

HD3SS3411

SLASEB6-NOVEMBER 2015

HD3SS3411 One Channel Differential 2:1 Mux/Demux

Features

- Compatible with Multiple Interface Standards Including FPD Link, LVDS, PCIE Gen II, III, XAUI, and USB3.1
- Operates up to 10 Gbps
- Wide -3 dB Differential BW of ~ 7.5 GHz
- Excellent Dynamic Characteristics (at 4 GHz)
 - Insertion Loss = -1.1 dB
 - Return Loss = -11.3 dB
 - Off Isolation = -19 dB
- Bidirectional "Mux/De-Mux" Differential Switch
- Supports Common Mode Voltage 0 V to 2 V
- Single Supply Voltage V_{CC} of 3.3 V ±10%
- Industrial Temperature Range of -40°C to 105°C

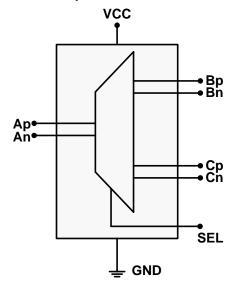
Applications

- Industrial Data Switching
- Desktop and Notebook PCs
- Server/Storage Area Networks
- PCI Express Backplanes
- Shared I/O Ports

3 Description

The HD3SS3411 is a high-speed bi-directional passive switch in multiplexer or demultiplexer configurations. Based on control pin SEL, the device provides switching of differential channels between Port B to Port A or Port C to Port A.

The HD3SS3411 is a generic analog differential passive switch that can work for any high speed interface application as long as it is biased at a common mode voltage range of 0 V to 2 V and has differential signaling with differential amplitude up to 1800 mVpp. The device employs adaptive tracking that ensures the channel remains unchanged for entire common mode voltage range.


Excellent dynamic characteristics of the device allow high speed switching with minimum attenuation to the signal eye diagram with little added jitter. It consumes < 2 mW of power when operational and has a shutdown mode exercisable by OEn pin resulting $< 2 \mu W$.

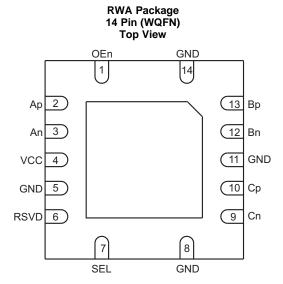
Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
HD3SS3411	MOEN (4.4)	2 50 mm v 2 50 mm
HD3SS3411I	WQFN (14)	3.50 mm x 3.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents


1	Features 1	8	Application Information and Implementation	9
2	Applications 1		8.1 Application Information	9
3	Description 1		8.2 Typical Application	9
4	Revision History2		8.3 Design Requirements	
5	Pin Configuration and Functions3		8.4 Detailed Design Procedure	10
6	Specifications4		8.5 Application Curves	12
•	6.1 Absolute Maximum Ratings	ο ο	Power Supply Recommendations	12
	6.2 ESD Ratings	10	Layout	13
	6.3 Recommended Operating Conditions		10.1 Layout Guidelines	13
	6.4 Thermal Information		10.2 Layout Example	14
	6.5 Electrical Characteristics5	11	Device and Documentation Support	15
	6.6 Timing Requirements5		11.1 Documentation Support	15
	6.7 Typical Characteristics		11.2 Community Resources	15
7	Detailed Description 7		11.3 Trademarks	15
	7.1 Overview		11.4 Electrostatic Discharge Caution	15
	7.2 Functional Block Diagram 7		11.5 Glossary	15
	7.3 Feature Description	40	Mechanical, Packaging, and Orderable Information	15
	7.4 Device Functional Modes 8			

4 Revision History

DATE	REVISION	NOTES
November 2015	*	Initial release.

