

LMH6654, LMH6655

SNOS956E - JUNE 2001 - REVISED AUGUST 2014

LMH6654, LMH6655 Single and Dual Low Power, 250 MHz, Low Noise Amplifiers

Features

- $(V_S = \pm 5 \text{ V}, T_J = 25 ^{\circ}\text{C}, \text{Typical Values Unless})$
- Voltage Feedback Architecture
- Unity Gain Bandwidth 250 MHz
- Supply Voltage Range ±2.5V to ±6V
- Slew Rate 200 V/µsec
- Supply Current 4.5 mA/channel
- Input Common Mode Voltage -5.15V to +3.7V
- Output Voltage Swing ($R_1 = 100 \Omega$) -3.6V to 3.4V
- Input Voltage Noise 4.5 nV/√Hz
- Input Current Noise 1.7 pA/√Hz
- Settling Time to 0.01% 25 ns

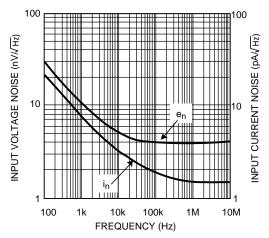
Applications

- **ADC Drivers**
- Consumer Video
- Active Filters
- Pulse Delay Circuits
- xDSL Receiver
- Pre-amps

3 Description

The LMH6654 and LMH6655 single and dual high speed voltage feedback amplifiers are designed to have unity-gain stable operation with a bandwidth of 250 MHz. They operate from ±2.5 V to ±6 V and each channel consumes only 4.5 mA. The amplifiers feature very low voltage noise and wide output swing to maximize signal-to-noise ratio, and possess a true single supply capability with input common mode voltage range extending 150 mV below negative rail and within 1.3 V of the positive rail. The high speed and low power combination of the LMH6654 and LMH6655 make these products an ideal choice for many portable, high speed applications where power is at a premium.

The LMH6654 and LMH6655 are built on TI's Advance VIP10™ (Vertically Integrated complementary bipolar process.


The LMH6654 is packaged in 5-Pin SOT-23 and 8-Pin SOIC. The LMH6655 is packaged in 8-Pin VSSOP (DGK) and 8-Pin SOIC.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LMH6654	SOIC (8)	4.90 mm x 3.91 mm
LMH6654	SOT-23 (5)	2.90 mm x 1.60 mm
LMH6655	SOIC (8)	4.90 mm x 3.91 mm
LMH6655	VSSOP (8)	3.00 mm x 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

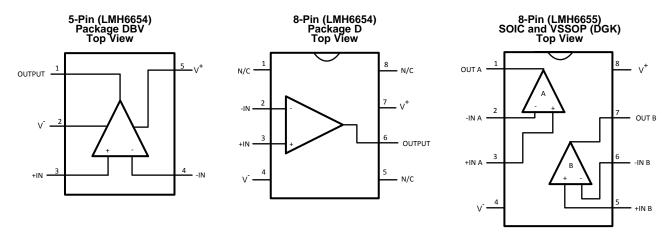
Figure 1. Input Voltage and Curernt Noise vs. Frequency ($V_s = \pm 5V$)

Table of Contents

1	Features 1	7	Application and Implementation	16
2	Applications 1		7.1 Application Information	16
3	Description 1		7.2 Typical Application	16
4	Revision History2	8	Power Supply Recommendations	20
5	Pin Configuration and Functions		8.1 Power Dissipation	20
6	Specifications4	9	Layout	20
•	6.1 Absolute Maximum Ratings		9.1 Layout Guidelines	20
	6.2 Handling Ratings	10	Device and Documentation Support	<mark>2</mark> 1
	6.3 Recommended Operating Conditions		10.1 Documentation Support	21
	6.4 Thermal Information		10.2 Electrostatic Discharge Caution	21
	6.5 ±5V Electrical Characteristics		10.3 Glossary	21
	6.6 5V Electrical Characteristics7	11	Mechanical, Packaging, and Orderable	24
	6.7 Typical Characteristics9		Information	2

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


C	hanges from Revision D (March 2013) to Revision E	Page
•	Changed data sheet structure and organization. Added, updated, or renamed the following sections: Device Information Table, Application and Implementation; Power Supply Recommendations; Device and Documentation Support; Mechanical, Packaging, and Ordering Information. Deleted Switching Characteristics due to redundancy.	1
•	Changed from Junction Temperature Range to "Operating Temperature Range"	4
•	Deleted T _J = 25°C	5
<u>•</u>	Deleted T _J = 25°C	7
C	hanges from Revision C (March 2013) to Revision D	Page
•	Changed layout of National Data Sheet to TI format	19

Product Folder Links: LMH6654 LMH6655

John Documentation Feedback

5 Pin Configuration and Functions

Pin Functions

	PIN				
NAME	LMH	6654	LMH6655	1/0	DESCRIPTION
NAIVIE	DBV	D	DGK		
-IN	4	2		I	Inverting Input
+IN	3	3		1	Non-inverting Input
-IN A			2	I	ChA Inverting Input
+IN A			3	I	ChA Non-inverting Input
-IN B			6	I	ChB Inverting Input
+IN B			5	- 1	ChB Non-inverting Input
N/C		1, 5, 8		_	No Connection
OUT A			1	0	ChA Output
OUT B			7	0	ChB Output
OUTPUT	1	6		0	Output
V-	2	4	4	I	Negative Supply
V ⁺	5	7	8	I	Positive Supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{IN} Differential			±1.2	V
Output Short Circuit Du	See (2)			
Supply Voltage (V ⁺ - V ⁻)			13.2	V
Voltage at Input pins			V ⁺ +0.5 V⁻ -0.5	V
Junction Temperature(3)		150	°C
Soldering Information	Infrared or Convection (20 sec.)		235	°C
	Wave Soldering (10 sec.)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	°C
	Electrostatic discharge ⁽¹⁾	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽²⁾		2000	٧
		Machine model (MM) ⁽³⁾		200	

⁽¹⁾ Human body model, 1.5 k Ω in series with 100 pF. Machine model: 0 Ω in series with 100 pF.

