bits are cleared and a resimulation occurs to update *StateOfCharge()*. See Figure 6. This command is only available when the fuel gauge is UNSEALED.

8.5.1.2 Temperature(): 0x02 and 0x03

This read-/write-word function returns an unsigned integer value of the temperature in units of 0.1°K measured by the fuel gauge. If *Op Config [TEMPS]* bit = 0 (default), a read command will return the internal temperature sensor value and write command will be ignored. If *Op Config [TEMPS]* bit = 1, a write command sets the temperature to be used for gauging calculations while a read command returns to temperature previously written.

8.5.1.3 Voltage(): 0x04 and 0x05

This read-only function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of 0 to 6000 mV.

8.5.1.4 Flags(): 0x06 and 0x07

This read-word function returns the contents of the gas gauge status register, depicting the current operating status.

Table 6. Flags Bit Definitions

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
High Byte	ОТ	UT	RSVD	RSVD	RSVD	EEFAIL	FC	CHG
Low Byte	OCVTAKEN	RSVD	ITPOR	CFGUPMODE	BAT_DET	SOC1	SOCF	DSG

High Byte

- OT = Over-Temperature condition is detected. [OT] is set when Temperature() ≥ Over Temp (default = 55°C). [OT] is cleared when Temperature() < Over Temp Temp Hys.
- UT = Under-Temperature condition is detected. [UT] is set when Temperature() ≤ **Under Temp** (default = 0°C). [UT] is cleared when Temperature() > **Under Temp + Temp Hys**.
- RSVD = Bits 5:3 are reserved.
- EEFAIL = EEPROM Write Fail. True when set. This bit is set after a single EEPROM write failure. All subsequent EEPROM writes are disabled. A power-on reset or *RESET* subcommand is required to clear the bit to re-enable EEPROM writes.
 - FC = Full-charge is detected. If the *FC Set%* (default =100%) is a positive threshold, [FC] is set when SOC ≥ *FC Set* % and is cleared when SOC ≤ *FC Clear* % (default = 98%). Alternatively, if *FC Set*% = −1, [FC] is set when the fuel gauge has detected charge termination.
 - CHG = Fast charging allowed. If the **TCA Set%** (Terminate Charge Alarm Set %) is a positive threshold (default = 99%), [CHG] is cleared when SOC ≥ **TCA Set** % and is set when SOC ≤ **TCA Clear** % (default = 95%). Alternatively, if **TCA Set**% = −1, the TCA thresholds are disabled and the [CHG] bit is cleared when the fuel gauge has detected a taper condition.

Low Byte

- OCVTAKEN = Cleared on entry to relax mode and set to 1 when OCV measurement is performed in relax
 - RSVD = Reserved
 - ITPOR = Indicates a power-on reset or *RESET* subcommand has occurred. True when set. This bit is cleared after the SOFT_RESET subcommand is received.
- CFGUPMODE = Fuel gauge is in CONFIG UPDATE mode. True when set. Default is 0. See CONFIG UPDATE Mode for details.
 - BAT_DET = Battery insertion detected. True when set. When **Op Config [BIE]** is set, [BAT_DET] is set by detecting a logic-high-to-low transition at BIN pin. When **Op Config [BIE]** is low, [BAT_DET] is set when host issues BAT_INSERT subcommand and is clear when host issues BAT_REMOVE subcommand.
 - SOC1 = If set, StateOfCharge() ≤ **SOC1 Set Threshold**. The [SOC1] bit will remain set until StateOfCharge() ≥ **SOC1 Clear Threshold**.
 - SOCF = If set, StateOfCharge() ≤ SOCF Set Threshold. The [SOCF] bit will remain set until StateOfCharge() ≥ SOCF Clear Threshold.
 - DSG = Discharging detected. True when set.

8.5.1.5 Nominal Available Capacity(): 0x08 and 0x09

This read-only command pair returns the uncompensated (less than C/20 load) battery capacity remaining. Units are mAh.

8.5.1.6 FullAvailableCapacity(): 0x0A and 0x0B

This read-only command pair returns the uncompensated (less than C/20 load) capacity of the battery when fully charged. Units are mAh. *FullAvailableCapacity()* is updated at regular intervals, as specified by the IT algorithm.

8.5.1.7 RemainingCapacity(): 0x0C and 0x0D

This read-only command pair returns the compensated battery capacity remaining. Units are mAh.

8.5.1.8 FullChargeCapacity(): 0x0E and 0x0F

This read-only command pair returns the compensated capacity of the battery when fully charged. Units are mAh. *FullChargeCapacity()* is updated at regular intervals, as specified by the IT algorithm.

8.5.1.9 AverageCurrent(): 0x10 and 0x11

This read-only command pair returns a signed integer value that is the average current flow through the sense resistor. In NORMAL mode, it is updated once per second and is calculated by dividing the 1-second change in coulomb counter data by 1 second. Large current spikes of short duration will be averaged out in this measurement. Units are mA.