www.ti.com

5 Pin Configuration and Functions

Pin Functions

NAME	NO	TYPE	DESCRIPTION
Ар	2	I/O	Port A, High Speed Positive Signal
An	3	I/O	Port A, High Speed Negative Signal
Вр	13	I/O	Port B, High Speed Positive Signal
Bn	12	I/O	Port B, High Speed Negative Signal
Ср	10	I/O	Port C, High Speed Positive Signal
Cn	9	I/O	Port C, High Speed Negative Signal
GND	5,8,11,14, Pad	G	Ground
OEn	1	I	Active Low Chip Enable L: Normal operation H: Shutdown
RSVD	6	I/O	Reserved Pin – connect or pull-down to GND
SEL	7	1	Port select pin L: Port A to Port B H: Port A to Port C
VCC	4	Р	3.3 V power

Copyright © 2015, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage range (V _{CC})	Absolute minimum/maximum supply voltage range	-0.5	4	V
Valtana	Differential I/O	-0.5	2.5	.,
Voltage range	Control pin	-0.5	V _{DD} + 0.5	V

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V Flootunetatio diselegano	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	\/	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±500	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{CC}	Supply voltage	3	3.6	٧
V_{IH}	Input high voltage (SEL, OEn Pin)	2	V _{CC}	٧
V_{IL}	Input low voltage (SEL OEn Pin)	-0.1	0.8	V
V_{Diff}	High speed signal pins differential voltage	0	1.8	V_{PP}
V_{CM}	Common mode voltage (differential pins)	0	2	٧
T _A	Operating free-air temperature	-40	105	Ô

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	RWA (WQFN)	UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	50.5	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	63.1	
$R_{\theta JB}$	Junction-to-board thermal resistance	26.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	2.2	C/VV
ΨЈВ	Junction-to-board characterization parameter	26.5	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	7.3	

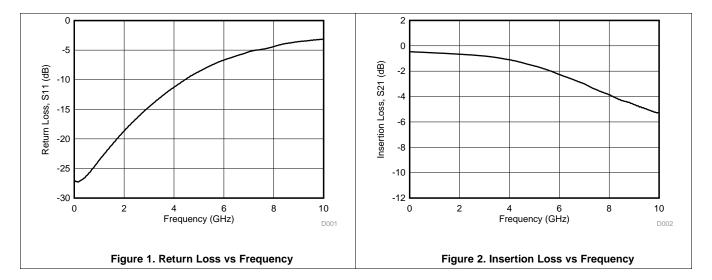
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{CC}	Device active Current	V _{CC} = 3.3 V, OEn = 0		0.6	0.8	mA
I _{STDN}	Device shutdown Current	V _{CC} = 3.3 V, OEn = 0		0.3	0.6	μA
C _{ON}	Outputs ON Capacitance			0.6		pF
R _{ON}	Output ON resistance	$V_{CC} = 3.3 \text{ V}; V_{CM} = 0 \text{ V to 2 V};$ $I_{O} = -8 \text{ mA}$		5	8	Ω
ΔR _{ON}	On resistance match between pairs of the same channel	$V_{CC} = 3.3 \text{ V} ; -0.35 \text{ V} \le V_{IN} \le 2.35 \text{ V};$ $I_{O} = -8 \text{ mA}$			0.5	Ω
R _(FLAT_ON)	On resistance flatness (R _{ON(MAX)} – R _{ON(MAIN)}	V _{DD} = 3.3 V; −0.35 V ≤ V _{IN} ≤ 2.35 V			1	Ω
I _{IH(CTRL)}	Input high current, control pins (SEL, OEn)				1	μΑ
I _{IL(CTRL)}	Input low current, control pins (SEL, OEn)				1	μΑ
		[A/B/C][p/n] $V_{IN} = 2 \text{ V}$ for selected port, A and B with SEL= 0, and A and C with SEL = V_{CC}			1	μΑ
I _{IH(HS)}	Input high current, high speed pins	[A/B/C][p/n] $V_{IN} = 2$ V for non-selected port, C with SEL= 0, and B with SEL = V_{CC} (Note there is a 20 KΩ pull-down in non-selected port)		100	140	μА
I _{IL(HS)}	Input low current, high speed pins	[A/B/C][p/n]			1	μA
High Spee	d Performance				*	
		f = 0.3 MHz		-0.5		
l _L	Differential Insertion Loss	f = 2.5 GHz		-0.7		dB
		f = 4 GHz		-1.1		
BW	-3 dB Bandwidth			7.5		GHz
		f = 0.3 MHz		-26.4		
R_L	Differential return loss	f = 2.5 GHz		-16.6		dB
		f = 4 GHz		-11.3		
		f = 0.3 MHz		- 75		
O _I	Differential OFF isolation	f = 2.5 GHz		-22		dB
		f = 4 GHz		-19		
Xtalk	Differential Crosstalk	f = 4 GHz		-35		dB