6.3 Recommended Operating Conditions⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Supply Voltage (V ⁺ - V ⁻)	±2.5	±6.0	V
Operating Temperature Range	-40	85	ô

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics Table.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		SOIC (D)	VSSOP (DGK)	SOT-23 (D)	UNIT
		8 PINS	8 PINS	5 PINS	UNII
$R_{\theta JA}$	Junction-to-ambient thermal resistance	172	235	265	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C.

⁽³⁾ The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$ and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC board.

⁽²⁾ JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.

⁽³⁾ JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.

6.5 ±5V Electrical Characteristics

Unless otherwise specified, all limits ensured for $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V$, $A_V = +1$, $R_F = 25\Omega$ for gain = +1, $R_F = 402\Omega$ for gain $\geq +2$, and $R_L = 100\Omega$. **Boldface** limits apply at the temperature extremes.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
DYNAMIC	PERFORMANCE					
		A _V = +1		250		
,	0	A _V = +2		130		
f _{CL}	Close Loop Bandwidth	A _V = +5		52		MHz
		A _V = +10		26		
	Gain Bandwidth Product	A _V ≥ +5		260		MHz
GBWP	Bandwidth for 0.1 dB Flatness	A _V +1		18		MHz
φm	Phase Margin			50		deg
SR	Slew Rate (3)	$A_V = +1, V_{IN} = 2 V_{PP}$		200		V/µs
t _S	Settling Time 0.01%	A _V = +1, 2V Step		25		ns
3	0.1%			15		ns
t _r	Rise Time	$A_V = +1, 0.2V \text{ Step}$		1.4		ns
t _f	Fall Time	$A_V = +1, 0.2V \text{ Step}$		1.2		ns
DISTORT	ION and NOISE RESPONSE		1			
e _n	Input Referred Voltage Noise	f ≥ 0.1 MHz		4.5		nV/√ Hz
i _n	Input-Referred Current Noise	f ≥ 0.1 MHz		1.7		pA/√ Hz
	Second Harmonic Distortion	$A_V = +1, f = 5 \text{ MHz}$		-80		
	Third Harmonic Distortion	$V_{O} = 2 V_{PP}, R_{L} = 100\Omega$		-85		dBc
X _t	Crosstalk (for LMH6655 only)	Input Referred, 5 MHz, Channel-to-Channel		-80		dB
DG	Differential Gain	$A_V = +2$, NTSC, $R_L = 150\Omega$		0.01%		
DP	Differential Phase	$A_V = +2$, NTSC, $R_L = 150\Omega$		0.025		deg
INPUT CI	HARACTERISTICS		II.		I	
V _{OS}	Input Offset Voltage	V _{CM} = 0V	-3 -4	±1	3 4	mV
TC V _{OS}	Input Offset Average Drift	$V_{CM} = 0V^{(4)}$		6		μV/°C
I _B	Input Bias Current	V _{CM} = 0V		5	12 18	μΑ
I _{OS}	Input Offset Current	V _{CM} = 0V	-1 -2	0.3	1 2	μΑ
D	Innut Decistones	Common Mode		4		МΩ
R _{IN}	Input Resistance	Differential Mode		20		kΩ
	Innut Conscitones	Common Mode		1.8		
C _{IN}	Input Capacitance	Differential Mode		1		pF
CMRR	Common Mode Rejection Ration	Input Referred, V _{CM} = 0V to −5V	70 68	90		dB
CMVD	Input Common Mode Veltage Design	CMPD > 50 dP		- 5.15	-5.0	17
CMVR	Input Common- Mode Voltage Range	CMRR ≥ 50 dB	3.5	3.7		V
TRANSFI	ER CHARACTERISTICS				- 1	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 4 V_{PP}, R_{L} = 100\Omega$	60 58	67		dB

All limits are specified by testing or statistical analysis. Typical Values represent the most likely parametric norm.

Slew rate is the slower of the rising and falling slew rates. Slew rate is rate of change from 10% to 90% of output voltage step.

Offset voltage average drift is determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

±5V Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V$, $A_V = +1$, $R_F = 25\Omega$ for gain = +1, $R_F = 402\Omega$ for gain \geq +2, and $R_L = 100\Omega$. **Boldface** limits apply at the temperature extremes.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
OUTPUT	CHARACTERISTICS					
	Output Swing High	No Load	3.4 3.2	3.6		
V_{O}	Output Swing Low	No Load		-3.9	−3.7 −3.5	V
	Output Swing High	$R_L = 100\Omega$	3.2 3.0	3.4		
	Output Swing Low	R _L = 100Ω		-3.6	-3.4 -3.2	
	Short Circuit Current ⁽⁵⁾	Sourcing, $V_O = 0V$ $\Delta V_{IN} = 200 \text{ mV}$	145 130	280		A
Isc		Sinking, $V_O = 0V$ $\Delta V_{IN} = 200 \text{ mV}$	100 80	185		mA
	Outrot Comment	Sourcing, V _O = +3V		80		A
I _{OUT}	Output Current	Sinking, $V_0 = -3V$		120		mA
R _O	Output Resistance	$A_V = +1$, f <100 kHz		0.08		Ω
POWER	SUPPLY	•			·	
PSRR	Power Supply Rejection Ratio	Input Referred, V _S = ±5V to ±6V	60	76		dB
I _S	Supply Current (per channel)			4.5	6 7	mA

⁽⁵⁾ Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C.

