

SLUS673E - SEPTEMBER 2005 - REVISED MARCH 2012

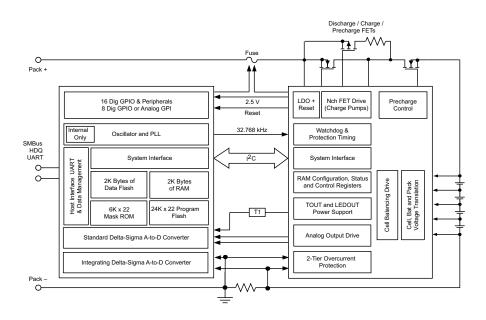
2-SERIES, 3-SERIES, AND 4-SERIES CELL LITHIUM-ION OR LITHIUM-POLYMER BATTERY PROTECTION AFE

Check for Samples: bq29330

FEATURES

- 2-Series, 3-Series, or 4-Series Cell Protection Control
- Can Directly Interface with the bq803x-Based Gas Gauge Family
- Watchdog and POR for the Host
- Provides Individual Cell Voltages and Battery Voltage to Battery Management Host
- Capable of Operation With 5-mΩ Sense Resistor Integrated Cell Balancing Drive
- I²C Compatible User Interface Allows Access to Battery Information
- Programmable Threshold and Delay for Overload Short Circuit in Discharge and Short Circuit in Charge

- NMOS FET Drive for Charge and Discharge FETs
- Host Control can Initiate Sleep and Ship Power Modes
- Integrated 2.5-V, 16-mA LDO
- Integrated 3.3-V, 25-mA LDO
- Supply Voltage Range from 4.5 V to 28 V
- Low Supply Current of 100 µA Typical


APPLICATIONS

- Notebook Computers
- Medical and Test Equipment
- Instrumentation and Measurement Systems

DESCRIPTION

The bq29330 is a 2-series, 3-series, and 4-series cell lithium-ion battery pack full-protection analog front end (AFE) IC that incorporates a 2.5-V, 16-mA and 3.3-V, 25-mA low dropout regulator (LDO). The bq29330 also integrates an I²C-compatible interface to extract battery parameters such as battery voltage, individual cell voltages, and control output status. Other parameters such as current protection thresholds and delays can also be programmed into the bq29330 to increase the flexibility of the battery management system.

SYSTEM DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The bq29330 provides safety protection for overload, short circuit in charge, and short circuit in discharge conditions and can also provide cell overvoltage, battery overvoltage and battery undervoltage protection with the battery management host. In overload, short circuit in charge and short circuit in discharge conditions, the bq29330 turns off the FET drive autonomously, depending on the internal configuration setting. The communications interface allows the host to observe and control the status of the bq29330, enable cell balancing, enter different power modes, set current protection levels, and set the blanking delay times.

Cell balancing of each cell can be performed via a cell bypass path integrated into the bq29330, which can be enabled via the internal control register accessible via the l^2 C-compatible interface. The maximum bypass current is set via an external series resistor and internal FET on resistance (typ. 400 Ω).

ORDERING INFORMATION⁽¹⁾

+	P	ACKAGE
I _A	TSSOP(DBT) ⁽²⁾	QFN(RSM) ⁽²⁾
–40°C to 110°C	bq29330DBT	bq29330RSM

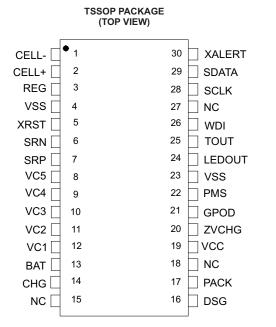
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

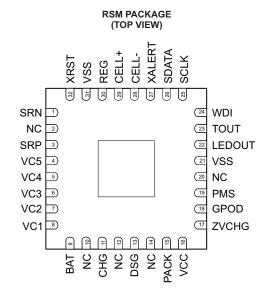
(2) The bq29330 can be ordered in tape and reel by adding the suffix R to the orderable part number, i.e., bq29330DBTR.

THERMAL INFORMATION

		bq29	bq29330		
	THERMAL METRIC ⁽¹⁾	TSSOP (DBT)	QFN (RSM)	UNITS	
		30 PINS	32 PINS		
θ _{JA, High K}	Junction-to-ambient thermal resistance	81.4	37.4		
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance	16.2	30.6		
θ_{JB}	Junction-to-board thermal resistance	34.1	7.7	°C/W	
Ψ _{JT}	Junction-to-top characterization parameter	0.4	0.4	°C/W	
Ψ _{JB}	Junction-to-board characterization parameter	33.6	7.5		
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance	N/A	2.6		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.




www.ti.com

Texas

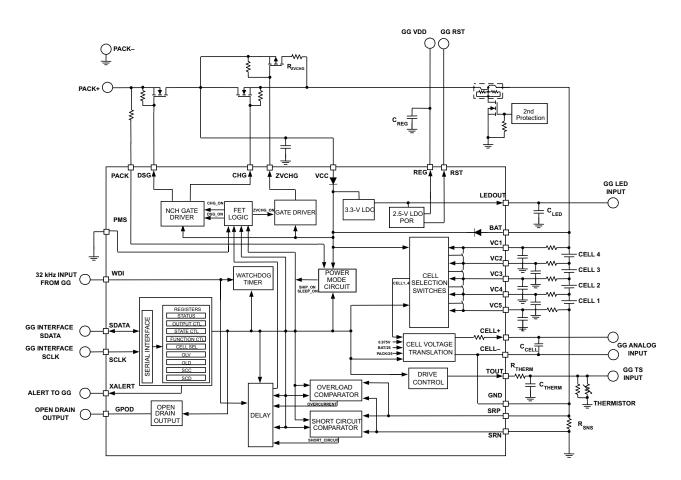
Instruments

PACKAGE OPTION PIN DIAGRAMS

PIN FUNCTIONS

	PIN		DECODIDETION	
NAME	DBT NO.	RSM NO.	DESCRIPTION	
CELL-	1	28	Output of scaled value of the measured cell voltage.	
CELL+	2	29	Output of scaled value of the measured cell voltage.	
REG	3	30	Integrated 2.5-V regulator output	
VSS	4, 23	31,21	Power supply ground	
XRST	5	32	Active-low output	
SRN	6	1	Current sense terminal	
SRP	7	3	Current sense positive terminal when charging relative to SRN; current sense negative terminal when discharging relative to SRN	
VC5	8	4	Sense voltage input terminal for most negative cell; balance current input for least positive cell.	
VC4	9	5	Sense voltage input terminal for least positive cell, balance current input for least positive cell, and return balance current for third most positive cell.	
VC3	10	6	Sense voltage input terminal for third most positive cell, balance current input for third most positive cell, and return balance current for second most positive cell.	
VC2	11	7	Sense voltage input terminal for second most positive cell, balance current input for second most positive cell, and return balance current for most positive cell.	
VC1	12	8	Sense voltage input terminal for most positive cell, balance current input for most positive cell, and battery stack measurement input	
BAT	13	9	Device power supply input	
CHG	14	11	Charge pump, charge N-CH FET gate drive	
DSG	16	13	Charge pump output, discharge N-CH FET gate drive	
PACK	17	15	PACK positive terminal and alternative power source	
VCC	19	16	Power supply voltage	
ZVCHG	20	17	Connect the precharge P-CH FET drive here	
GPOD	21	18	NCH FET open-drain output	
PMS	22	19	Determines CHG output state on POR	
LEDOUT	24	22	3.3-V output for LED display power supply	
TOUT	25	23	Provides thermistor bias current	

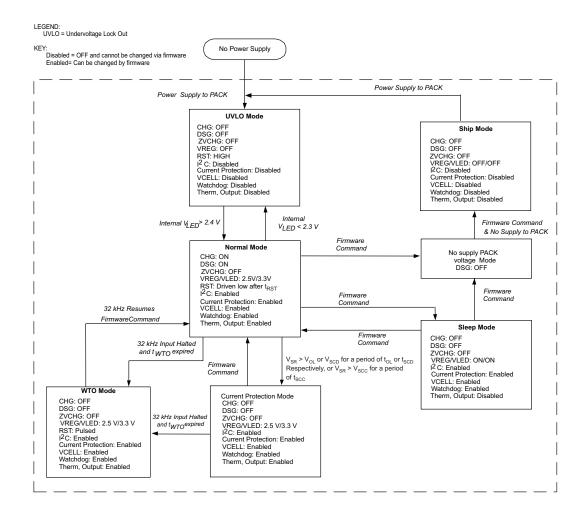
www.ti.com


INSTRUMENTS

TEXAS

PIN FUNCTIONS (continued)