6.6 Timing Requirements

		MIN	NOM	MAX	UNIT
t _{PD}	Switch propagation delay			80	ps
t _{SW}	Switching time			0.5	ns
t _{SK_INTRA}	Intra-pair output skew			5	ps

Copyright © 2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

6.7 Typical Characteristics

7 Detailed Description

7.1 Overview

www.ti.com

The HD3SS3411 is a high-speed bi-directional passive switch in mux or demux configurations. Based on control pin SEL, the device switches one differential channels between Port B or Port C to Port A.

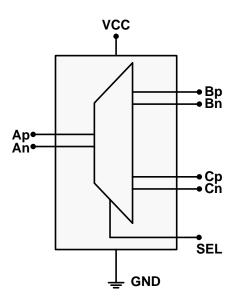

The HD3SS3411 is a generic analog differential passive switch that can work for any high speed interface applications as long as it is biased at a common mode voltage range of 0 V to 2 V and has differential signaling with differential amplitude up to 1800 mVpp. The device employs an adaptive tracking that ensures the channel remains unchanged for entire common mode voltage range.

Table 1. MUX Pin Connections⁽¹⁾

PORT A CHANNEL	PORT B OR PORT C CHANN CHAI	
	SEL = L	SEL = H
Ар	Вр	Ср
An	Bn	Cn

(1) The HD3SS3411 can tolerate polarity inversions for all differential signals on Ports A. B and C. Care should be taken to ensure the same polarity is maintained on Port A vs. Port B/C.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Output Enable and Power Savings

Copyright © 2015, Texas Instruments Incorporated

The HD3SS3411 has two power modes, normal operating mode and shutdown mode. During shutdown mode. the device consumes very-little current to save the maximum power. The OEn control pin is used to toggle between the two modes.

HD3SS3411 consumes < 2 mW of power when operational and has a shutdown mode exercisable by the OEn pin resulting < 20 µW.

7.4 Device Functional Modes

The OEn control pin selects the functional mode of HD3SS3411. To enter standby/shutdown mode, the OEn control pin is pulled high through a resistor and must remain high. For active/normal operation, the OEn control pin should be pulled low to GND or dynamically controlled to switch between H or L.

Table 2. Device Power Modes

OEn	Device State	Signal Pins
L	Normal	Normal
Н	Shutdown	Tri-stated

Application Information and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

HD3SS3411 mux channels have independent adaptive common mode tracking allowing RX and TX paths to have different common mode voltage simplifying system implementation and avoiding inter-operational issues.

HD3SS3411 mux does not provide common mode biasing for the channel. Therefore, it is required that the device is biased from either side for all active channels.

The HD3SS3411 supports several high-speed data protocols with a differential amplitude of < 1800 mVpp and a common mode voltage of < 2 V, as with USB 3.1 and DisplayPort 1.3. The one select input (SEL) pin can be controlled by an available GPIO pin within a system or from a microcontroller.