8.5.1.10 AveragePower(): 0x18 and 0x19

This read-only function returns an signed integer value of the average power during battery charging and discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.

8.5.1.11 StateOfCharge(): 0x1C and 0x1D

This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of *FullChargeCapacity()*, with a range of 0 to 100%.

8.5.1.12 IntTemperature(): 0x1E and 0x1F

This read-only function returns an unsigned integer value of the internal temperature sensor in units of 0.1°K measured by the fuel gauge. If *Op Config [TEMPS]* = 0, this command will return the same value as *Temperature()*.

8.5.1.13 StateOfHealth(): 0x20 and 0x21

0x20 SOH percentage: this read-only function returns an unsigned integer value, expressed as a percentage of the ratio of predicted FCC(25°C, **SOH LoadI**) over the DesignCapacity(). The FCC(25°C, **SOH LoadI**) is the calculated full charge capacity at 25°C and the **SOH LoadI** which is programmed in factory (default = -400 mA). The range of the returned SOH percentage is 0x00 to 0x64, indicating 0 to 100% correspondingly.

0x21 SOH Status: this read-only function returns an unsigned integer value, indicating the status of the SOH percentage:

- 0x00: SOH not valid (initialization)
- 0x01: Instant SOH value ready
- 0x02: Initial SOH value ready
 - Calculation based on default Qmax
 - May not reflect SOH for currently inserted pack
- 0x03: SOH value ready
 - Calculation based on learned Qmax
 - Most accurate SOH for currently inserted pack following a Qmax update
- 0x04 through 0xFF: Reserved

8.5.1.14 OperationConfiguration(): 0x3A and 0x3B

This read-only function returns the contents of the NVM *Operation Configuration* (*Op Config*) register and is most useful for system level debug to quickly determine device configuration.

8.5.1.15 DesignCapacity(): 0x3C and 0x3D

This read-only function returns the value stored in **Design Capacity** and is expressed in mAh. This is intended to be the theoretical or nominal capacity of a new pack and is used as an input for the algorithm to scale the normalized resistance tables and for the calculation of **StateOfHealth()**.

8.5.1.16 DebugX():

Several read-only functions such as *Debug1()*, *Debug2()*, *Debug3()* provide information useful for debug purposes. For factory use only.

8.5.2 Extended Data Commands

Extended commands offer additional functionality beyond the standard set of commands. They are used in the same manner; however, unlike standard commands, extended commands are not limited to 2-byte words. The number of command bytes for a given extended command ranges in size from single to multiple bytes, as specified in Table 7.

UNSEALED SEALED COMMAND CODE NAME UNIT ACCESS(1) (2) ACCESS(1) (2) DataClass() (2) 0x3E NA NA RW DataBlock() (2) 0x3F RW RW NA BlockData() 0x40 through 0x5F RW NA R BlockDataCheckSum() 0x60 RW RW NA RW BlockDataControl() 0x61 NA NA Reserved 0x62 through 0x7F NA R R

Table 7. Extended Commands

8.5.2.1 OperationConfiguration(): 0x3A and 0x3B

SEALED and UNSEALED Access: This command returns the *Operation Configuration* register setting.

8.5.2.2 DesignCapacity(): 0x3C and 0x3D

SEALED and UNSEALED Access: This command returns the value is stored in **Design Capacity** and is expressed in mAh. This is intended to be the theoretical or nominal capacity of a new pack and is used as an input for the algorithm to scale the normalized resistance tables.

8.5.2.3 DataClass(): 0x3E

UNSEALED Access: This command sets the data class to be accessed. The class to be accessed should be entered in hexadecimal.

SEALED Access: This command is not available in SEALED mode.

8.5.2.4 DataBlock(): 0x3F

UNSEALED Access: This command sets the data block to be accessed. When 0x00 is written to *BlockDataControl()*, *DataBlock()* holds the block number of the data to be read or written. Example: writing a 0x00 to *DataBlock()* specifies access to the first 32-byte block and a 0x01 specifies access to the second 32-byte block, and so on.

SEALED Access: Issuing a 0x01 instructs the *BlockData()* command to transfer the *Manufacturer Info* block.

Copyright © 2012–2015, Texas Instruments Incorporated

⁽¹⁾ SEALED and UNSEALED states are entered through commands to Control() 0x00 and 0x01.

⁽²⁾ In SEALED mode, data cannot be accessed through commands 0x3E and 0x3F.

8.5.2.5 BlockData(): 0x40 through 0x5F

UNSEALED Access: This data block is the remainder of the 32-byte data block when accessing general block data.

SEALED Access: This data block is used to access the *Manufacturer Info* block. No other NVM or RAM data blocks are accessible in SEALED mode.