PIN			DESCRIPTION	
NAME	DBT NO.	RSM NO.	DESCRIPTION	
WDI	26	24	Digital input that provides the timing clock for the OC and SC delays and also acts as the watche clock.	
SCLK	28	25	Open-drain serial interface clock with internal 10-k Ω pullup to V _{REG}	
SDATA	29	26	Open-drain bidirectional serial interface data with internal 10-k Ω pullup to V _{REG}	
XALERT	30	27	Open-drain output used to indicate status register changes. With internal 100-k Ω pullup to V_{REG}	
NC	15,18,27	2, 10, 12, 14, 20	Not electrically connected to the IC	


FUNCTIONAL BLOCK DIAGRAM

SLUS673E - SEPTEMBER 2005 - REVISED MARCH 2012

SAFETY STATE DIAGRAM

www.ti.com

NSTRUMENTS

EXAS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

		bq29330	UNIT
Supply voltage range	(VCC, BAT)	-0.3 to 34	
	(VC1, VC2, VC3, VC4, PACK, PMS)	-0.3 to 34	
	(VC5)	-0.3 to 1.0	
Input voltage range	(SRP, SRN)	-1.0 to 1.0	
input voltage range	(VC1 to VC2, VC2 to VC3, VC3 to VC4, VC4 to VC5)	-0.3 to 8.5	
	(WDI, SCLK, SDATA)	-0.3 to 8.5	V
	(DSG,CHG)	-0.3 to BAT	
	(ZVCHG)	-0.3 to 34	
Output voltage range	(GPOD)	-0.3 to 34	
Output voltage range	(TOUT, SDATA, CELL, XALERT, XRST, LEDOUT)	-0.3 to 7	
	(CELL+)	–0.3 to 7	
Current for cell balancing		10	mA
Storage temperature range, T _{stq}		-65 to 150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground of this device except VCn–VC(n+1), where n=1, 2, 3, 4 cell voltage.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
	Supply voltage (VCC, BAT)		4.5		25	V
V _{I(STARTUP)}	Start up voltage (VCC, BAT)		5.5			V
		VC1, VC2, VC3, VC4	0		VDD	
		VC5	0		0.5	
VI	Input voltage range	SRP, SRN	-0.5		0.5	V
		VCn – VC(n+1), (n=1, 2, 3, 4)	0		5.0	
		PACK, PMS			25	
V _{IH}			0.8×REG		REG	V
V _{IL}	Logic level input voltage	SCLK, SDATA, WDI	0		0.2×REG	v
Vo	Output voltage	GPOD			25	V
		XALERT, SDATA, XRST			REG	V
Vo	Output voltage range	CELL+, CELL-		0.975		v
	External 2.5-V REG capacitor	C _{REG}	1.0			μF
	External LEDOUT capacitor	C _{LED}	2.2			μF
	Extend CELL output capacitor	C _{CELL}		0.1		μF
	IOL	GPOD			1	mA
	RPACK			1		kΩ
	Input frequency	WDI		32.768		kHz
	WDI high time		2			μs
т	Operating temperature		-25		85	°C
T _A	Functional temperature		-40		110	°C

www.ti.com

ELECTRICAL CHARACTERISTICS

		G = 1 μ F, C _L = 2.2 μ F, VCC or BAT = 14 V (unless otherwise	noteu)				
F	PARAMETER	TEST CONDITIONS	- 1	MIN	TYP	MAX	UNIT
I _{CC1}	Supply Current 1	No load at REG, LEDOUT, TOUT, XALERT, SCLK, SDATA, ZVCHG= off, WDI = 32 kHz VMEN = on, VC5 = VC4 = VC3 = VC2 = VC1 = 0 V	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C$		140	190 220	μΑ μΑ
		select VC5 = VC4 = 0 V	to 110°C				
I _{CC2}	Supply Current 2	No load at REG, LEDOUT TOUT, XALERT, SCLK, SDATA. ZVCHG = off, WDI = 32 kHz, VMEN = off	T _A = -40°C to 110°C		105	185	μA
I _(SLEEP)	Sleep current	CHG, DSG and ZVCHG = off, REG = on, VMEN = off, WDI no clock, SLEEP = 1	T _A = -40°C to 110°C		30	50	μA
I(SHUTDOWN)	Shutdown mode	CHG, DSG and ZVCHG = off, REG = off, VMEN = off, WDI no clock, VPACK = 0 V, VC1 = VC2 = VC3 = VC4 = 3.5 V	$T_A = -40^{\circ}C$ to 110°C		0.1	1	μA
2.5 V LDO, T	Γ _A = 25°C, CREG = 1 μF,	C_L = 2.2 µF, VCC or BAT = 14 V, $I_{OUT 33}$ = 0 mA (unless other	wise noted)				
V _(REG)	Regulator output voltage	4.5 V < VCC or BAT \leq 25 V, I _{OUT25} \leq 16 mA	$T_A = -40^{\circ}C$ to 110°C	2.41	2.5	2.59	V
$\Delta V_{(EGTEMP)}$	Regulator output change with temperature	VCC or BAT = 14 V, $I_{OUT25} = 2 \text{ mA}$	T _A = -40°C to 110°C		±0.2%		
$\Delta V_{(REGLINE)}$	Line regulation	5.4 V \leq VCC or BAT \leq 25 V, I _{OUT25} = 2 mA	$T_A = 25^{\circ}C$		3	10	mV
	1 . 1 1	VCC or BAT = 14 V, 0.2 mA $\leq I_{OUT25} \leq 2$ mA	$T_A = 25^{\circ}C$		7	15	mV
$\Delta V_{(REGLOAD)}$	Load regulation	VCC or BAT = 14 V, 0.2 mA ≤ I _{OUT25} ≤ 16 mA	$T_A = 25^{\circ}C$		15	50	mV
	0	VCC or BAT = 14 V, REG = 2 V	$T_A = 25^{\circ}C$	16		75	
(REGMAX)	Current limit	VCC or BAT = 14 V, REG = 0 V	$T_A = 25^{\circ}C$	5		45	mA
3.3 V LED, T	_A = 25°C, CREG = 1.0 μF	\overline{F} , C _L = 2.2 μ F, VCC or BAT = 14 V, I _{OUT25} = 0 mA (unless oth	erwise noted)			1	
.,	Regulator output	4.5 V < VCC or BAT \leq 25 V, I _{OUT33} \leq 10 mA	$T_A = -40^{\circ}C$	3	3.3	3.6	.,
V _{O(LED)}	voltage	6.5 V < VCC or BAT \leq 25 V, I _{OUT33} \leq 25 mA	to 110°C	3	3.3	3.6	V
$\Delta V_{(LEDEMP)}$	Regulator output change with temperature	VCC or BAT = 14 V, I _{OUT33} = 2 mA	T _A = -40°C to 110°C		±0.2%		
$\Delta V_{(LEDLINE)}$	Line regulation	5.4 V \leq VCC or BAT \leq 25 V, I _{OUT33} = 2 mA	$T_A = 25^{\circ}C$		3	10	mV
A) /	1	VCC or BAT = 14 V, 0.2 mA $\leq I_{OUT33} \leq 2$ mA	T 0500		7	15	
$\Delta V_{(LEDLOAD)}$	Load regulation	VCC or BAT = 14 V, 0.2 mA $\leq I_{OUT33} \leq 25$ mA	T _A = 25°C		40	100	mV
	Ourse at line it	VCC or BAT = 14 V, REG = 3 V	т осто	25		125	
(LEDMAX)	Current limit	VCC or BAT = 14 V, REG = 0 V	− T _A = 25°C	12		50	mA
THERMISTO	R DRIVE, T _A = 25°C, CR	EG = 1 μ F, C _L = 2.2 μ F, VCC or BAT = 14 V (unless otherwis	e noted)				
VTOUT		I _{TOUT} = 0 mA		2.4		2.6	V
R _{DS(ON)}	TOUT Pass-element series resistance	$I_{TOUT} = -1 \text{ mA at TOUT pin,}$ $R_{DS(ON)} = [V_{REG} - V_{OUT} \text{ (TOUT)}] / 1 \text{ mA}$	T _A = -40°C to 110°C		50	100	Ω
SHUTDOWN	I WAKE, T _A = 25°C, CRE	G = 1 μ F, C _L = 2.2 μ F, VCC or BAT = 14 V (unless otherwise	noted)				
V _{STARTUP}	PACK Exit shutdown threshold	VCC or BAT = 14 V, PACK = 1.4 V				1	μA
POR, T _A = 2	5°C, CREG = 1 μF, C _L = 2	2.2 μF, VCC or BAT = 14 V (unless otherwise noted)					
V _{POR}	VREGTH-			-3%	1.8	3%	V
	Hysteresis (V _{regth+} – V _{regth–})			50	150	250	mV

www.ti.com

NSTRUMENTS

ÈXAS

ELECTRICAL CHARACTERISTICS (Continued)