8.2 Typical Application

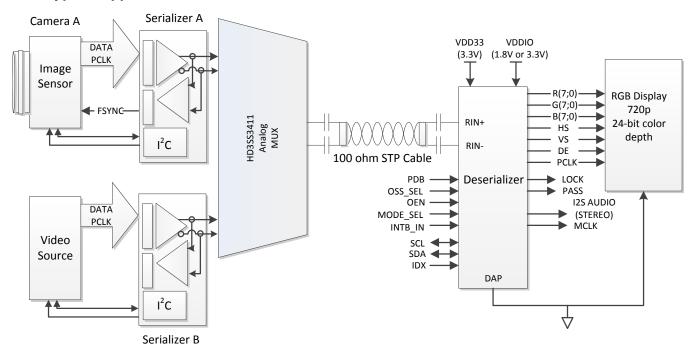


Figure 3. FPD Link III Application

Copyright © 2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

8.3 Design Requirements

For this design example, use the values shown in Table 3.

Table 3. Design Paramerters

PARAMETER	VALUE				
V _{CC} voltage	3.3 V				
Ap/n, Bp/n, Cp/n CM input voltage	0 V to 2 V				
SEL/OEn pin max voltage for low	0 V				
SEL/OEn pin min voltage for high	3.3 V				

8.4 Detailed Design Procedure

8.4.1 AC Coupling Capacitors

Many interfaces require AC coupling between the transmitter and receiver. The 0402 capacitors are the preferred option to provide AC coupling, and the 0603 size capacitors will also work. The 0805 size capacitors and C-packs should be avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor value of 0.1 μ F is best and the value should be match for the \pm signal pair. The placement should be along the TX pairs on the system board, which are usually routed on the top layer of the board.

There are several placement options for the AC coupling capacitors. Because the switch requires a bias voltage, the capacitors must only be placed on one side of the switch. If they are placed on both sides of the switch, a biasing voltage should be provided. A few placement options are shown below. In Figure 4, the coupling capacitors are placed between the switch and endpoint. In this situation, the switch is biased by the system/host controller.

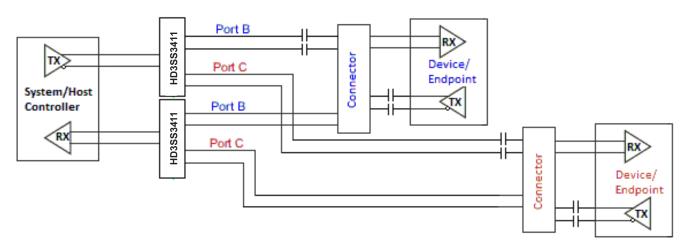


Figure 4. AC Coupling Capacitors Between Switch TX and Endpoint TX

www.ti.com

Detailed Design Procedure (continued)

In Figure 5, the coupling capacitors are placed on the host transmit pair and endpoint transmit pair. In this situation, the switch on the top is biased by the endpoint and the lower switch is biased by the host controller.

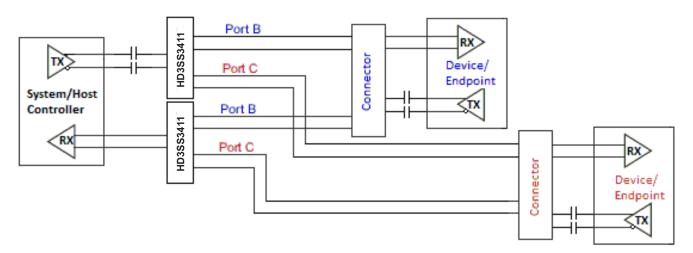


Figure 5. AC Coupling Capacitors on Host TX and Endpoint TX

If the common mode voltage in the system is higher than 2 V, the coupling capacitors are placed on both sides of the switch (shown in Figure 6). A biasing voltage of less than 2 V is required in this case.