8.5.2.6 BlockDataChecksum(): 0x60

UNSEALED Access: This byte contains the checksum on the 32 bytes of block data read or written. The least-significant byte of the sum of the data bytes written must be complemented ([255 - x], for x being the least-significant byte) before being written to 0x60. For a block write, the correct complemented checksum must be written before the BlockData() will be transferred to NVM or RAM.

SEALED Access: This byte contains the checksum for the 8 bytes of the *Manufacturer Info* block.

8.5.2.7 BlockDataControl(): 0x61

UNSEALED Access: This command is controls the data access mode. Writing 0x00 to this command enables *BlockData()* to access NVM and RAM.

SEALED Access: This command is not available in SEALED mode.

8.5.2.8 Reserved: 0x62 through 0x7F

8.5.3 Block Data Interface

8.5.3.1 Accessing Block Data

The fuel gauge contains both re-writable EEPROM non-volatile memory (NVM) and ROM-based data blocks. Upon device RESET, the ROM-based data blocks are copied to associated volatile RAM space to initialize default configuration and data constants to be used by the fuel gauging algorithm. Re-writable NVM-based data blocks contain information expected to change such as: calibration, customer data, and Impedance Track fuel gauging data tables. If the application requires a change to the NVM or RAM configuration data, the host can update the data blocks in CONFIG UPDATE mode. RAM-based data changes are temporary and must be applied by the host using CONFIG UPDATE mode after each device RESET; while changes to the NVM data blocks are permanent. The data blocks can be accessed in several different ways, depending on the access mode and what data is being accessed.

Commonly accessed data block locations, frequently read by a system, are conveniently accessed through specific instructions, already described in *Extended Data Commands*. These commands are available when the fuel gauge is either in UNSEALED or SEALED mode.

Most data block locations, however, are only accessible in UNSEALED mode by use of the evaluation software or by data block transfers. These locations should be optimized and/or fixed during the development and manufacture processes. Once established, the values generally remain unchanged during end-equipment operation.

To access data locations individually, the block containing the desired data NVM locations must be transferred to the command register locations, where they can be read to the system or changed directly. This is accomplished by sending the set-up command BlockDataControl() (0x61) with data 0x00. Up to 32 bytes of data can be read directly from the BlockData() (0x40 through 0x5F), externally altered, then rewritten to the BlockData() command space. Alternatively, specific locations can be read, altered, and rewritten if their corresponding offsets are used to index into the BlockData() command space. Finally, the data residing in the command space is transferred to the associated data block, once the correct checksum for the whole block is written to BlockDataChecksum() (0x60).

Occasionally, a data CLASS will be larger than the 32-byte block size. In this case, the DataBlock() command designates in which 32-byte block the desired locations reside. The correct command address is then given by $0x40 + offset \ modulo \ 32$. For example, to access $Sleep \ Current$ in the $Gas \ Gauging \ class$, the DataClass() is issued 82 (0x52) to set the class. Because the offset is 34, it resides in the second 32-byte block. Hence, DataBlock() is issued 0x01 to set the block offset, and the offset used to index into the BlockData() memory area is $0x40 + 34 \ modulo \ 32 = 0x40 + 2 = 0x40 + 2 = 0x42$.

Reading and writing subclass data are block operations up to 32 bytes in length. If, during a write, the data length exceeds the maximum block size, then the data is ignored.

None of the data written to memory are bounded by the fuel gauge, the values are not rejected by the fuel gauge. Writing an incorrect value may result in hardware failure due to firmware program interpretation of the invalid data. The data written to NVM blocks is not persistent, so a power-on reset does resolve the fault.

8.5.4 Access Modes

The fuel gauge supports SEALED and UNSEALED access modes to control data NVM access permissions according to Table 8.

Table 8. Data NVM Access

SECURITY MODE	DATA NVM	MANUFACTURER INFO
UNSEALED	RW	RW
SEALED	None	R

8.5.4.1 Sealing and Unsealing Data Blocks

The fuel gauge implements a key-access security scheme to transition from a SEALED state to the UNSEALED state. Devices are shipped from the factory in the UNSEALED state and should be SEALED before use in endequipment. The **Sealed to Unseal** key can only be updated in the UNSEALED state.

To SEAL from UNSEALED: The host sends the *SEALED* subcommand 0x0020 to the *Control()* register. After receiving the *SEALED* subcommand, the *CONTROL_STATUS [SS]* bit is set within 2 seconds.

To UNSEAL from SEALED: Host sends the keys to the *Control()* register. The keys must be sent consecutively, with no other data written to *Control()*.

NOTE

To avoid conflict with normal subcommands, the keys must be different from the codes presented in the CNTL DATA column of the Table 4 table.

The first word is Key 0 and the second word is Key 1. The order of the keys sent are Key 1 followed by Key 0. The order of the bytes for each key entered through the *Control()* command is the reverse of what is read from the part. For example, if the 4-byte **Sealed to Unseal** key is 0x56781234, key 1 is 0x1234 and key 0 is 0x5678. So, the host should write 0x3412 followed by 0x7856 to unseal the part. After receiving the correct key sequence the *CONTROL_STATUS [SS]* bit is cleared.