CELL VOLTAGE MONITOR, T_A = 25°C, CREG = 1 µF, C_L = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT $V_{Cn} - V_{Cn+1} = 0 \text{ V}, 8 \text{ V} \leq \text{VDD} \overline{\leq 25 \text{ V}}$ 0.950 0.975 1 V V_(CELLOUT) $V_{Cn} - V_{Cn+1} = 4.5 \text{ V}, 8 \text{ V} \le \text{VDD} \le 25 \text{ V}$ 0.275 0.3 0.325 Mode $^{(1)}$, 8 V \leq VDD \leq 25 V REF -1% 0.975 1% v CELL output Mode PACK -2% PACK/18 2% V [Register Address = 0x03, b1(PACK) = 1, b0(VMEN) = 1] Mode BAT **BAT/18** V -2% 2% [Register Address = 0X03, b6(BAT) = 1, b0 (VMEN) = 1] CMRR Common mode rejection CELL max to CELL min 40 dB Min to Max 10% to 90% V_(CELLSLEW) CELL output rise 9 ms $K = \{CELL \text{ output } (VC5 = 0 \text{ V}, VC4 = 4.5 \text{ V})$ 0.147 0.150 0.153 -CELL output (VC5 = VC4 = 0 V)} / 4.5 Κ CELL scale factor K = {CELL output (VC2 = 13.5 V, VC1 = 18 V) 0.147 0.150 0.153 -CELL output (VC2 = VC1 = 13.5 V)} / 4.5 Drive current V_{Cn-} V_{Cn+1} = 0 V , VceII = 0 V, T_A = –40° to 110° 12 18 μA I(VCELLOUT) CELL output (VC2 = 18 V, VC1 = 18 V) CELL output offset error VICR -1 mV -CELL output (VC2 = VC1 = 0 V) Cell balance internal resistance $R_{\text{DS}(\text{ON})}$ for internal FET switch at V_{DS} = 2 V -50% 400 50% Ω R_(BAL)

(1) Register Address = 0x04, b2(CAL0) = b3(CAL1) = 1, Register Address = 0x03, b0(VMEN) = 1

	PARAMETER		MIN	TYP	MAX	UNIT	
		RSNS = 0		-50		-205	
V _(OLT)	OL detection threshold voltage range, typical ⁽¹⁾	RSNS = 1		-25		-102.5	mV
A) /		RSNS = 0			-5		
ΔV _(OLT)	OL detection threshold voltage program step	RSNS = 1			-2.5		mV
	SCC detection threshold voltage range, typical	RSNS = 0		100		475	
V _(SCCT)	(2)	RSNS = 1	RSNS is set in	50		237.5	mV
A) /		RSNS = 0	FUNCTION_CTL register		25		
ΔV _(SCCT)	SCC detection threshold voltage program step	RSNS = 1			12.5		mV
	SCD detection threshold voltage range,	RSNS = 0		-100		-475	
(SCDT) typical ⁽³⁾	typical ⁽³⁾	RSNS = 1		-50		-237.5	mV
• • •	SCD detection threshold voltage program step	RSNS = 0			-25		
∆V _(SCDT)		RSNS = 1			-12.5		mV
		$V_{OL} = -25 \text{ mV}$	(typ)	-15	-25	-35	
V _{OL(acr)}	OL detection threshold voltage accuracy ⁽¹⁾	V _{OL} = -100 mV (typ) (RSNS = 0,1)		-90	-100	-110	mV
		$V_{OL} = -205 \text{ mV} \text{ (typ)}$		-185	-205	-225	
		$V_{SCC} = 50 \text{ mV}$	(typ)	30	50	70	
V _(SCC_acr)	SCC detection threshold voltage accuracy ⁽²⁾	V _{SCC} = 200 m\	/ (typ) (RSNS = 0,1)	180	200	220	mV
		V _{SCC} = 475 mV (typ)		428	475	523	
		$V_{SCD} = -50 \text{ mV} (typ)$		-30	-50	-70	mV
V _(SCD_acr)	SCD detection threshold voltage accuracy ⁽³⁾	V _{SCD} = -200 mV (typ) (RSNS = 0,1)		-180	-200	-220	
		$V_{SCD} = -475 \text{ m}$	-426	-475	-523		

(1) See OLV register for setting detection threshold

(2) See SCC register for setting detection threshold

(3) See SCD register for setting detection threshold

SLUS673E - SEPTEMBER 2005-REVISED MARCH 2012

ELECTRICAL CHARACTERISTICS (Continued)

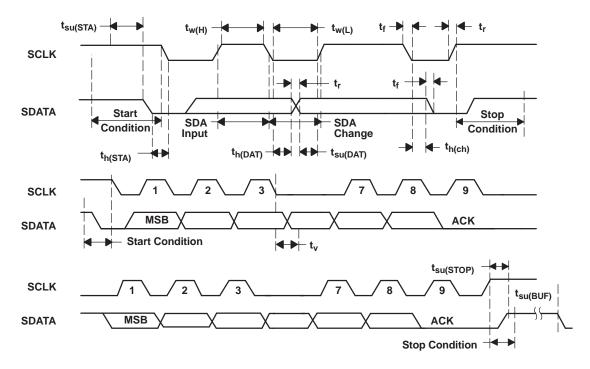
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{O(FETOND)} = V_{(DSG)} - Vpack$ $T_A = 25^{\circ}C$ VGS connect 10 MΩ		7.5	12	15.5	.5
	Output voltage, charge,	VGS connect 10 MΩ	$T_A = -40^{\circ}C$ to $110^{\circ}C$	8	12	16	V
V _{O(FETON)}	and discharge FETs on	$V_{O(FETONC)} = V_{(CHG)} - V_{BAT}$ VGS connect 10 MΩ	$T_A = 25^{\circ}C$	7.5	12	15.5	V
		VGS connect 10 MΩ	$T_A = -40^{\circ}C \text{ to } 110^{\circ}C$	8	12	16	v
V _(ZCHG)	ZVCHG clamp voltage	BAT = 4.5 V		3.3	3.5	3.7	V
V _{O(FETOF}	Output voltage, charge, and discharge FETs off	VFETOND = VDSG – Vpack				0.2	V
F)	and discharge FETS on	VFETONC = VCHG - VBAT				0.2	
	Rise time	C ₁ = 4700 pF	$V_{(CHG)}$: Vpack \geq Vpack + 4 V		400	1000	μs
t _r R		0 _L = 4700 pl	$V_{(DSG)}$: VBAT \geq VBAT + 4 V		400	1000	
+	Fall time	C ₁ = 4700 pF	$V_{(CHG)}$: Vpack + VCHG (FETON) ≥ pack + 1 V		40	200	
t _f		$O_{L} = 4700 \text{ pl}$	$V_{(DSG)}$: VC1 + VDSG (FETON) \ge VC1 + 1 V		40	200	μs
LOGIC, T	_A = 25°C, CREG = 1 μF, C _L	= 2.2 μF, VCC or BAT = 14 \	/ (unless otherwise noted)				
		XALERT		60	100	200	kΩ
R _(PUP)	Internal pullup resistance	SDATA, SCLK	$T_{A} = -40^{\circ}C \text{ to } 110^{\circ}C$	6	10	20	
		XRST		1	3	6	
		XALERT				0.2	
		SDATA, I _{OUT} = 200 µA				0.4	
V _{OL}	Low Logic level output	GPOD, I _{OUT} = 50 μA	$T_{A} = -40^{\circ}C$ to 110°C			0.6	V
~-	voltage	VCC or BAT = 7 V, VREG = 1.5 V, XRST, I _{OUT} = 200 μA				0.4	
VIH	SCLK (hysteresis input)	Hysteresis			450		mV