Submit Documentation Feedback

Copyright © 2001–2014, Texas Instruments Incorporated

6.6 5V Electrical Characteristics

Unless otherwise specified, all limits ensured for $V^+ = +5V$, $V^- = -0V$, $V_{CM} = 2.5V$, $A_V = +1$, $R_F = 25 \Omega$ for gain = +1, $R_F = 402\Omega$ for gain $\ge +2$, and $R_L = 100\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
DYNAMIC	PERFORMANCE				'	
		A _V = +1		230		MHz
,	Olasa I. aar Baada idh	A _V = +2		120		
f_{CL}	Close Loop Bandwidth	A _V = +5		50		
		A _V = +10		25		
GBWP	Gain Bandwidth Product	A _V ≥ +5		250		MHz
	Bandwidth for 0.1 dB Flatness	A _V = +1		17		MHz
φm	Phase Margin			48		deg
SR	Slew Rate (3)	A _V = +1, V _{IN} = 2 V _{PP}		190		V/µs
t _S	Settling Time 0.01%	A _V = +1, 2V Step		30		ns
J	0.1%			20		ns
t _r	Rise Time	A _V = +1, 0.2V Step		1.5		ns
t _f	Fall Time	A _V = +1, 0.2V Step		1.35		ns
DISTORT	TON and NOISE RESPONSE	,				
e _n	Input Referred Voltage Noise	f ≥ 0.1 MHz		4.5		nV/√ Hz
i _n	Input Referred Current Noise	f ≥ 0.1 MHz		1.7		pA/√ Hz
	Second Harmonic Distortion	A _V = +1, f = 5 MHz		-65		JD.
	Third Harmonic Distortion	$V_O = 2 V_{PP}, R_L = 100\Omega$		-70		dBc
X _t	Crosstalk (for LMH6655 only)	Input Referred, 5 MHz		-78		dB
INPUT C	HARACTERISTICS					
Vos	Input Offset Voltage	V _{CM} = 2.5V	-5 -6.5	±2	5 6.5	mV
TC V _{OS}	Input Offset Average Drift	$V_{CM} = 2.5V^{(4)}$		6		μV/°C
I _B	Input Bias Current	V _{CM} = 2.5V		6	12 18	μΑ
I _{OS}	Input Offset Current	V _{CM} = 2.5V	-2 -3	0.5	2 3	μΑ
R _{IN}	Input Resistance	Common Mode		4		ΜΩ
NIN	input Resistance	Differential Mode		20		kΩ
C···	Input Capacitance	Common Mode		1.8		pF
C _{IN}	при Сараспапсе	Differential Mode		1		ρι
CMRR	Common Mode Rejection Ration	Input Referred, V _{CM} = 0V to −2.5V	70 68	90		dB
CMVR	Input Common Mode Voltage Range	CMRR ≥ 50 dB		-0.15	0	V
CIVIVI	input Common wode voltage Kange		3.5	3.7		V
TRANSFI	ER CHARACTERISTICS					
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 1.6 V_{PP}, R_{L} = 100\Omega$	58 55	64		dB

⁽¹⁾ All limits are specified by testing or statistical analysis.

Typical Values represent the most likely parametric norm.

Slew rate is the slower of the rising and falling slew rates. Slew rate is rate of change from 10% to 90% of output voltage step.

Offset voltage average drift is determined by dividing the change in VOS at temperature extremes into the total temperature change.

5V Electrical Characteristics (continued)

Unless otherwise specified, all limits ensured for $V^+ = +5V$, $V^- = -0V$, $V_{CM} = 2.5V$, $A_V = +1$, $R_F = 25~\Omega$ for gain = +1, $R_F = 402\Omega$ for gain $\ge +2$, and $R_L = 100\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
OUTPUT	CHARACTERISTICS					
	Output Swing High	No Load	3.6 3.4	3.75		
Vo	Output Swing Low	No Load		0.9	1.1 1.3	V
	Output Swing High	R _L = 100Ω	3.5 3.35	3.70		
	Output Swing Low	$R_L = 100\Omega$		1	1.3 1.45	
	Short Circuit Current ⁽⁵⁾	Sourcing , $V_O = 2.5V$ $\Delta V_{IN} = 200 \text{ mV}$	90 80	170		A
I _{SC}		Sinking, $V_O = 2.5V$ $\Delta V_{IN} = 200 \text{ mV}$	70 60	140		mA
	Outrast Ourset	Sourcing, $V_O = +3.5V$		30		A
I _{OUT}	Output Current	Sinking, V _O = 1.5V		60		mA
R _O	Output Resistance	$A_V = +1$, f <100 kHz		.08		Ω
POWER	SUPPLY		- !		.	
PSRR	Power Supply Rejection Ratio	Input Referred , V _S = ± 2.5V to ± 3V	60	75		dB
Is	Supply Current (per channel)			4.5	6 7	mA

⁽⁵⁾ Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C.

6.7 Typical Characteristics

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

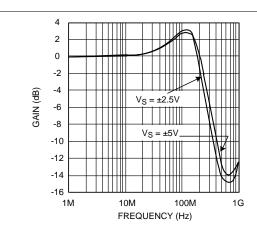


Figure 2. Closed Loop Bandwidth (G = +1)

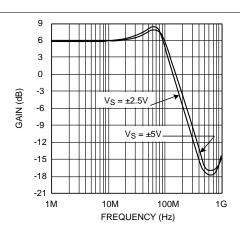


Figure 3. Closed Loop Bandwidth (G = +2)

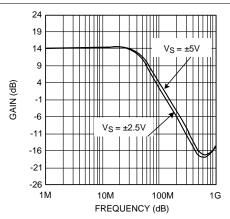


Figure 4. Closed Loop Bandwidth (G = +5)

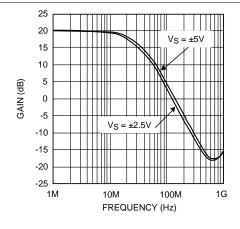


Figure 5. Closed Loop Bandwidth (G = +10)