8.5.5 Data Block Summary

Table 9. Data Block Summary

	SUBCLASS	011001.400			DATA		VALUE		UNIT
CLASS	ID	SUBCLASS	OFFSET	NAME	TYPE	MIN	MAX	DEFAULT (-G2B)	(EVSW Unit)*
			0	Overtemperature	12	-1200	1200	550	0.1°C (°C)
Configuration RAM]	2	Safety [RAM]	2	Undertemperature	12	-1200	1200	0	0.1°C (°C)
			4	Temperature Hysteresis	U1	0	255	50	0.1°C (°C)
			3	TCA Set %	I1	-1%	100%	99%	
	36	Charge Termination	4	TCA Clear %	11	-1%	100%	95%	
	30	[RAM]	5	FC Set %	I1	-1%	100%	100%	
			6	FC Clear %	I1	-1%	100%	98%	
			0	SOC1 Set Threshold	U1	0%	255%	10%	
	49	Discharge [RAM]	1	SOC1 Clear Threshold	U1	0%	255%	15%	
		3,1	2	SOCF Set Threshold	U1	0%	255%	2%	
			3	SOCF Clear Threshold	U1	0%	255%	5%	
	68	Power [RAM]	9	Hibernate I	12	0	700	3	mA
			11	Hibernate V	12	2400	3000	2550	mV
System Data NVM]	58	Manufacturer Info [NVM]	0 through 7	Block A 0 through 7	H1	0x00	0xFF	0x00	
Gas Gauging	80	IT Cfg [RAM]	55	Max Delta Voltage	I2	-32000	32000	200	mV
NVM/RAM]		- 31 1	57	TermV Valid t	U1	0	255	2	S
		Current Thresholds	0	Dsg Current Threshold	12	0	2000	167	0.1 h
	81	[RAM]	2	Chg Current Threshold	12	0	2000	133	0.1 h
			4	Quit Current	12	0	1000	250	0.1 h
	82	State [NVM]	2	Update Status	H1	0x00	0xFF	0x04 (0x34)	
			3	Reserve Cap-mAh	12	0	9000	0	mAh
			5	Op Config	H2	0x0000	0xFFFF	0x89F8	
			12	Design Capacity	12	0	32767	1340 (1000)	mAh
			14	Design Energy	12	0	32767	4960 (3800)	mWh
			18	Terminate Voltage	12	2800	3700	3200	mV
			22	SOHLoadl	12	-32767	0	50	mA
			29	SOCI Delta	U1	0%	100%	1%	
			30	Taper Current	12	0	1000	75	mA
			32	Taper Voltage	12	0	5000	4100 (4200)	mV
			34	Sleep Current	I2	0	100	10	mA
			36	V at Charge Termination	12	0	5000	4190 (4290)	mV
			38	Transient Factor Charge	U1	0	255	179	num
			39	Transient Factor Discharge	U1	0	255	179	num
			40	RDL Tempco	F4	1.0E-20	4.0E+1	0.000393	num
Ra Tables	88	R_a NVM [NVM]	0 through 28	Cell0 R_a 0 through 14	12	183	183	[Table]	2 ⁻¹⁰ Ω (num)
NVM/RAM]	89	R_a RAM [RAM]	0 through 28	Cell0 R_a 0 through 14	12	183	183	[Table]	2 ⁻¹⁰ Ω (num)
			0	CC Offset	12	-32768	32767	-1312	mV
			2	Board Offset	11	-128	127	0	uV
Calibration NVM]	104	Data [NVM]	3	Int Temp Offset	I1	-128	127	0	°0.1°C (°C)
			4	Pack V Offset	I1	-128	127	0	mV
	1								num
	105	CC Cal [NVM]	0	CC Gain	F4	1.0E-1	4.0E+1	0.47095	$(2^{-10}\Omega)$
			4	CC Cal Temp	12	0	32767	2982	0.1K

Submit Documentation Feedback

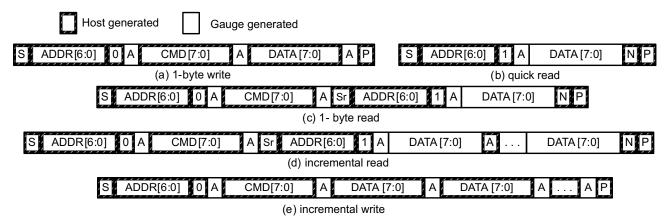
Copyright © 2012–2015, Texas Instruments Incorporated

Table 9. Data Block Summary (continued)

	SUBCLASS	SUBCLASS			DATA		UNIT		
CLASS	ID		OFFSET	NAME	TYPE	MIN	MAX	DEFAULT (-G2B)	(EVSW Unit)*
Security	112	Codes [RAM]	0	Sealed to Unsealed	H4	0x0000 0000	0xFFFF FFFF	0x3672 0414	

8.5.6 Detecting Charge Termination

The fuel gauge detects charge termination when:


- AverageCurrent() < Taper Current (default = 75 mA) for 80 seconds
- During the same 80 seconds, the accumulated change in capacity > 0.25 mAh / 40 seconds
- Voltage() > (Charging Voltage 100 mV)

When this occurs, the *Flags()[CHG]* bit is cleared. Also, if the *[RMFCC]* bit of *Operation Configuration* is set, then *RemainingCapacity()* is set equal to *FullChargeCapacity()*.