AC ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, CREG = 1 μ F, C_L = 2.2 μ F, VCC or BAT = 14 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{WDTINT}	WDT start up detect time		250	500	1000	ms
t _{WDWT}	WDT detect time		50	100	150	μs
t _{RST}	XRST Active high time		100	250	560	μs

www.ti.com


Instruments

Texas

AC TIMING REQUIREMENTS (I²C compatible serial interface)

 $T_A = 25^{\circ}C$, CREG = 1 µF, VCC or BAT = 14 V (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _r	SCLK, SDATA rise time		1000	ns
t _f	SCLK, SDATA fall time		300	ns
t _{w(H)}	SCLK pulse width high	4		μs
t _{w(L)}	SCLK pulse width low	4.7		μs
t _{su(STA)}	Setup time for start condition	4.7		μs
t _{h(STA)}	Start condition hold time after which first clock pulse is generated	4		μs
t _{su(DAT)}	Data setup time	250		ns
t _{h(DAT)}	Data hold time	0		μs
t _{su(STOP)}	Setup time for Stop condition	4		μs
t _{su(BUF)}	Time the bus must be free before new transmission can start	4.7		μs
t _v	Clock low to data out valid		900	ns
t _{h(CH)}	Data out hold time after clock low	10		ns
f _{SCL}	Clock frequency	0	100	kHz

FUNCTIONAL DESCRIPTION

LOW DROP OUTPUT REGULATOR (LEDOUT)

The inputs for this regulator can be derived from the VCC or BAT terminals. The output is a fixed voltage of typically 3.3 V with the minimum output capacitance for stable operation of 2.2 μ F and is also internally current limited. This output is used for LED drive, power supply source for REG (2.5 V) and bq29330 internal circuit. During normal operation, the regulator limits output current to typically 50 mA. Until the internal regulator circuit is correctly powered, the DSG and CHG FET drives are low (FETs = OFF).

LOW DROP OUTPUT REGULATOR (REG)

The inputs for this regulator can be derived from the LED (3.3 V). The output is typically 2.5 V with the minimum output capacitance for stable operation of 1 μ F and is also internally current limited. During normal operation, the regulator limits output current to typically 50 mA.

INITIALIZATION

From a shutdown situation, the bq29330 requires a voltage greater that start-up voltage ($V_{STARTUP}$) applied to the PACK pin to enable its integrated regulator and provide the regulators power source. Once the REG output is stable, the power source of the regulator is switched to VCC.

After the regulator has started, it then continues to operate through the VCC input. If the VCC input is below the minimum operating range, then the bq29330 will not operate if the supply to the PACK input is removed.

If the voltage at VLED falls below about 2.3 V, the internal circuit turns off the FETs and disables all controllable functions including the REG, LEDOUT, and TOUT outputs.

The initial state of the CHG and DSG FET drive is low (OFF) and the ZVCHG FET drive is low (ON).

OVERLOAD DETECTION

The overload detection is used to detect abnormal currents in the discharge direction. This feature is used to protect the pass FETs, cells, and any other inline components from excessive discharge current conditions. The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state. The overload sense voltage is set in the OLV register, and delay time is set in the OLD register. The thresholds can be individually programmed from 50 mV to 205 mV in 5-mV steps with the default being 50 mV.

If the RSNS bit in the FUNCTION_CTL register is set to 1, then the voltage threshold, programmable step size, and hysteresis is divided by 2.

SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE DETECTION

The short current circuit in charge and short circuit in discharge detections are used to detect severe abnormal current in the charge and discharge directions, respectively. This safety feature is used to protect the pass FETs, cells, and any other inline components from excessive current conditions. The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state. The short circuit in charge threshold and delay time are set in the SCC register. The short circuit in discharge threshold and delay time are set in the SCD register. The short-circuit thresholds can be programmed from 100 mV to 475 mV in 25-mV steps.

If the RSNS bit in the FUNCTION_CTL register is set to 1, then the voltage threshold, programmable step size, and hysteresis is divided by 2.

OVERLOAD, SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE DELAY

The overload delay (default = 1 ms) allows the system to momentarily accept a high current condition without disconnecting the supply to the load. The delay time can be increased via the OLD register which can be programmed for a range of 1 ms to 31 ms with 2-ms steps.

The short circuit in charge and short circuit in discharge delays (default = $0 \ \mu$ s) are programmable in the SCC and SCD registers, respectively. These registers can be programmed from $0 \ \mu$ s to 915 μ s with 61- μ s steps.

Copyright © 2005–2012, Texas Instruments Incorporated

www.ti.com

OVERLOAD, SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE RESPONSE

When an overload, short circuit in charge, or short circuit in discharge fault is detected, the FETs are turned off. The STATUS (b0...b3) register reports the details of overload, short circuit in charge or short-circuit discharge. The respective STATUS (b0...b3) bits are set to 1 and the XALERT output is triggered. This condition is latched until the STATE_CONTROL (b7) is set and then reset. If a FET is turned on after resetting STATE_CONTROL (b0) and the error condition is still present on the system, then the device again enters the protection response state.

2-, 3-, or 4-CELL CONFIGURATION

In a 2-cell configuration, VC1 and VC2 are shorted to VC3. In a 3-cell configuration, VC1 is shorted to VC2.

CELL VOLTAGE

The cell voltage is translated to allow a system host to measure individual series elements of the battery. The series element voltage is translated to a GND-based voltage equal to 0.15 ± 0.003 of the series element voltage. This provides a range from 0 to 4.5 V. The translation output is presented between CELL+ and CELL- pins of the bq29330 and is inversely proportional to the input using the following equation.

Where, $V_{(CELLOUT)} = -K \times V_{(CELLIN)} + 0.975$ (V)

Programming CELL_SEL (b1, b0) selects the individual series element. The CELL_SEL (b3, b2) selects the voltage monitor mode, cell monitor, offset, etc.

CALIBRATION OF CELL VOLTAGE MONITOR AMPLIFIER GAIN

The cell voltage monitor amplifier has an offset, and to increase accuracy, this can be calibrated.

The following procedure shows how to measure and calculate the offset as an example.

Step 1

Set CAL1=1, CAL0=1, VMEN=1.

VREF is trimmed to 0.975 V within ±1%; measuring VREF eliminates its error.

Measure internal reference voltage VREF from VCELL directly.

VREF = measured reference voltage

Step 2

Set CAL1=0, CAL0=1, CELL1=0, CELL0=0, VMEN=1.

The output voltage includes the offset and represented by:

 $V_{OUT(4-5)} = VREF + (1 + K) \times V_{OS} (V)$

Where K = CELL Scaling Factor

 V_{OS} = Offset voltage at input of the internal operational amplifier

Step 3

Set CAL1=1, CAL0=0, CELL1=0, CELL0=0, VMEN=1.

Measure scaled REF voltage through VCELL amplifier.

The output voltage includes the scale factor error and offset and is represented by:

 $V_{(OUTR)} = VREF + (1 + K) \times VOS - K \times VREF (V)$

Step 4

Calculate (V_{OUT(4-5)} –V_(OUTR)) / VREF.

The result is the actual scaling factor, K_{ACT} and is represented by:

 $K_{ACT} = (V_{OUT(4-5)} - V_{(OUTR)}) / VREF = (VREF + (1 + K) \times V_{OS}) - (VREF + (1 + K) \times V_{OS} - K \times VREF) / VREF = K \times VREF / VREF = K$

Step 5

www.ti.com

Calculate the actual offset value where:

 $V_{OS(ACT)} = (V_{(OUTR)} - VREF) / (1 + K_{ACT})$

Step 6

Calibrated cell voltage is calculated by:

 $VCn - VC(n+1) = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ V_{OUT(4-5)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} - V_{(CELLOUT)} \} / K_{ACT} = \{ VREF + (1 + K_{ACT}) \times V_{OS(ACT)} + V_{OS(ACT)} + V_{OS(ACT)} + V_{OS(ACT)} + V_{OS(ACT)} \} \}$

To seek greater accuracy, it is better to measure $V_{OS(ACT)}$ for each cell voltage.