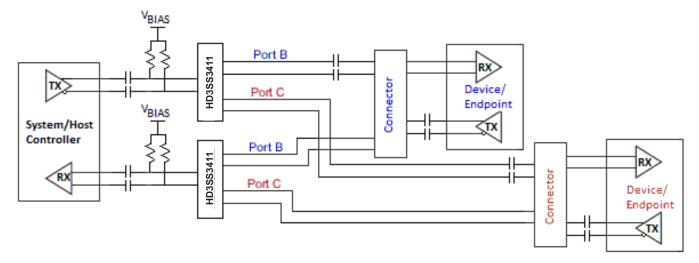
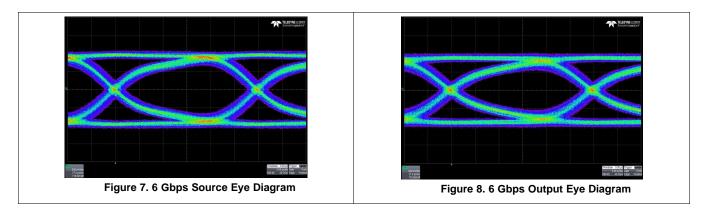



Figure 6. AC Coupling Capacitors on Both Sides of Switch

TEXAS INSTRUMENTS

8.5 Application Curves

9 Power Supply Recommendations

There is no power supply sequence required for HD3SS3411. However, it is recommended that OEn is asserted low after device supply V_{CC} is stable and in specifications. It is also recommended that ample decoupling capacitors are placed at the device V_{CC} near the pin.

10 Layout

www.ti.com

10.1 Layout Guidelines

10.1.1 Critical Routes

- The high speed differential signals must be routed with great care to minimize signal quality degradation between the connector and the source or sink of the high speed signals by following the guidelines provided in this document. Depending on the configuration schemes, the speed of each differential pair can reach a maximum speed of 10 Gbps. These signals are to be routed first before other signals with highest priority.
- Each differential pair should be routed together with controlled differential impedance of 85-Ω to 90-Ω and 50-Ω common mode impedance. Keep away from other high speed signals. The number of vias should be kept to minimum. Each pair should be separated from adjacent pairs by at least 3 times the signal trace width. Route all differential pairs on the same group of layers (Outer layers or inner layers) if not on the same layer. No 90 degree turns on any of the differential pairs. If bends are used on high speed differential pairs, the angle of the bend should be greater than 135 degrees.
- Length matching:
 - Keep high speed differential pairs lengths within 5 mil of each other to keep the intra-pair skew minimum.
 The inter-pair matching of the differential pairs is not as critical as intra-pair matching.
- Keep high speed differential pair traces adjacent to ground plane.
- · Do not route differential pairs over any plane split.
- ESD components on the high speed differential lanes should be placed nearest to the connector in a pass through manner without stubs on the differential path.
- For ease of routing, the P and N connection of the USB3.1 differential pairs to the HD3SS3411 pins can be swapped.

10.1.2 General Routing/Placement Rules

- Follow 20H rule (H is the distance to ref-plane) for separation of the high speed trace from the edge of the plane.
- Minimize parallelism of high speed clocks and other periodic signal traces to high speed lines.
- All differential pairs should be routed on the top or bottom layer (microstrip traces) if possible or on the same group of layers. Vias should only be used in the breakout region of the device to route from the top to bottom layer when necessary. Avoid using vias in the main region of the board at all cost. Use a ground reference via next to signal via. Distance between ground reference via and signal need to be calculated to have similar impedance as traces.
- All differential signals should not be routed over plane split. Changing signal layers is preferable to crossing plane splits.
- Use of and proper placement of stitching caps when split plane crossing is unavoidable to account for high frequency return current path.
- Route differential traces over a continuous plane with no interruptions.
- Do not route differential traces under power connectors or other interface connectors, crystals, oscillators, or any magnetic source.
- Route traces away from etching areas like pads, vias, and other signal traces. Try to maintain a 20 mil keep out distance where possible.
- Decoupling caps should be placed next to each power terminal on the HD3SS3411. Care should be taken to minimize the stub length of the trace connecting the capacitor to the power pin.
- Avoid sharing vias between multiple decoupling caps.
- Place vias as close as possible to the decoupling cap solder pad.
- Widen VCC/GND planes to reduce effect of static and dynamic IR drop.

Product Folder Links: HD3SS3411

TEXAS INSTRUMENTS

10.2 Layout Example

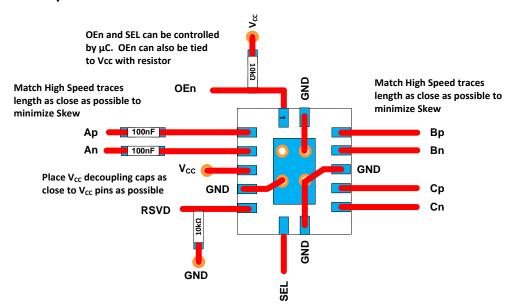


Figure 9. Layout

www.ti.com

11 Device and Documentation Support

11.1 Documentation Support

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

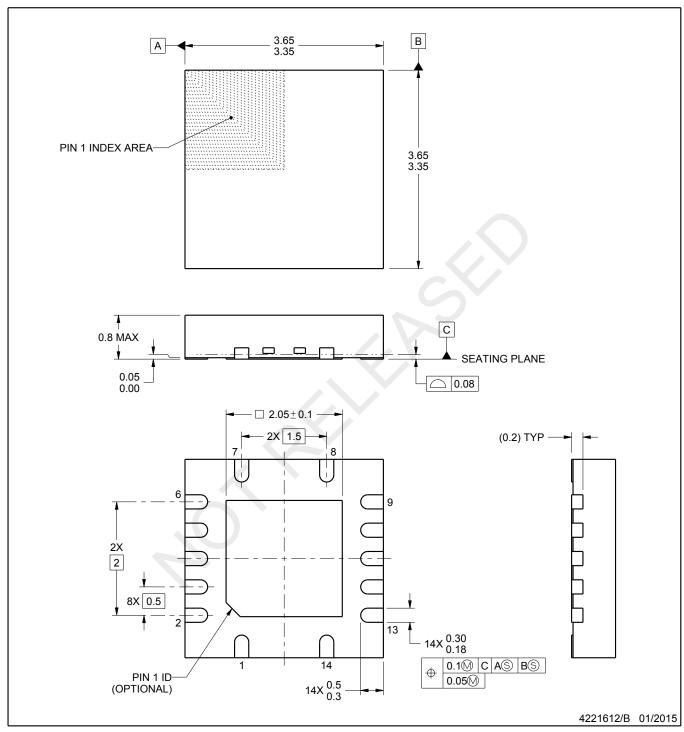
All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

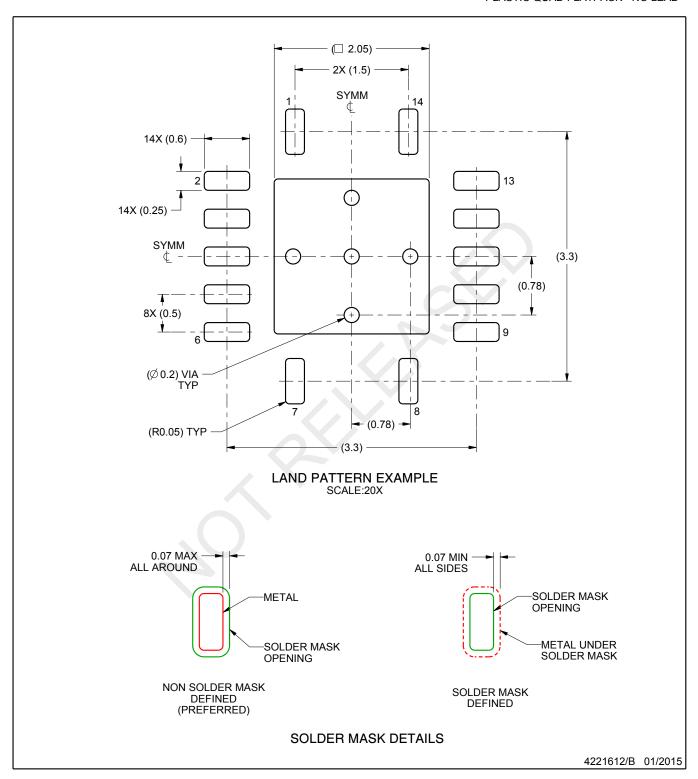
SLYZ022 — TI Glossary.