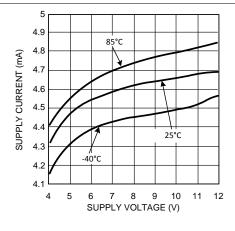


Figure 6. Supply Current per Channel vs. Supply Voltage

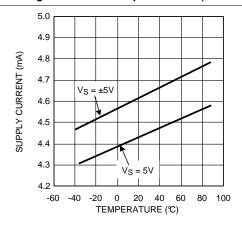
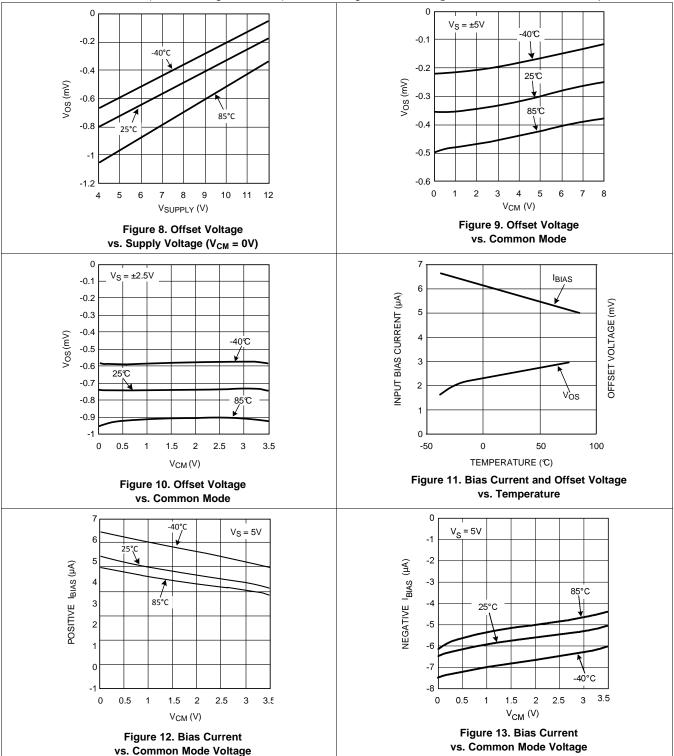



Figure 7. Supply Current per Channel vs. Temperature

TEXAS INSTRUMENTS

Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

Submit Documentation Feedback

Copyright © 2001–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

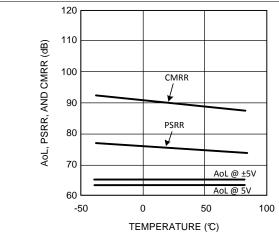
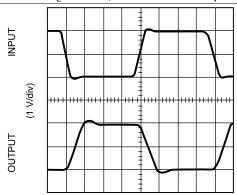
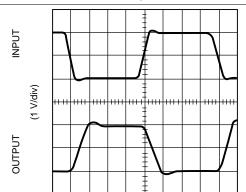
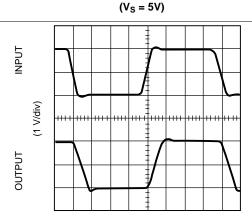




Figure 14. A_{OL}, PSRR and CMRR vs. Temperature

TIME (12.5 ns/div)


Figure 15. Inverting Large Signal Pulse Response

TIME (12.5 ns/div)

Figure 16. Inverting Large Signal Pulse Response

(V_S = ±5V)

TIME (12.5 ns/div) Figure 17. Non-Inverting Large Signal Pulse Response $(V_S = 5V)$

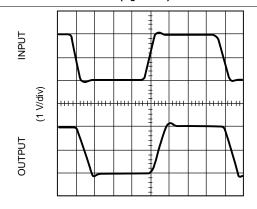
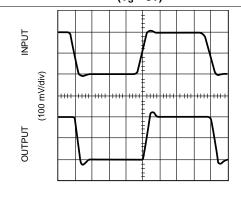
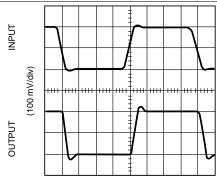



Figure 18. Non-Inverting Large Signal Pulse Response $(V_S = \pm 5V)$

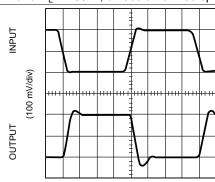
TIME (12.5 ns/div)

TIME (12.5 ns/div)


Figure 19. Non-Inverting Small Signal Pulse Response $(V_S = 5V)$

Copyright © 2001–2014, Texas Instruments Incorporated

TEXAS INSTRUMENTS


Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

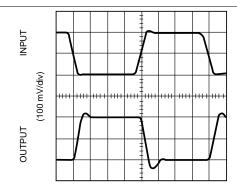

TIME (12.5 ns/div)

Figure 20. Non-Inverting Small Signal Pulse Response $(V_S = \pm 5V)$

TIME (12.5 ns/div)

Figure 21. Inverting Small Signal Pulse Response $(V_S = 5V)$

TIME (12.5 ns/div)

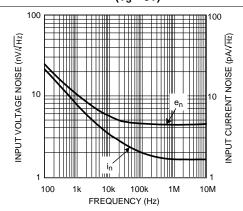
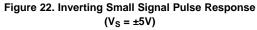



Figure 23. Input Voltage and Current Noise vs. Frequency (V_S = 5V)

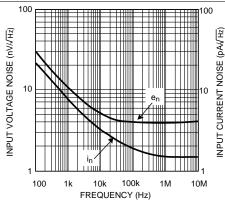


Figure 24. Input Voltage and Current Noise vs. Frequency ($V_S = \pm 5V$)