8.5.7 Communications

8.5.7.1 PC Interface

The fuel gauge supports the standard I²C read, incremental read, quick read, one-byte write, and incremental write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as 1010101. The first 8 bits of the I²C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.

(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge, and P = Stop).

Figure 7. I²C Interface Read/Write

The quick read returns data at the address indicated by the address pointer. The address pointer, a register internal to the I^2C communication engine, increments whenever data is acknowledged by the fuel gauge or the I^2C master. "Quick writes" function in the same manner and are a convenient means of sending multiple bytes to consecutive command locations (such as two-byte commands that require two bytes of data).

The following command sequences are not supported:

Attempt to write a read-only address (NACK after data sent by master):

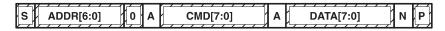
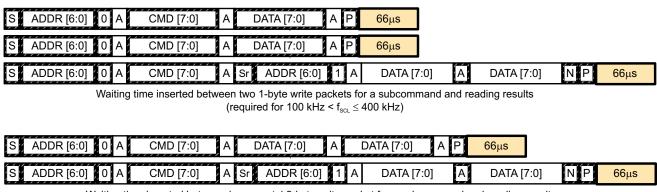


Figure 8. Attempt to Write a Read-Only Address

Attempt to read an address above 0x6B (NACK command):


Figure 9. Attempt to Read an Address Above 0x6B

8.5.7.2 PC Time Out

The I²C engine releases both SDA and SCL if the I²C bus is held low for 2 seconds. If the fuel gauge is holding the lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of the lines low, the I²C engine enters the low-power sleep mode.

8.5.7.3 PC Command Waiting Time

To ensure proper operation at 400 kHz, a $t_{(BUF)} \ge 66~\mu s$ bus-free waiting time must be inserted between all packets addressed to the fuel gauge. In addition, if the SCL clock frequency (f_{SCL}) is > 100 kHz, use individual 1-byte write commands for proper data flow control. The following diagram shows the standard waiting time required between issuing the control subcommand the reading the status result. For read-write standard command, a minimum of 2 seconds is required to get the result updated. For read-only standard commands, there is no waiting time required, but the host must not issue any standard command more than two times per second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.

Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results (acceptable for $f_{\text{SCL}} \le 100 \text{ kHz}$)

Waiting time inserted after incremental read

Figure 10. I²C Command Waiting Time

8.5.7.4 PC Clock Stretching

A clock stretch can occur during all modes of fuel gauge operation. In SLEEP and HIBERNATE modes, a short clock stretch occurs on all I²C traffic as the device must wake up to process the packet. In the other modes (INITIALIZATION, NORMAL) clock stretching only occurs for packets addressed for the fuel gauge. The majority of clock stretch periods are small as the I²C interface performs normal data flow control. However, less frequent yet more significant clock stretch periods may occur as blocks of NVM are updated. The following table summarizes the approximate clock stretch duration for various fuel gauge operating conditions.

Table 10. I²C Clock Stretching

GAUGING MODE	OPERATING CONDITION / COMMENT	APPROXIMATE DURATION
SLEEP HIBERNATE	Clock stretch occurs at the beginning of all traffic as the device wakes up.	≤ 4 ms
	Clock stretch occurs within the packet for flow control (after a start bit, ACK or first data bit).	≤ 4 ms
	Normal Ra table NVM updates.	24 ms
INITIALIZATION NORMAL	NVM block writes.	72 ms
TOTAL TE	Restored NVM block write after loss of power.	116 ms
	End of discharge Ra table NVM update.	144 ms

8.6 Register Maps

8.6.1 Operation Configuration (Op Config) Register

Gauge operation is configured through the *Operation Configuration* (Op Config) data NVM register, as indicated in Table 11. This register is programmed and read through the methods described in *Fuel Gauging Configurations*.