This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

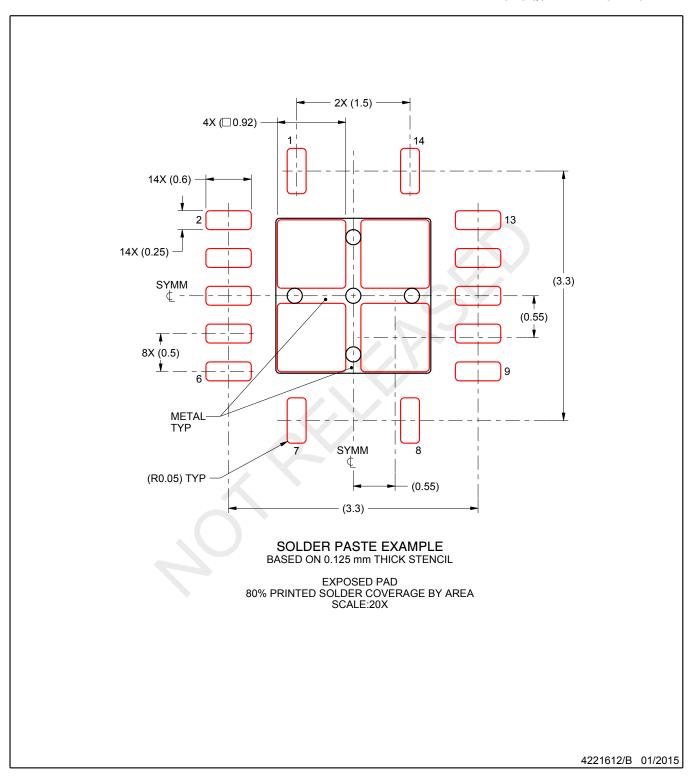
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2015, Texas Instruments Incorporated



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGE OPTION ADDENDUM

10-Jan-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
HD3SS3411IRWAR	ACTIVE	WQFN	RWA	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	34111	Samples
HD3SS3411IRWAT	ACTIVE	WQFN	RWA	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	34111	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

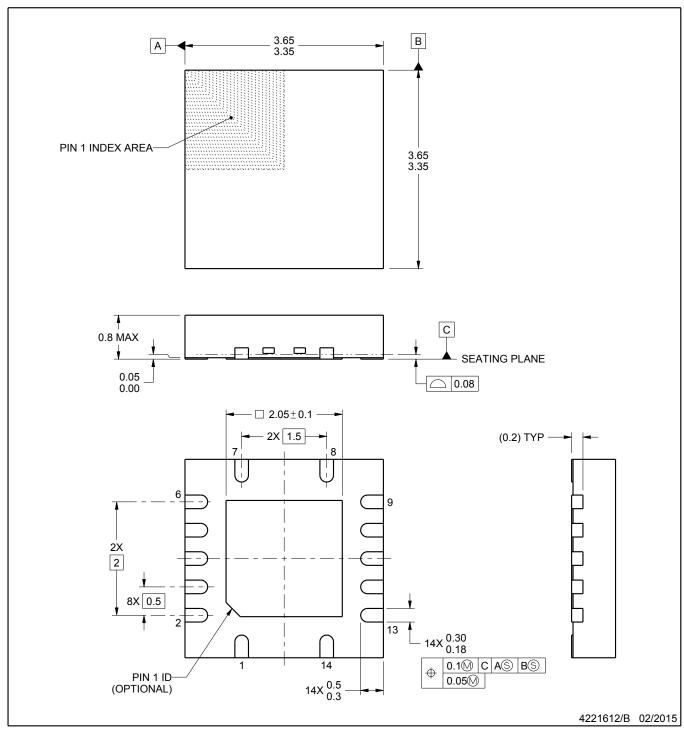
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Jan-2016