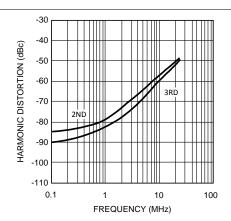


Figure 25. Harmonic Distortion vs. Frequency G = +1, V_O = 2 V_{PP}, V_S = 5V

Submit Documentation Feedback

Copyright © 2001–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

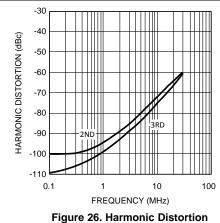


Figure 26. Harmonic Distortion vs. Frequency $G = +1, V_O = 2 V_{PP}, V_S = \pm 5V$

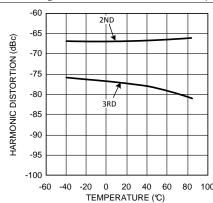


Figure 27. Harmonic Distortion vs. Temperature $V_S = 5V$, f = 5 MHz, $V_O = 2$ V_{PP}

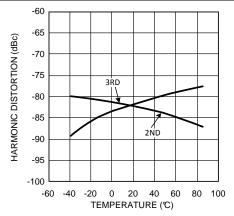


Figure 28. Harmonic Distortion vs. Temperature $V_S = \pm 5V$, f = 5 MHz, $V_O = 2$ V_{PP}

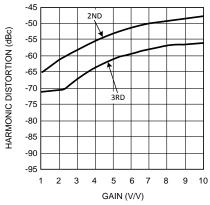


Figure 29. Harmonic Distortion vs. Gain $V_S = 5V$, f = 5 MHz, $V_O = 2$ V_{PP}

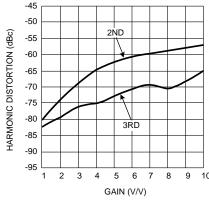


Figure 30. Harmonic Distortion vs. Gain $V_S = \pm 5V$, f = 5 MHz, $V_O = 2$ V_{PP}

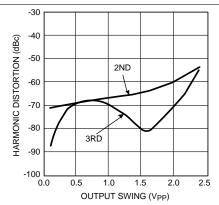


Figure 31. Harmonic Distortion vs. Output Swing (G = +2, V_S = 5V, f = 5 MHz)

Copyright © 2001–2014, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

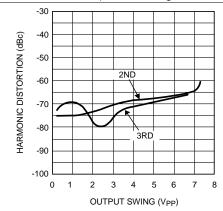


Figure 32. Harmonic Distortion vs. Output Swing

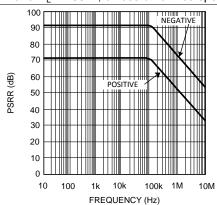


Figure 33. PSRR vs. Frequency

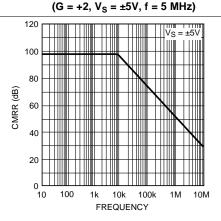


Figure 34. CMRR vs. Frequency

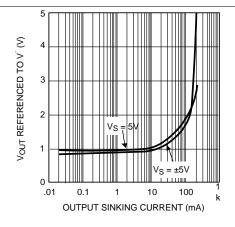


Figure 35. Output Sinking Current

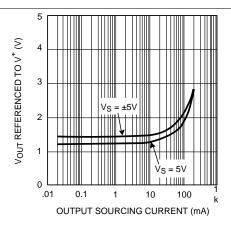


Figure 36. Output Sourcing Current

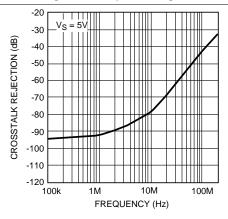


Figure 37. CrossTalk vs. Frequency (LMH6655 only)

Submit Documentation Feedback

Copyright © 2001–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

25°C, V⁺ = ±5 V, V⁻ = −5, R_F = 25 Ω for gain = +1, R_F = 402 Ω for gain ≥ +2 and R_L = 100 Ω , unless otherwise specified.

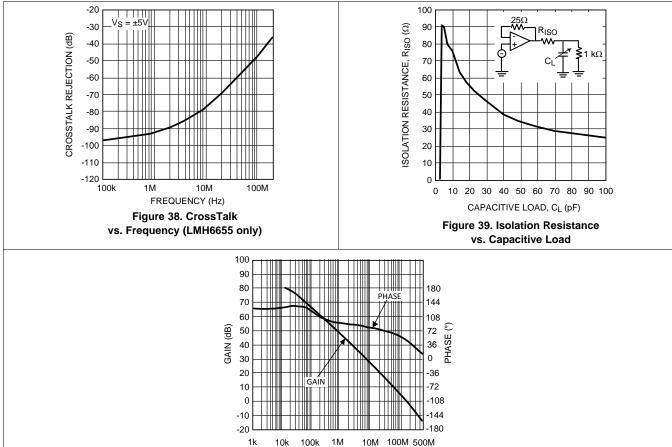


Figure 40. Open Loop Gain and Phase vs. Frequency

FREQUENCY (Hz)

Product Folder Links: LMH6654 LMH6655

Copyright © 2001–2014, Texas Instruments Incorporated

7 Application and Implementation

7.1 Application Information

The LMH6654 single and LMH6655 dual high speed, voltage feedback amplifiers are manufactured on TI's new VIP10™ (Vertically Integrated PNP) complementary bipolar process. These amplifiers can operate from ±2.5 V to ±6 V power supply. They offer low supply current, wide bandwidth, very low voltage noise and large output swing. Many of the typical performance plots found in the datasheet can be reproduced if 50 Ω coax and 50 Ω R_{IN}/R_{OUT} resistors are used.

7.2 Typical Application

7.2.1 Design Requirements

7.2.1.1 Components Selection and Feedback Resistor

It is important in high-speed applications to keep all component leads short since wires are inductive at high frequency. For discrete components, choose carbon composition axially leaded resistors and micro type capacitors. Surface mount components are preferred over discrete components for minimum inductive effect. Never use wire wound type resistors in high frequency applications.

Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors as low as possible consistent with output loading consideration. For a gain of 2 and higher, 402 Ω feedback resistor used for the typical performance plots gives optimal performance. For unity gain follower, a 25 Ω feedback resistor is recommended rather than a direct short. This effectively reduces the Q of what would otherwise be a parasitic inductance (the feedback wire) into the parasitic capacitance at the inverting input.

7.2.2 Detailed Design Procedure

7.2.2.1 Driving Capacitive Loads

Capacitive loads decrease the phase margin of all op amps. The output impedance of a feedback amplifier becomes inductive at high frequencies, creating a resonant circuit when the load is capacitive. This can lead to overshoot, ringing and oscillation. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as shown in Figure 41 below. At frequencies above

$$F = \frac{1}{2 \pi R_{ISO} C_{LOAD}}$$
 (1)

the load impedance of the Amplifier approaches R_{ISO}. The desired performance depends on the value of the isolation resistor. The isolation resistance vs. capacitance load graph in the typical performance characteristics provides the means for selection of the value of R_s that provides ≤ 3 dB peaking in closed loop $A_V = 1$ response. In general, the bigger the isolation resistor, the more damped the pulse response becomes. For initial evaluation, a 50Ω isolation resistor is recommended.

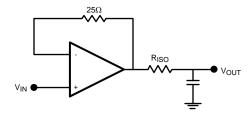


Figure 41. Isolation Resistor Placement

Typical Application (continued)

7.2.2.2 Bias Current Cancellation

In order to cancel the bias current errors of the non-inverting configuration, the parallel combination of the gain setting R_g and feedback R_f resistors should equal the equivalent source resistance R_{seq} as defined in Figure 42. Combining this constraint with the non-inverting gain equation, allows both R_f and R_g to be determined explicitly from the following equations:

$$R_f = A_V R_{seq}$$
 and $R_g = R_f / (A_V - 1)$ (2)

For inverting configuration, bias current cancellation is accomplished by placing a resistor R_b on the non-inverting input equal in value to the resistance seen by the inverting input $(R_f/(R_g+R_s))$. The additional noise contribution of R_b can be minimized through the use of a shunt capacitor.

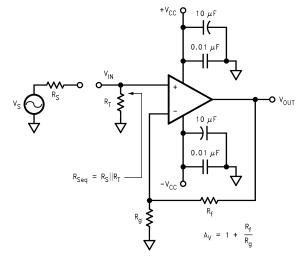


Figure 42. Non-Inverting Amplifier Configuration

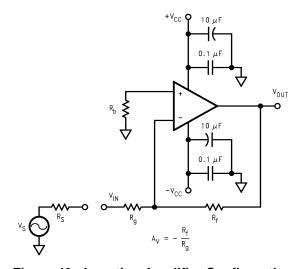


Figure 43. Inverting Amplifier Configuration

Typical Application (continued)

7.2.2.3 Total Input Noise vs. Source Resistance

The noise model for the non-inverting amplifier configuration showing all noise sources is described in Figure 44. In addition to the intrinsic input voltage noise (e_n) and current noise $(i_n = i_{n+} = i_{n-})$ sources, there also exits thermal voltage noise $e_t = \sqrt{4kTR}$ associated with each of the external resistors. Equation 3 provides the general form for total equivalent input voltage noise density (e_{ni}) . Equation 4 is a simplification of Equation 3 that assumes $R_f \parallel R_g = R_{seq}$ for bias current cancellation. Figure 45 illustrates the equivalent noise model using this assumption. The total equivalent output voltage noise (e_{no}) is $e_{ni} * A_V$.

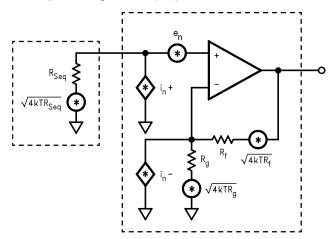


Figure 44. Non-Inverting Amplifier Noise Model

$$e_{ni} = \sqrt{e_n^2 + (i_{n+} \cdot R_{Seq})^2 + 4kTR_{Seq} + (i_{n-} \cdot (R_f || R_g))^2 + 4kT(R_f || R_g)}$$

$$\sqrt{4kT2R_{Seq}}$$

$$2 R_{Seq}$$

$$\frac{i_n}{\sqrt{2}}$$

$$(3)$$

Figure 45. Noise Model with $R_f \parallel R_g = R_{seq}$

$$e_{ni} = \sqrt{e_n^2 + 2(i_n \cdot R_{Seq})^2 + 4kT(2R_{Seq})}$$
 (4)

If bias current cancellation is not a requirement, then $R_f \parallel R_g$ does not need to equal R_{seq} . In this case, according to Equation 3, R_f and R_g should be as low as possible in order to minimize noise. Results similar to Equation 3 are obtained for the inverting configuration on if R_{seq} is replaced by $R_b \parallel R_g$ is replaced by $R_g + R_s$. With these substitutions, Equation 3 will yield an e_{ni} referred to the non-inverting input. Referring e_{ni} to the inverting input is easily accomplished by multiplying e_{ni} by the ratio of non-inverting to inverting gains.

Typical Application (continued)

7.2.2.3.1 Noise Figure

Noise Figure (NF) is a measure of the noise degradation caused by an amplifier.

NF = 10LOG
$$\left[\frac{S_i/N_i}{S_0/N_0}\right] = 10LOG \left[\frac{e_{ni}^2}{e_t^2}\right]$$
 (5)

The noise figure formula is shown in Equation 5. The addition of a terminating resistor R_T , reduces the external thermal noise but increases the resulting NF.