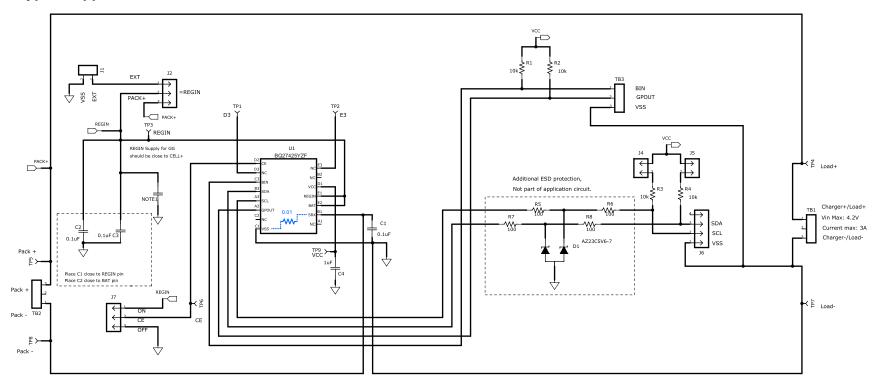
Table 11. Op Config Register Definition

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0				
High Byte	SMOOTHEN	RSVD0	BIE	BI_PU_EN	RSVD1	RSVD0	RSVD0	RSVD1				
Default =	1 0		0	0	1	0	0	1				
	0x89											
Low Byte	RSVD1	RSVD1	SLEEP	RMFCC	RSVD1	BATLOWEN	GPIOPOL	TEMPS				
Default =	1	1	1	1 1		0	0	0				
	0xF8											

- SMOOTHEN = Enables the SOC smoothing feature. (See SOC Smoothing Feature.) True when set.
 - BIE = Battery Insertion Enable. If set, the battery insertion is detection through BIN pin input. If cleared, the detection relies on the host to issue BAT_INSERT subcommand to indicate battery presence in the system.
- BI_PU_EN = Enables internal weak pullup on BIN pin. True when set. If false, an external pullup resistor is expected.
 - SLEEP = The fuel gauge can enter sleep, if operating conditions allow. True when set.
- RMFCC = RM is updated with the value from FCC on valid charge termination. True when set.
- BATLOWEN = If set, the BAT_LOW function for GPOUT pin is selected. If cleared, the SOC_INT function is selected for GPOUT.
- GPIO_POL = GPOUT pin is active-HIGH if set or active-LOW if cleared.
 - TEMPS = Selects the temperature source. Enables the host to write *Temperature()* if set. If cleared, the internal temperature sensor is used for *Temperature()*.
 - RSVD0 = Reserved. Default is 0. (Set to 0 for proper operation)
 - RSVD1 = Reserved. Default is 1. (Set to 1 for proper operation)

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The Texas Instruments bq27425-G2 fuel gauge is a microcontroller peripheral that provides system-side fuel gauging for single-cell Li-lon batteries. The device requires minimal user configuration and system microcontroller firmware. Battery fuel gauging with the bq27425-G2 fuel gauge requires connections only to PACK+ (P+) and PACK- for a removable battery pack or embedded battery circuit.

9.2 Typical Application

Use ground plane for SRX and VSS connection

NOTE: This is a placeholder for a TVS protection device with an 0402 package.

Copyright © 2016, Texas Instruments Incorporated

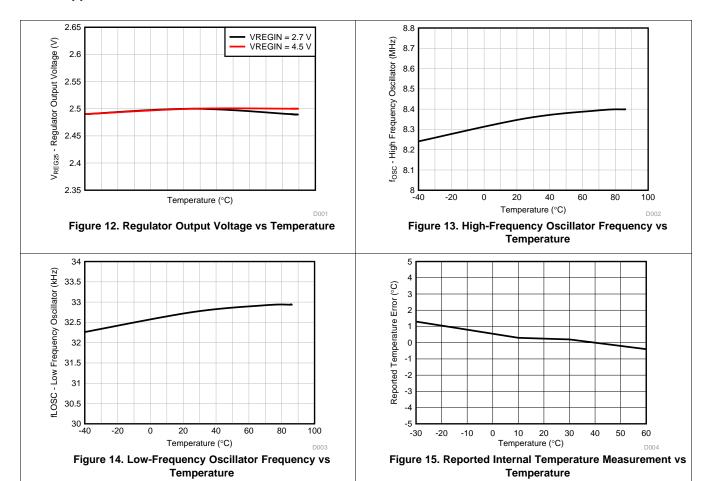
Figure 11. Reference (EVM) Schematic

9.2.1 Design Requirements

As shipped from the TI factory, many bq27425-G2 parameters in NVM are left in the unprogrammed state (zero) while some parameters directly associated with the CHEMID are preprogrammed. This partially programmed configuration facilitates customization for each end application. Upon device reset, the contents of NVM are copied to associated volatile RAM-based Data Memory blocks. For proper operation, all parameters in RAM-based Data Memory require initialization — either by updating Data Memory parameters in a lab or evaluation situation or by programming the NVM for customer production.

Table 9 shows the design parameter values that are present in the device.

9.2.2 Detailed Design Procedure


9.2.2.1 BAT/REGIN Voltage Sense Input

A ceramic capacitor at the input to the BAT/REGIN pin is used to bypass AC voltage ripple to ground, greatly reducing its influence on battery voltage measurements. It proves most effective in applications with load profiles that exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to reduce noise on this sensitive high-impedance measurement node.