Set CAL1=0, CAL0=0, CELL1=0, CELL0=1, VMEN=1.

Set CAL1=0, CAL0=0, CELL1=1, CELL0=0, VMEN=1.

Set CAL1=0, CAL0=0, CELL1=1, CELL0=1, VMEN=1.

Measure $V_{OUT(3-4)}$, $V_{OUT(2-3)}$, $V_{OUT(1-2)}$,

 $VC4 - VC5 = \{V_{OUT(4-5)} - V_{(CELLOUT)}\}/K_{ACT}$

 $VC3 - VC4 = \{V_{OUT(3-4)} - V_{(CELLOUT)}\}/K_{ACT}$

 $VC2 - VC3 = \{V_{OUT(2-3)} - V_{(CELLOUT)}\}/K_{ACT}$

 $VC1 - VC2 = \{V_{OUT(1-2)} - V_{(CELLOUT)}\}/K_{ACT}$

BATTERY PACK AND BATTERY STACK MEASUREMENTS

The PACK (battery pack) and VC1 (battery stack) inputs can be translated to the CELL+, CELL– outputs of the bq29330 through control bits in the FUNCTION_CONTROL register. If PACK is set, then the input at the PACK is divided by 18 and presented at the CELL+, CELL– outputs. If the BAT bit is set, then the input to VC1 is divided by 18 and presented at the CELL+, CELL– outputs. If setting both bits at the same time, VC1 is presented at the CELL+, CELL– outputs.

CELL BALANCE CONTROL

The cell balance control allows a small bypass path to be controlled for any one series element. The purpose of this bypass path is to reduce the current into any one cell during charging to bring the series elements to the same voltage. Series resistors placed between the input pins and the positive series element nodes control the bypass current value. Individual series element selection is made using bits 4 through 7 of CELL_SEL register.

Series input resistors between 500 Ω and 1 k Ω are recommended for effective cell balancing.

XALERT (XALERT)

XALERT is driven Low, when WDF, OL, SCC, or SCD OC are detected. To clear XALERT, toggle (from 0, set to 1, then reset to 0) STATE_CONTROL, LTCLR (bit 7), then read the STATUS register.

THERMISTOR DRIVE CIRCUIT (TOUT)

The TOUT pin can be enabled to drive a thermistor from REG. The typical thermistor resistance is 10 k Ω at 25°C. The default state for this is OFF to conserve power. The maximum output impedance is 100 Ω . TOUT is enabled in FUNCTION_CONTROL register (bit 3).

GENERAL PURPOSE OPEN DRAIN DRIVE CIRCUIT (GPOD)

The General Purpose Open Drain output has 1-mA current source drive with a maximum output voltage of 25 V. The OD output is enabled or disabled by OUTPUT_CONTROL register (bit 4) and has a default state of OFF.

www.ti.com

LATCH CLEAR (LTCLR)

When a protection fault occurs, the state is latched. To clear the fault flag, toggle (from 0, set 1, then reset to 0) the LTCLR bit in the STATE_CONTROL register (bit 7). The OL, SCC, SCD, and WDF bits are unlatched by this function. The FETs can now be controlled by programming the OUTPUT_CONTROL register, and the XALERT output can be cleared by reading the STATUS register.

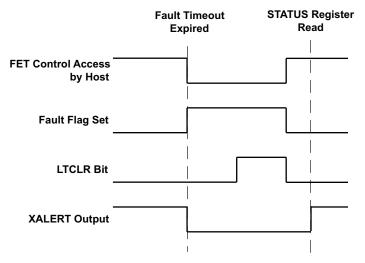


Figure 1. LTCLR and XLAERT Clear Timing

POR and WATCHDOG RESET (XRST)

The XRST pin is activated by activation of the REG output. This holds the host in reset for the duration of the t_{RST} period, allowing the VREG to stabilize before the host is released from reset. When the regulator power is down, XRST is active below the regulator's voltage of 1.8 V. Also, when a watchdog fault is detected, the XRST is also activated to ensure a valid reset of the battery management host.

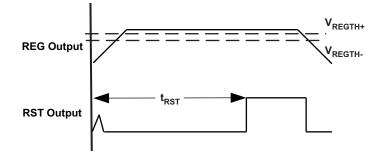


Figure 2. XRST Timing Chart – Power Up and Power Down

WATCHDOG INPUT (WDI)

The WDI input is required as a time base for delay timing when determining fault detection and is used as part of the system watchdog.

Initially, the watchdog monitors the host oscillator start-up; if there is no response from the host within t_{WDINT} of t_{RST} expiring, then the bq29330 turns CHG, DSG, and ZVCHG FETs off. It then activates the XRST output in an attempt to reset the host.

Once the watchdog has been started during this wake-up period, it monitors the host for an oscillation stop condition which is defined as a period of t_{WDWT} where no clock input is received. If an oscillator stop condition is identified, then the watchdog turns the CHG, DSG, and ZVCHG FETs off. The bq29330 then activates the XRST output in an attempt to reset the host.

SLUS673E - SEPTEMBER 2005 - REVISED MARCH 2012

If the host clock oscillation is started after the reset, the bq29330 still has the WDF flag set until it is cleared. See the LTCLR section for further details on clearing the fault flags.

During Sleep mode, the watchdog function is not disabled.

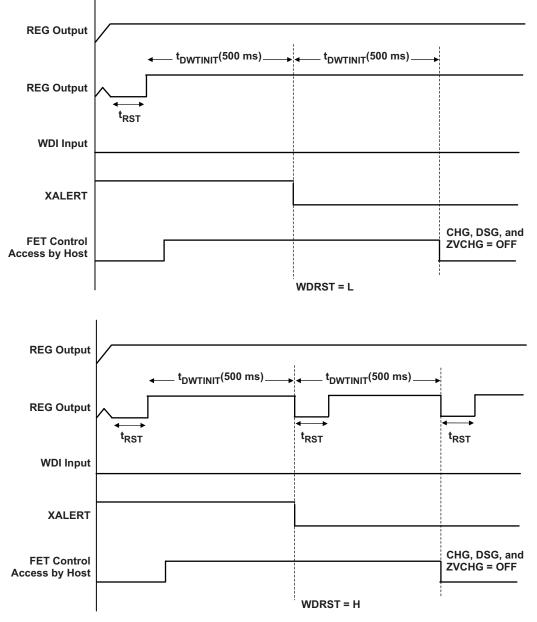


Figure 3. Watchdog Timing Chart – WDI Fault at Start-up

www.ti.com

NSTRUMENTS

EXAS

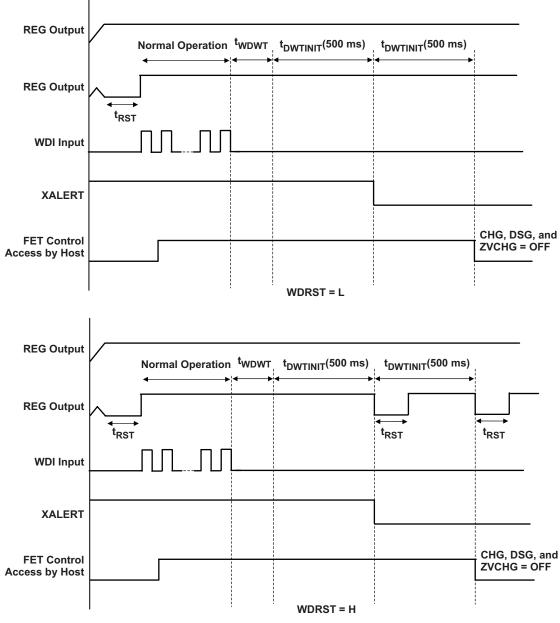


Figure 4. Watchdog Timing Chart – WDI Fault After Startup

DSG and CHG NCH FET DRIVER CONTROL

The bq29330 drives either the DSG or CHG FET off if an OL, SCC, or SCD safety threshold is breached depending on the current direction. The host can force any FET on or off only if the bq29330 integrated protection control allows.

The default-state of the FET drive is off. A host can control the FET drive by programming OUTPUT_CONTROL (b2...b0), where b0 is used to control the discharge FET, b1 is used to control the charge FET, and b2 is used to control the ZVCHG FET. These controls are only valid when not in the initialized state. The CHG drive FET can be powered by PACK and the DSG FET can be powered by BAT.