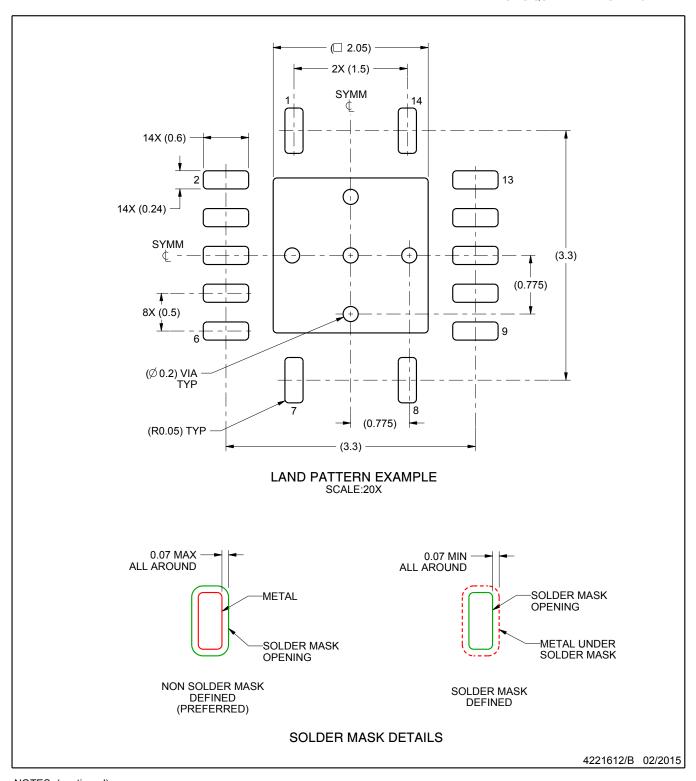
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


OTHER QUALIFIED VERSIONS OF HD3SS3411:

Automotive: HD3SS3411-Q1

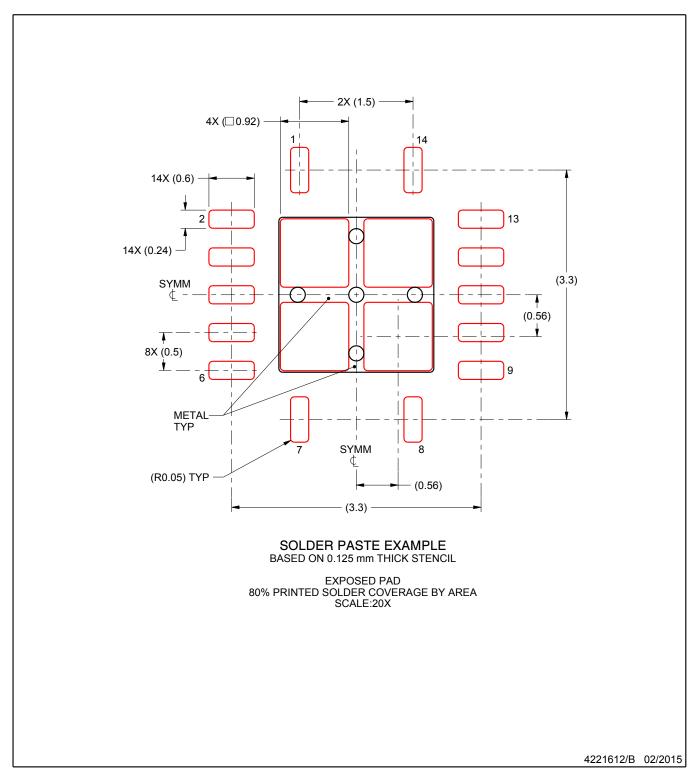
NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.