9.2.2.2 Integrated LDO Capacitor

The fuel gauge has an integrated LDO with an output on the VCC pin of approximately 2.5 V. A capacitor of value at least 1 μ F should be connected between the VCC pin and VSS. The capacitor should be placed close to the gauge IC and have short traces to both the VCC pin and VSS.

9.2.3 Application Curves

10 Power Supply Recommendations

10.1 Power Supply Decoupling

The battery connection on the BAT pin is used as an input for voltage measurement of the battery. A capacitor of value of at least 0.1 μ F should be connected between BAT and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the BAT pin and V_{SS}.

The battery connection on the REGIN pin is used to supply power to the gauge. A capacitor of value of at least 0.1 μ F should be connected between REGIN and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the REGIN pin and V_{SS}.

The fuel gauge has an integrated LDO with an output on the VCC pin of approximately 2.5 V. A capacitor of value at least 1 μ F should be connected between the VCC pin and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}.

11 Layout

11.1 Layout Guidelines

A capacitor of at least 1 μ F is connected between the VCC pin and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the VCC pin and V_{SS}.

- A capacitor at least 0.1 μF must be connected between the BAT pin and V_{SS} if the connection between the battery pack and the gauge BAT pin has the potential to pick up noise. The capacitor should be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}.
- If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power operation, TI recommends using external 1-MΩ pulldown resistors to V_{SS} to avoid floating inputs to the I²C engine.
- The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus capacitance.
- If the GPOUT pin is not used by the host, the pin should still be pulled up to V_{DD} with a 4.7-kΩ or 10-kΩ resistor.
- The BIN pin should not be shorted directly to VCC or V_{SS}.

Copyright © 2012–2015, Texas Instruments Incorporated

11.2 Layout Example

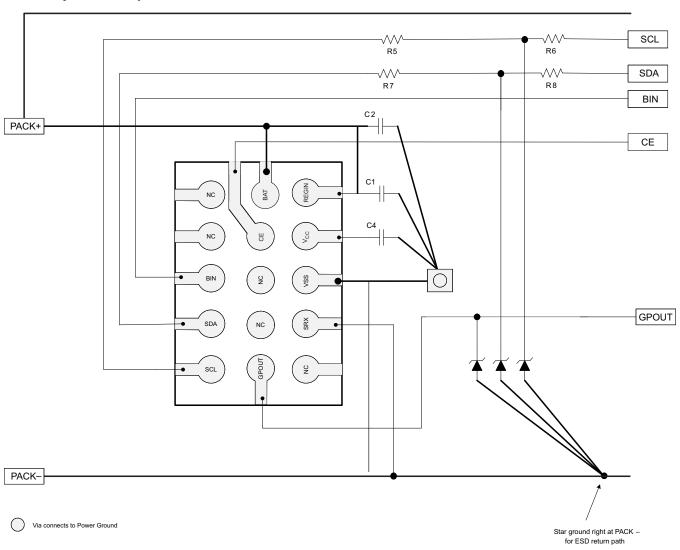


Figure 16. Layout Schematic

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

Impedance Track, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 Packaging

13.1.1 Package Dimensions

Table 12. YZF Package Dimensions

PACKAGED DEVICES	D	E		
BQ27425-G2A	2.69 ± 0.030 mm	1.75 ± 0.030 mm		

Copyright © 2012–2015, Texas Instruments Incorporated

5-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ27425YZFR-G2A	ACTIVE	DSBGA	YZF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27425	Samples
BQ27425YZFR-G2B	ACTIVE	DSBGA	YZF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27425 G2B	Samples
BQ27425YZFT-G2A	ACTIVE	DSBGA	YZF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27425	Samples
BQ27425YZFT-G2B	ACTIVE	DSBGA	YZF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27425 G2B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

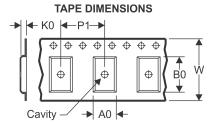
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