When the bq29330 powers down, the NCH FET drivers power down to GND causing the FETs to turn off.

www.ti.com

PRECHARGE AND 0 V CHARGING

The bq29330 supports both a charger that has a precharge mode and one that does not. The bq29330 also supports charging even when the battery falls to 0 V. In order to charge, the charge FET (CHG) must be turned on to create a current path. When the V_{BAT} is ~0 V, the $V_{(PACK)}$ is as low as the battery voltage. In this case, the supply voltage for the device is too low to operate.

POWER MODES

The bq29330 has three power modes, normal, sleep, and ship. The following table outlines the operational functions during these power modes.

POWER MODE	TO ENTER POWER MODE	TO EXIT POWER MODE	MODE DESCRIPTION
Normal	STATE_CONTROL, SLEEP($b0$) = 0 and STATE_CONTROL, SHIP ($b1$) = 0		The battery is in normal operation with protection, power management and battery monitoring functions available and operating.
			The supply current of this mode varies as the host can enable and disable various power management features.
Sleep	STATE_CONTROL, SLEEP(b0) = 1 and STATE_CONTROL, SHIP (b1) = 0	STATE_CONTROL, SLEEP(b0) = 0	CHG, DSG, and ZVCHG OFF, OL, SCC, and SCD function is disabled.
			Cell AMP, GPOD , CELL BAL, and WDF is not disabled
Ship	STATE_CONTROL, SHIP (b1) = 1 and supply at the PACK < V _{WAKE}	Supply voltage to PACK Supply	The bq29330 is completely shut down as in the sleep mode. In addition, the REG output is disabled, I ² C interface is powered down, and memory is not valid.

 Table 1. Outlines the Operational Functions

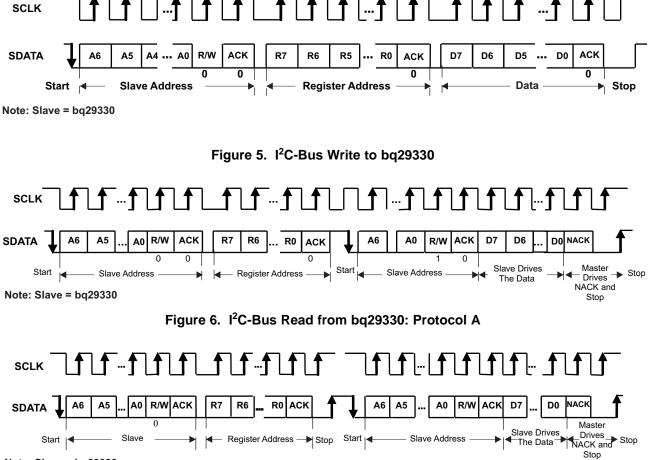
VOLTAGE BASED EXIT FROM SHUTDOWN

If a voltage greater than V_{STARTUP} is applied to the PACK pin, then the bq29330 exits shutdown and enters normal mode.

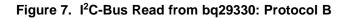
COMMUNICATIONS

The l²C-compatible serial communications provides read and write access to the bq29330 data area. The data is clocked via separate data (SDATA) and clock (SCLK) pins. The bq29330 acts as a slave device and does not generate clock pulses. Communication to the bq29330 can be provided from GPIO pins or an l²C supporting port of a host system controller. The slave address for the bq29330 is 7 bits, and the value is 0100 000 (0x20).

	(MSB)		I2C Address +R/W bit							
	(MSB)		I2C Address (0x20) (LSB)							
Write	0	1	0	0	0	0	0	0		
Read								1		


The bq29330 does NOT have the following functions compatible with the I²C specification.

- The bq29330 is always regarded as a slave.
- The bq29330 does not support the General Code of the I²C specification, and therefore will not return an ACK but may return a NACK.
- The bq29330 does not support the Address Auto Increment, which allows continuous reading and writing.
- The bq29330 will allow data to be written or read from the same location without re-sending the location address.


18

Copyright © 2005–2012, Texas Instruments Incorporated

SLUS673E-SEPTEMBER 2005-REVISED MARCH 2012

Note: Slave = bq29330

REGISTER MAP

The bq29330 has nine addressable registers. These registers provide status, control, and configuration information for the battery protection system.

NAME	ADDR	TYPE	DESCRIPTION
STATUS	0x00	R	Status register
OUTPUT_CONTROL	0x01	R/W	Output pin control from system host and external pin status
STATE_CONTROL	0x02	R/W	State control
FUNCTION_CONTROL	0x03	R/W	Function control
CELL_SEL	0x04	R/W	Battery cell select for cell translation and balance bypass and select mode for calibration
OLV	0x05	R/W	Overload voltage threshold
OLD	0x06	R/W	Overload delay time
SCC	0x07	R/W	Short circuit in charge current threshold voltage and delay
SCD	0x08	R/W	Short circuit in discharge current threshold voltage and delay

www.ti.com

SLUS673E - SEPTEMBER 2005-REVISED MARCH 2012

		TYPE	BIT MAP								
NAME	ADDR		B7	B6	B5	B4	B3	B2	B1	B0	
STATUS	0x00	R	0	0	0	ZV	WDF	OL	SCC	SCD	
OUTPUT_CONTROL	0x01	R/W	0	0	PMS_CHG	GPOD	XZV	CHG	DSG	LTCLR	
STATE_ CONTROL	0x02	R/W	0	0	0	RSNS	WDRST	WDDIS	SHIP	SLEEP	
FUNCTION_ CONTROL	0x03	R/W	0	0	0	0	TOUT	BAT	PACK	VMEN	
CELL_SEL	0x04	R/W	CB3	CB2	CB1	CB0	CAL1	CAL0	CELL1	CELL0	
OLV	0x05	R/W	0	0	0	OLV4	OLV3	OLV2	OLV1	OLV0	
OLD	0x06	R/W	0	0	0	0	OLD3	OLD2	OLD1	OLD0	
SCC	0x07	R/W	SCCD3	SCCD2	SCCD1	SCCD0	SCCV3	SCCV2	SCCV1	SCCV0	
SCD	0x08	R/W	SCDD3	SCDD2	SCDD1	SCDD0	SCDV3	SCDV2	SCDV1	SCDV0	

STATUS: Status register

STATUS REGISTER (0x00)										
7	6	5	4	3	2	1	0			
0	0	0	ZV	WDF	OL	SCC	SCD			

The STATUS register provides information about the current state of the bq29330.

STATUS b0 (SCD): This bit indicates a short circuit in discharge condition.

0 = Voltage below the short circuit in discharge threshold (default).

1 = Voltage greater than or equal to the short circuit in discharge threshold.

STATUS b1 (SCC): This bit indicates a short circuit in charge condition in the charge direction.

0 = Voltage below the short circuit in charge threshold (default).

1 = Voltage greater than or equal to the short circuit in charge threshold.

STATUS b2 (OL): This bit indicates an overload condition.

- 0 = Voltage less than or equal to the overload threshold (default).
- 1 = Voltage greater than overload threshold.

STATUS b3 (WDF): This bit indicates a watchdog fault condition has occurred.

- 0 = 32-kHz oscillation is normal (default).
- 1 = 32-kHz oscillation stopped or not started, and the watchdog has timed out.

STATUS b4 (ZV): This bit indicates ZVCHG output is clamped.

0 = ZVCHG pin is not clamped (default).

1 = ZVCHG pin is clamped.

STATUS b5, b6, b7: Reserved

OUTPUT_CONTROL : Output control register

	OUTPUT_CONTROL REGISTER (0x01)									
7	6	5	4	3	2	1	0			
0	0	PMS_CHG	GPOD	XZV	CHG	DSG	LTCLR			

The OUTPUT_CONTROL register controls the outputs of the bq29330 and can show the state of the external pin corresponding to the control.

OUTPUT_ CONTROL b0 (LTCLR): When a fault is latched, this bit releases the fault latch when toggled from 0 to 1 and back to 0 (default =0).

0 = (default)

0->1 ->0 clears the fault latches, allowing STATUS to be cleared on its next read.

OUTPUT_ CONTROL b1 (DSG): This bit controls the external discharge FET.

0 = Discharge FET is off and is controlled by the system host (default).

1 = Discharge FET is on, and the bq29330 is in normal operating mode.

OUTPUT_ CONTROL b2 (CHG): This bit controls the external charge FET.