The NF is increased because the R_T reduces the input signal amplitude thus reducing the input SNR.

$$\left[\frac{e_{n}^{2} + i_{n}^{2} (R_{Seq} + (R_{f} || R_{g}))^{2} + 4KTR_{Seq} + 4kt (R_{f} || R_{g})}{4kTR_{Seq}}\right]$$
(6)

The noise figure is related to the equivalent source resistance (R_{seq}) and the parallel combination of R_f and R_g . To minimize noise figure, the following steps are recommended:

- 1. Minimize $R_f || R_a$
- 2. Choose the Optimum R_s (R_{OPT})

R_{OPT} is the point at which the NF curve reaches a minimum and is approximated by:

$$R_{OPT} \approx (e_n/i_n)$$

Copyright © 2001–2014, Texas Instruments Incorporated

8 Power Supply Recommendations

8.1 Power Dissipation

The package power dissipation should be taken into account when operating at high ambient temperature and/or high power dissipative conditions. In determining maximum operable temperature of the device, make sure the total power dissipation of the device is considered; this power dissipated in the device with a load connected to the output as well as the nominal dissipation of the op amp.

9 Layout

9.1 Layout Guidelines

With all high frequency devices, board layouts with stray capacitance have a strong influence on the AC performance. The LMH6654/LMH6655 are not exception and the inverting input and output pins are particularly sensitive to the coupling of parasitic capacitance to AC ground. Parasitic capacitances on the inverting input and output nodes to ground could cause frequency response peaking and possible circuit oscillation. Therefore, the power supply, ground traces and ground plan should be placed away from the inverting input and output pins. Also, it is very important to keep the parasitic capacitance across the feedback to an absolute minimum.

The PCB should have a ground plane covering all unused portion of the component side of the board to provide a low impedance path. All trace lengths should be minimized to reduce series inductance.

Supply bypassing is required for the amplifiers performance. The bypass capacitors provide a low impedance return current path at the supply pins. They also provide high frequency filtering on the power supply traces. It is recommended that a ceramic decoupling capacitor 0.1 µF chip should be placed with one end connected to the ground plane and the other side as close as possible to the power pins. An additional 10 µF tantalum electrolytic capacitor should be connected in parallel, to supply current for fast large signal changes at the output.

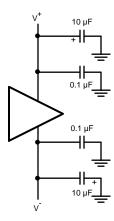


Figure 46. Supply Bypass Capacitors

9.1.1 Evaluation Boards

TI provides the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization.

DEVICE	PACKAGE	EVALULATION BOARD PN
LMH6654MF	5-Pin SOT-23	LMH730216
LMH6654MA	8-Pin SOIC	LMH730227
LMH6655MA	8-Pin SOIC	LMH730036
LMH6655MM	8-Pin VSSOP (DGK)	LMH730123

Components Needed to Evaluate the LMH6654 on the LMH730227 Evaluation Board:

- R_f, R_a use the datasheet to select values.
- R_{IN}, R_{OUT} typically 50 Ω (Refer to the Basic Operation section of the evaluation board datasheet for details)
- R_f is an optional resistor for inverting again configurations (select R_f to yield desired input impedance = R_g||R_f)
- C₁, C₂ use 0.1 μF ceramic capacitors
- C₃, C₄ use 10 μF tantalum capacitors

Components not used:

- 1. C₅, C₆, C₇, C₈
- 2. R1 thru R8

The evaluation boards are designed to accommodate dual supplies. The board can be modified to provide single operation. For best performance;

- 1) Do not connect the unused supply.
- 2) Ground the unused supply pin.

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

10.1.1.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LMH6654	Click here	Click here	Click here	Click here	Click here
LMH6655	Click here	Click here	Click here	Click here	Click here

10.2 Electrostatic Discharge Caution

Copyright © 2001-2014, Texas Instruments Incorporated

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

10.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

20-Feb-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMH6654MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMH66 54MA	Samples
LMH6654MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMH66 54MA	Samples
LMH6654MF	NRND	SOT-23	DBV	5	1000	TBD	Call TI	Call TI	-40 to 85	A66A	
LMH6654MF/NOPB	ACTIVE	SOT-23	DBV	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A66A	Samples
LMH6654MFX/NOPB	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A66A	Samples
LMH6655MA	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	LMH66 55MA	
LMH6655MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMH66 55MA	Samples
LMH6655MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LMH66 55MA	Samples
LMH6655MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A67A	Samples
LMH6655MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	A67A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

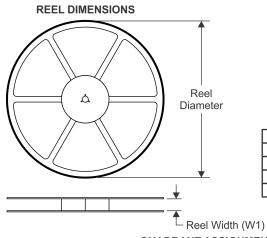
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

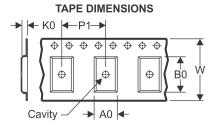
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