5-May-2015

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jun-2015

TAPE AND REEL INFORMATION

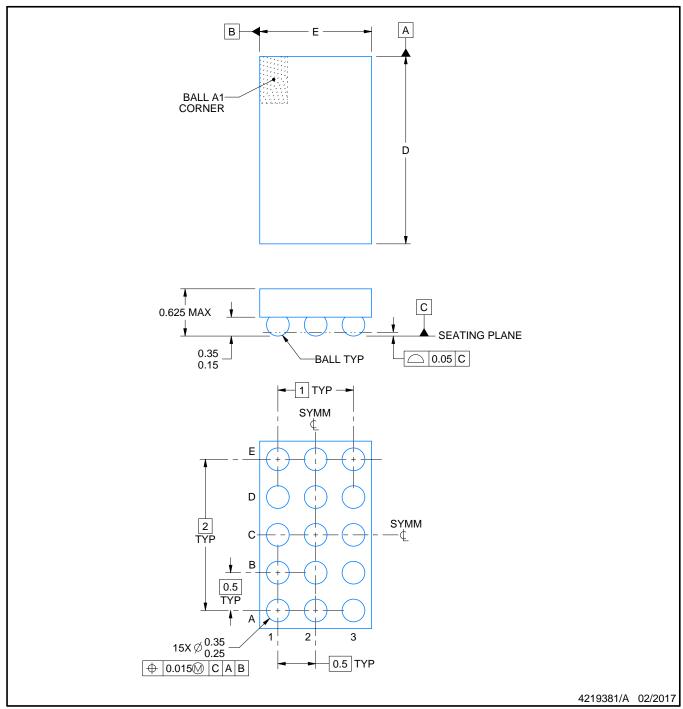
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ27425YZFR-G2A	DSBGA	YZF	15	3000	180.0	8.4	2.0	2.8	0.7	4.0	8.0	Q1
BQ27425YZFT-G2A	DSBGA	YZF	15	250	180.0	8.4	2.0	2.8	0.7	4.0	8.0	Q1
BQ27425YZFT-G2B	DSBGA	YZF	15	250	180.0	8.4	2.0	2.8	0.7	4.0	8.0	Q1

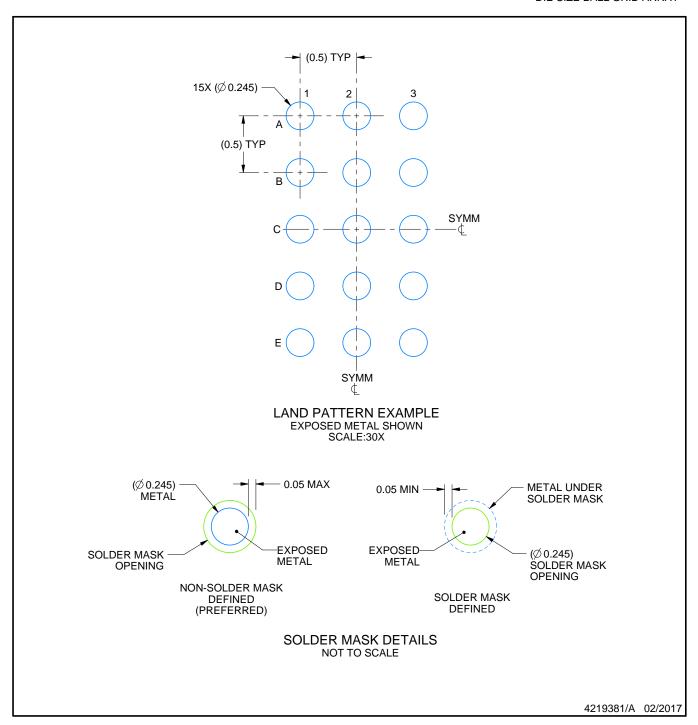
www.ti.com 17-Jun-2015



*All dimensions are nominal

Device	Package Type	ckage Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
BQ27425YZFR-G2A	DSBGA	YZF	15	3000	182.0	182.0	20.0	
BQ27425YZFT-G2A	DSBGA	YZF	15	250	182.0	182.0	20.0	
BQ27425YZFT-G2B	DSBGA	YZF	15	250	182.0	182.0	20.0	

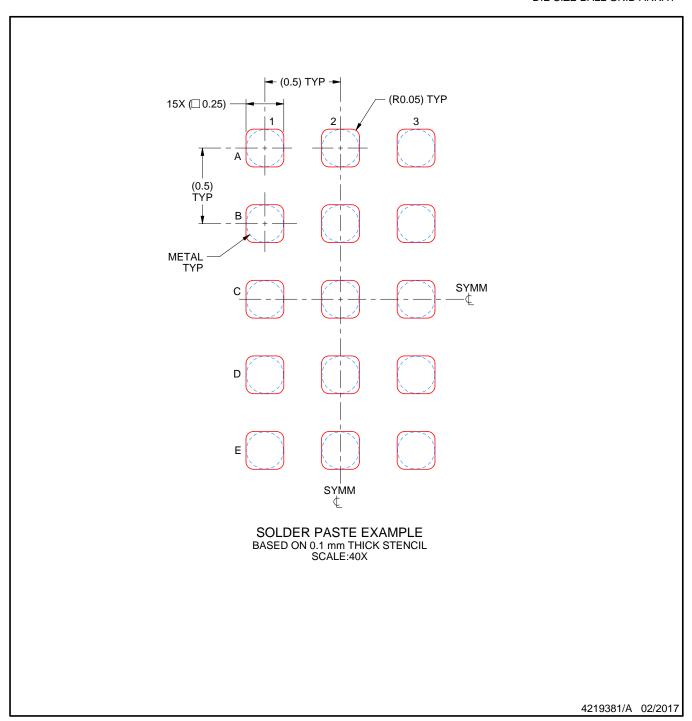
DIE SIZE BALL GRID ARRAY


NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.