0 = Charge FET is off, and is controlled by the system host (default).

1 = Charge FET is on, and the bq29330 is in normal operating mode.

OUTPUT_CONTROL b3(ZV): This bit enables or disables the precharge function.

0 = ZVCHG FET is on, and is controlled by the system host (default).

1 = ZVCHG FET is off, and the bq29330 is in normal operating mode.

OUTPUT_CONTROL b4 (GPOD): This bit enables or disables the GPOD output.

0 = GPOD is high impedance (default).

1 = GPOD output is active (GND).

OUTPUT_CONTROL b5 (PMS_CHG): This bit enables the CHG output for 0-V charge, when PMS terminal is connected to Pack.

0 = CHG FET is off (When PMS = GND, default).

1 = CHG FET is on by connecting CHG and PACK terminal. (When PMS = PACK, default).

STATE_CONTROL : State control register

STATE_CONTROL REGISTER (0x02)										
7	6	5	4	3	2	1	0			
0	0	0	RSNS	WDRST	WDDIS	SHIP	SLEEP			

The STATE_CTL register controls the outputs of the bq29330 and can be used to clear certain states.

STATE_CONTROL b0 (SLEEP): This bit is used to enter the sleep power mode.

- 0 = bq29330 exits sleep mode (default).
- 1 = bq29330 enters the sleep mode.

STATE_CONTROL b1 (SHIP): This bit is used to enter the ship power mode when Pack supply voltage is not applied.

0 = bq29330 is in normal mode (default).

1 = bq29330 enters ship mode when pack voltage is removed.

 $\label{eq:state_control} \mathsf{STATE}_\mathsf{CONTROL} \ \mathsf{b2} \ (\mathsf{WDDIS}) \text{: This bit is used to enable the watchdog timer.}$

- 0 = Watchdog timer is enabled (default).
- 1 = Watchdog timer is disabled.

STATE_CONTROL b3 (WDRST): This bit is used to enable the reset for GC, when watchdog timer is active.

- 0 = Reset output is disabled, when watchdog timer is active (default).
- 1 = 2 Times reset output is enabled, when watchdog timer is active.

STATE_CONTROL b4 (RSNS): This bit sets the OL, SCC, and SCD thresholds into a range suitable for a low sense resistor value by dividing the OLV, SCCV, and SCDV selected voltage thresholds by 2.

- 0 = Current protection voltage threshold as programmed (default)
- 1 = Current protection voltage thresholds divided by 2 as programmed

 $\ensuremath{\mathsf{STATE_CONTROL}}$ b6..7 (0): These bits are not used and should be set to 0.

FUNCTION_CONTROL : Function control register

FUNCTION_CTL REGISTER (0x03)										
7	6	5	4	3	2	1	0			
0	0	0	0	TOUT	BAT	PACK	VMEN			

The FUNCTION_CONTROL register enables and disables features of the bq29330.

FUNCTION_CONTROL b0 (VMEN): This bit enables or disables the cell and battery voltage monitoring function.

- 0 = Disable voltage monitoring (default). CELL output is pulled down to GND level.
- 1 = Enable voltage monitoring

FUNCTION_CONTROL b1 (PACK): This bit is used to translate the PACK input to the CELL+, CELL– pins when VMEN = 1. The PACK input voltage is divided by 18 and is presented on CELL+, CELL– pins regardless of the CELL_SEL register settings.

- 0 = CELL_SEL (b0, b1) settings determine CELL+, CELL- output when VMEN = 1(default).
- 1 = PACK input translated to CELL output regardless of CELL_SEL (b0, b1) selection when VMEN=1

FUNCTION_CTL b2 (BAT): This bit is used to translate the BAT input to the CELL+, CELL– pins when VMEN=1. The VC5 input voltage is divided by 18 and is presented on CELL+, CELL– regardless of the CELL_SEL register settings.

- 0 = CELL_SEL (b0, b1) settings determine CELL+, CELL– output when VMEN = 1(default).
- 1 = BAT input translated to CELL+, CELL– output regardless of CELL_SEL (b0, b1) selection when VMEN = 1

This bit priority is higher than PACK(b1).

FUNCTION_CONTROL b3 (TOUT): This bit controls the power to the thermistor.

- 0 = Thermistor power is off (default).
- 1 = Thermistor power is on.

CELL_SEL : Cell select register

	CELL_SEL REGISTER (0x04)									
7	6	5	4	3	2	1	0			
CB3	CB2	CB1	CB0	CAL1	CAL0	CELL1	CELL0			

This register determines cell selection for voltage measurement and translation, cell balancing, and the operational mode of the cell voltage monitoring.

CELL_SEL b0-b1 (CELL0-CELL1): These two bits select the series cell for voltage measurement translation.

CELL1	CELL0	SELECTED CELL
0	0	VC4-VC5, Bottom series element (default)
0	1	VC4–VC3, Second lowest series element
1	0	VC3–VC2, Second highest series element
1	1	VC1-VC2, Top series element

-0.170 V

-0.175 V

-0.180 V

–0.185 V

-0.190 V

-0.195 V

-0.200 V

-0.205 V

www.ti.com

EXAS

SLUS673E – SEPTEMBER 2005 – REVISED MARCH 2012

CELL_SEL b2-b3 (CAL1, CAL0): These bits determine the mode of the voltage monitor block

CAL1	CAL0	SELECTED MODE
0	0	Cell translation for selected cell (default)
0	1	Offset measurement for selected cell
1	0	Monitor the VREF value for gain calibration
1	1	Monitor the V_{REF} directly value for gain calibration, bypassing the translation circuit

CELL_SEL b4-b7 (CB0 - CB3): These 4 bits select the series cell for cell balance bypass path.

CELL_SEL b4 (CB0): This bit enables or disables the bottom series cell balance charge bypass path.

0 = Disable bottom series cell balance charge bypass path (default)

1 = Enable bottom series cell balance charge bypass path

CELL_SEL b5 (CB1): This bit enables or disables the second lowest series cell balance charge bypass path.

- 0 = Disable series cell balance charge bypass path (default)
- 1 = Enable series cell balance charge bypass path

CELL_SEL b6 (CB2): This bit enables or disables the second highest cell balance charge bypass path.

- 0 = Disable series cell balance charge bypass path (default)
- 1 = Enable series cell balance charge bypass path

CELL_SEL b7 (CB3): This bit enables or disables the highest series cell balance charge bypass path.

- 0 = Disable series cell balance charge bypass path (default)
- 1 = Enable series cell balance charge bypass path

OLV: Overload Voltage threshold register

-0.070 V

-0.075 V

-0.080 V

-0.085 V

OLV REGISTER (0x05)									
7	6	5	4	3	2	1	0		
0	0	0	OLV4	OLV3	OLV2	OLV1	OLV0		

0x14

0x15

0x16

0x17

-0.150 V

-0.155 V

-0.160 V

-0.165 V

OLV (b4–b0): These four bits select the value of the overload threshold with a default of 0000.

OLV (b4-b0) configuration bits with corresponding voltage threshold⁽¹⁾ 0x00 -0.050 V 0x08 -0.090 V 0x10 -0.130 V 0x18 0x01 -0.055 V -0.095 V 0x09 0x11 -0.135 V 0x19 0x02 -0.060 V 0x0a -0.100 V 0x12 -0.140 V 0x1a 0x03 -0.065 V 0x0b -0.105 V 0x13 –0.145 V 0x1b

-0.110 V

–0.115 V

-0.120 V

-0.125 V

OLV (b5–b7): These bits are not used and should be set to 0.

0x0c

0x0d

0x0e

0x0f

(1) If RSNS bit is FUNCTION_CONTROL = 1, then the corresponding voltage threshold is divided by 2.

0x04

0x05

0x06

0x07

0x1c

0x1d

0x1e

0x1f

SLUS673E - SEPTEMBER 2005-REVISED MARCH 2012

OLD: Overload Delay time configuration register

	OLD REGISTER (0x07)									
7	6	5	4	3	2	1	0			
0	0	0	0	OLD3	OLD2	OLD1	OLD0			

OLD(b3-b0): The	OLD(b3-b0): These four bits select the value of the delay time for overload with a default of 0000.											
0x00	1 ms	0x04	9 ms	0x08	17 ms	0x0c	25 ms					
0x01	3 ms	0x05	11 ms	0x09	19 ms	0x0d	27 ms					
0x02	5 ms	0x06	13 ms	0x0a	21 ms	0x0e	29 ms					
0x03	7 ms	0x07	15 ms	0x0b	23 ms	0x0f	31 ms					

SCC : Short Circuit In Charge configuration register

	SCC REGISTER (0x08)											
7	6	5	4	3	2	1	0					
SCCD3	SCCD2	SCCD1	SCCD0	SCCV3	SCCV2	SCCV1	SCCV0					

This register selects the short circuit in charge voltage threshold and delay.