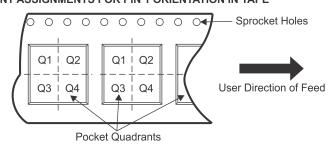
20-Feb-2017

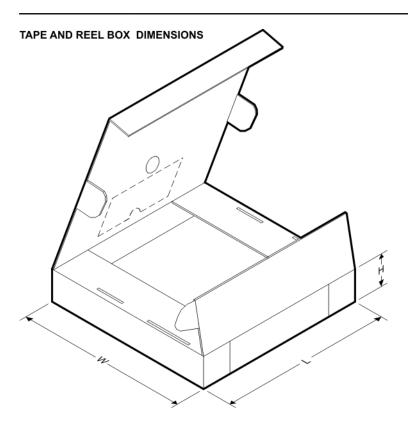

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION


TAPE AND REEL INFORMATION


	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

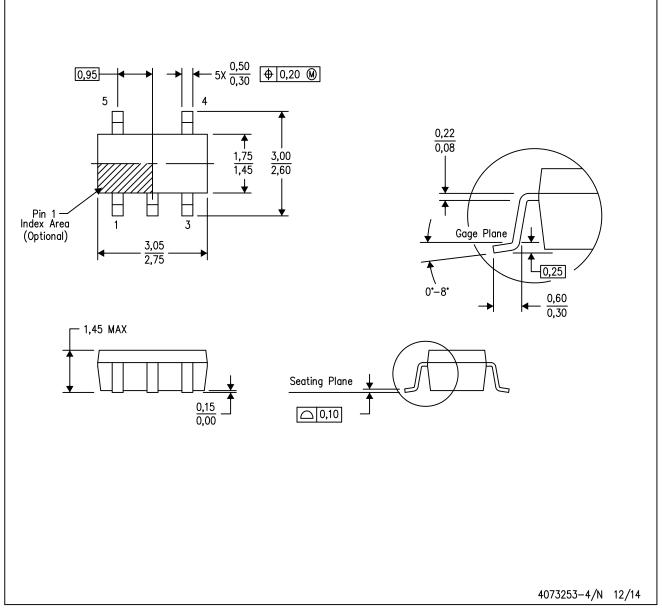
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMH6654MAX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMH6654MF	SOT-23	DBV	5	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMH6654MF/NOPB	SOT-23	DBV	5	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMH6654MFX/NOPB	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMH6655MAX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMH6655MM/NOPB	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LMH6655MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMH6654MAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LMH6654MF	SOT-23	DBV	5	1000	210.0	185.0	35.0
LMH6654MF/NOPB	SOT-23	DBV	5	1000	210.0	185.0	35.0
LMH6654MFX/NOPB	SOT-23	DBV	5	3000	210.0	185.0	35.0
LMH6655MAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LMH6655MM/NOPB	VSSOP	DGK	8	1000	210.0	185.0	35.0
LMH6655MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

D (R-PDSO-G8)

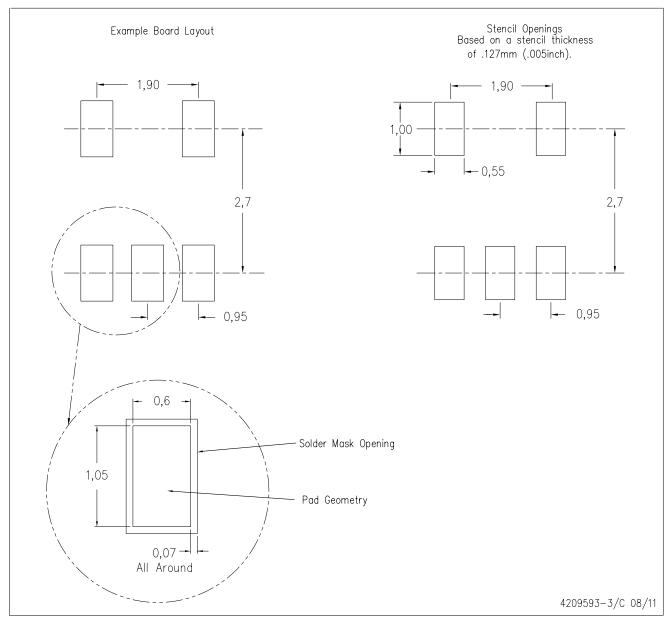
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

DBV (R-PDSO-G5)

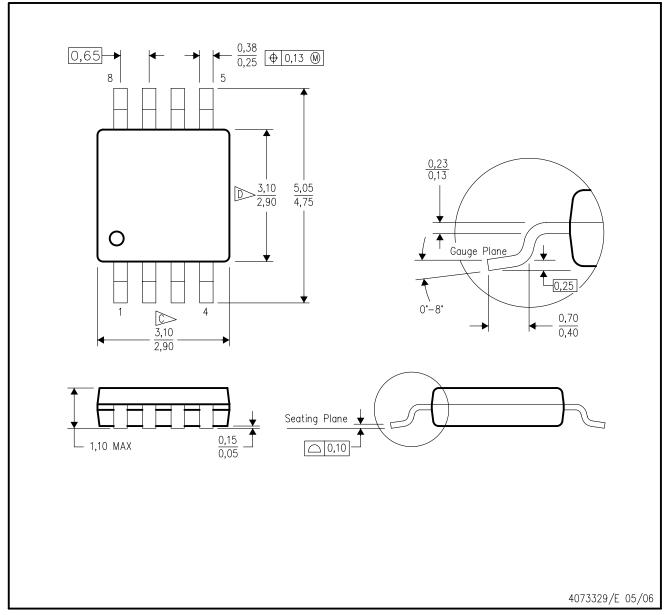
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

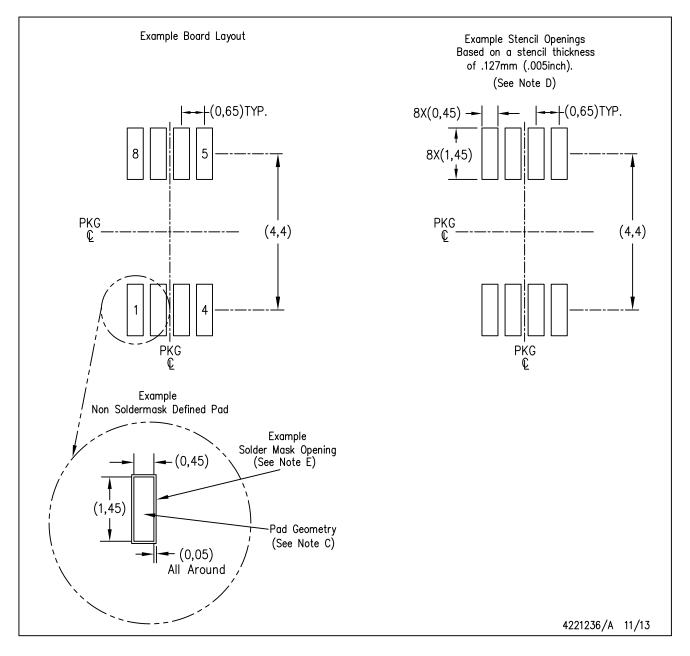
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.