SCCV (b3-b0) :	SCCV (b3–b0) : These lower nibble bits select the value of the short circuit in charge voltage threshold with 0000 as the default. ⁽¹⁾											
0x00	0.100 V	0x04	0.200 V	0x08	0.300 V	0x0c	0.400 V					
0x01	0.125 V	0x05	0.225 V	0x09	0.325 V	0x0d	0.425 V					
0x02	0.150 V	0x06	0.250 V	0x0a	0.350 V	0x0e	0.450 V					
0x03	0.175 V	0x07	0.275 V	0x0b	0.375 V	0x0f	0.475 V					

(1) If RSNS bit is FUNCTION_CTL = 1, then the corresponding voltage threshold is divided by 2.

SCCD (b7–b4): These upper nibble bits select the value of the short circuit in charge delay time. Exceeding the short circuit in charge voltage threshold for longer than this period turns off the CHG and DSG outputs. 0000 is the default.											
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0c	732 µs				
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0d	793 µs				
0x02	122 µs	0x06	366 µs	0x0a	610 µs	0x0e	854 µs				
0x03	183 µs	0x07	427 µs	0x0b	671 µs	0x0f	915 µs				

SCD : Short Circuit In Discharge configuration register

	SCD REGISTER (0x08)										
7 6 5 4 3 2 1 0											
SCDD3	SCDD2	SCDD1	SCDD0	SCDV3	SCDV2	SCDV1	SCDV0				

This register selects the short circuit in discharge voltage threshold and delay.

SCDV(b3-b0) :	SCDV(b3-b0) : These lower nibble bits select the value of the short circuit in discharge voltage threshold with 0000 as the default. ⁽¹⁾												
0x00	-0.100 V	0x04	-0.200 V	0x08	-0.300 V	0x0c	-0.400 V						
0x01	-0.125 V	0x05	-0.225 V	0x09	-0.325 V	0x0d	-0.425 V						
0x02	-0.150 V	0x06	-0.250 V	0x0a	-0.350 V	0x0e	-0.450 V						
0x03	–0.175 V	0x07	–0.275 V	0x0b	–0.375 V	0x0f	-0.475 V						

(1) If RSNS bit is FUNCTION_CTL = 1, then the corresponding voltage threshold is divided by 2.

SCCD (b7–b4): These upper nibble bits select the value of the short circuit in charge delay time. Exceeding the Short Circuit in charge voltage threshold for longer than this period will turn off the CHG and DSG outputs. 0000 is the default.											
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0c	732 µs				
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0d	793 µs				
0x02	122 µs	0x06	366 µs	0x0a	610 µs	0x0e	854 µs				
0x03	183 µs	0x07	427 µs	0x0b	671 µs	0x0f	915 µs				

NSTRUMENTS

Texas

REVISION HISTORY

С	nanges from Original (September 2005) to Revision A	Page
•	Changed package name From: SSOP(DBT) To: TSSOP(DBT) in the Ordering Information Table	2
•	Changed the SCLK pin description From: Open-drain bi-directional serial interface clock with internal $10-k\Omega$ pullup to V _{REG} To: Open-drain serial interface clock with internal $10-k\Omega$ pullup to V _{REG}	4
•	Changed Supply Current 2 From: XALERT, SCLK, SDATA. ZVCHG = off, Input WDI, To: XALERT, SCLK, SDATA. ZVCHG = off, WDI = 32 kHz,	
•	Changed Calibration of Cell Voltage Monitor Amplifier Gain, Step 3 - From: Set CAL1=1, CAL0=1, CELL1=0, CELL0=0, VMEN=1. To: Set CAL1=1, CAL0=0, CELL1=0, CELL0=0, VMEN=1.	12
С	nanges from Revision A (December 2005) to Revision B	Page
•	Deleted the QFN(RHB) package from the Ordering Information Table, the Package Option Pin Diagrams, and the Pin Functions table.	2
С	nanges from Revision B (August 2006) to Revision C	Page
•	Changed BAT Pin description From: Charge pump, charge N-CH FET gate drive To: Device power supply input	3
•	Changed ELECTRICAL CHARACTERISTICS - CURRENT PROTECTION DETECTION section - positive and negative values were not properly displayed.	8
•	Changed Figure 3 - Watchdog Timing Chart – WDI Fault at Start-up	15
•	Added Figure 4 - Watchdog Timing Chart – WDI Fault After Startup	16
С	nanges from Revision C (March 2009) to Revision D	Page
•	Added the RSM package to the Ordering Information Table	2
•	Added the RSM pin out package illustration.	3
С	nanges from Revision D (July 2009) to Revision E	Page
•	Changed the device numbers in the Ordering Information Table From: bq29330ADBT and bq29330ARSM To: bq29330DBT and bq29330RSM	2
•	Added Thermal Information	2
•	Changed the AC Timing Requiremenst Table, f _{SCL} - Clock frequency MAX value From: 400 kHz To: 100 kHz	10

6-Aug-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ29330DBT	NRND	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29330	
BQ29330DBTG4	NRND	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29330	
BQ29330DBTR	NRND	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29330	
BQ29330DBTRG4	NRND	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29330	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

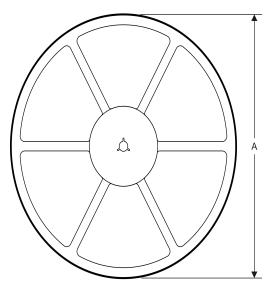
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

6-Aug-2014

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

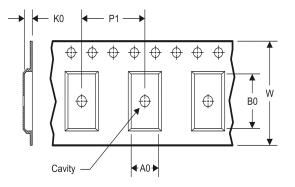
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

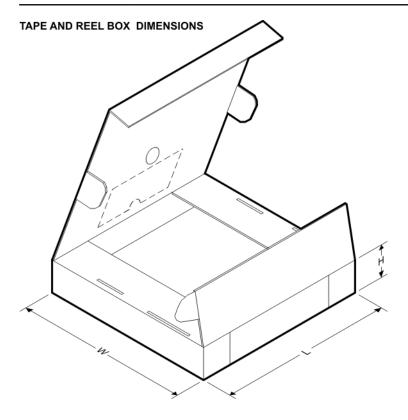
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

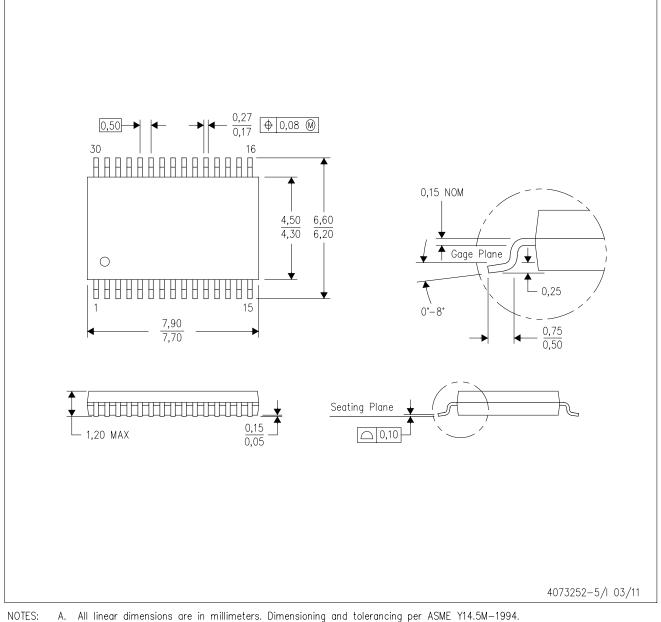

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ29330DBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ29330DBTR	TSSOP	DBT	30	2000	367.0	367.0	38.0

DBT (R-PDSO-G30)

PLASTIC SMALL OUTLINE

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated