11.3-Gbps RATE-SELECTABLE LIMITING AMPLIFIER

FEATURES

- Up to 11.3-Gbps Operation
- 2-Wire Digital Interface
- Digitally Selectable Input Bandwidth
- Adjustable LOS Threshold
- Digitally Selectable Output Voltage
- Digitally Selectable Output Pre-Emphasis
- Adjustable Input Threshold Voltage
- Low Power Consumption
- Input Offset Cancellation
- CML Data Outputs with On-Chip 50- Ω Back-Termination to VCC
- Single +3.3-V Supply
- Output Disable
- Surface Mount Small Footprint $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 16-Pin RoHS compliant QFN Package

APPLICATIONS

- 10-Gigabit Ethernet Optical Receivers
- 8 x and 10x Fiber Channel Optical Receivers
- SONET OC-192/SDH-64 Optical Receivers
- SFP+ and XFP Transceiver Modules
- XENPAK, XPAK, X2 and 300-pin MSA Transponder Modules
- Cable Driver and Receiver

DESCRIPTION

The ONET8501P is a high-speed, 3.3-V limiting amplifier for multiple fiber optic and copper cable applications with data rates from 2 Gbps up to 11.3 Gbps .

The device provides a two-wire serial interface which allows digital control of the bandwidth, output amplitude, output pre-emphasis, input threshold voltage (slice level) and the loss of signal assert level. Predetermined settings for bandwidth and LOS assert levels can also be selected with external rate selection pins.
The ONET8501P provides a gain of about 40dB which ensures a fully differential output swing for input signals as low as $10 \mathrm{mV}_{\text {pp }}$. The output amplitude can be adjusted to $300 \mathrm{mV}_{\mathrm{pp}}, 600 \mathrm{mV}$ pp , or $900 \mathrm{mV}_{\mathrm{pp}}$. To compensate for frequency dependent loss of microstrips or striplines connected to the output of the device, programmable pre-emphasis is included in the output stage. A settable loss of signal detection and output disable are also provided.

The part, available in RoHS compliant small footprint $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 16-pin QFN package, typically dissipates less than 160 mW and is characterized for operation from $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

BLOCK DIAGRAM

A simplified block diagram of the ONET8501P is shown in Figure 1.
This compact, low power 11.3 Gbps limiting amplifier consists of a high-speed data path with offset cancellation block (DC feedback) combined with an analog settable input threshold adjust, a loss of signal detection block using 2 peak detectors, a two-wire interface with a control-logic block and a bandgap voltage reference and bias current generation block.

Figure 1. Simplified Block Diagram of the ONET8501P

PACKAGE

The ONET8501P is available in a small footprint $3 \mathrm{~mm} \times 3 \mathrm{~mm} 16$-pin RoHS compliant QFN package with a lead pitch of $0,5 \mathrm{~mm}$. The pin out is shown in Figure 2.

Figure 2. Pinout of ONET8501P in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 16-Pin QFN package (top view)
PIN DESCRIPTION

NO.	NAME	TYPE	
1,4, EP	GND	Supply	Circuit ground. Exposed die pad (EP) must be grounded.
2	DIN+ +	Analog-input	Non-inverted data input. Differentially 100Ω terminated to DIN-.
3	DIN-	Analog-input	Inverted data input. Differentially 100Ω terminated to DIN + .
5	COC1	Analog	Offset cancellation filter capacitor plus terminal. An external capacitor can be connected between this pin and COC2 to reduce the low frequency cutoff. To disable the offset cancellation loop, connect COC1 and COC2 together.
6	COC2	Analog	Offset cancellation filter capacitor minus terminal. An external capacitor can be connected between this pin and COC1 to reduce the low frequency cutoff. To disable the offset cancellation loop, connect COC1 and COC2 together.
7	DIS	Digital-input	Disables the output stage when set to a high level.
8	LOS	Open drain MOS	High level indicates that the input signal amplitude is below the programmed threshold level. Open drain output. Requires an external $10-\mathrm{k} \Omega$ pull-up resistor to VCC for proper operation.
9,12	VCC	Supply	$3.3-\mathrm{V} \pm 10 \%$ supply voltage.
10	DOUT-	CML-out	Inverted data output. On-chip 50Ω back-terminated to VCC.
11	DOUT+	CML-out	Non-inverted data output. On-chip 50Ω back-terminated to VCC.
13	RATE1	Digital-input	Bandwidth selection for noise suppression.
14	RATE0	Digital-input	Bandwidth selection for noise suppression.
15	SCK	Digital-input	Serial interface clock input. Connect a pull-up resistor (10 k Ω typical) to VCC.
16	SDA	Digital-input	Serial interface data input. Connect a pull-up resistor (10 k Ω typical) to VCC.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage ${ }^{(2)}$	-0.3 to 4.0	V
$\mathrm{V}_{\text {DIN }+}, \mathrm{V}_{\text {DIN }-}$	Voltage at DIN+, DIN- ${ }^{(2)}$	0.5 to 4.0	V
$\mathrm{V}_{\text {LOS }}, \mathrm{V}_{\text {COC1 }}, \mathrm{V}_{\mathrm{COC} 2}, \mathrm{~V}_{\text {DOUT+ }}, \mathrm{V}_{\text {DOUT-, }}, \mathrm{V}_{\text {DIS }}$, $\mathrm{V}_{\text {RATE } 0}, \mathrm{~V}_{\text {RATE } 1}, \mathrm{~V}_{\text {SDA }}, \mathrm{V}_{\text {SCK }}$	Voltage at LOS, COC1, COC2, DOUT+, DOUT-, DIS, RATE0, RATE1, SDA, SCK ${ }^{(2)}$	-0.3 to 4.0	V
$\mathrm{V}_{\text {DIN,DIFF }}$	Differential voltage between DIN+ and DIN-	± 2.5	V
$\mathrm{I}_{\text {DIN+ }}, \mathrm{I}_{\text {DIN-}}, \mathrm{I}_{\text {DOUT }}, \mathrm{I}_{\text {DOUT- }}$	Continuous current at inputs and outputs	25	mA
ESD	ESD rating at all pins	2	kV (HBM)
$\mathrm{T}_{\mathrm{J} \text {, max }}$	Maximum junction temperature	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Characterized free-air operating temperature range	-40 to 100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
Tlead	Lead temperature 1.6 mm ($1 / 16 \mathrm{inch}$) from case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Device exposure to conditions outside the Absolute Maximum Ratings ranges for an extended duration can affect device reliability.
(2) All voltage values are with respect to network ground terminal.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP
V_{CC}	Supply voltage	MAX	UNIT
T_{A}	Operating free-air temperature	2.95	3.3
	DIGITAL input high voltage	-40	
	DIGITAL input low voltage	2.0	100
${ }^{\circ} \mathrm{C}$			

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, outputs connected to a $50-\Omega$ load, AMP1 $=0$, AMP0 $=1$ (Register 3) unless otherwise noted. Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage		2.95	3.3	3.6	V
$\mathrm{I}_{\text {vcc }}$	Supply current	DIS $=0, \mathrm{CML}$ currents included		48	61	mA
$\mathrm{R}_{\text {IN }}$	Data input resistance	Differential		100		Ω
$\mathrm{R}_{\text {OUT }}$	Data output resistance	Single-ended, referenced to $\mathrm{V}_{C C}$		50		Ω
	LOS HIGH voltage	$I_{\text {SOURCE }}=50 \mu \mathrm{~A}$ with $10 \mathrm{k} \Omega$ pull-up to $\mathrm{V}_{\text {CC }}$	2.4			
	LOS LOW voltage	$\mathrm{I}_{\text {IINK }}=10 \mathrm{~mA}$ with $10 \mathrm{k} \Omega$ pull-up to V_{CC}			0.4	V

AC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, outputs connected to a $50-\Omega$ load, $A M P 1=0, A M P 0=1$ (Register 3) and maximum bandwidth unless otherwise noted. Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

(1) Differential return gain given by SDD11, SDD22 $=-11.6+13.33 \log _{10}(f / 8.25)$, f expressed in GHz .
www.ti.com

AC ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating conditions, outputs connected to a $50-\Omega$ load, AMP1 = 0 , AMP0 $=1$ (Register 3) and maximum bandwidth unless otherwise noted. Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITION	MIN	TYP
$T_{\text {DIS }} \quad$ Disable response time		UNIT	

DETAILED DESCRIPTION

HIGH-SPEED DATA PATH

The high-speed data signal is applied to the data path by means of input signal pins DIN+/DIN-. The data path consists of a $100-\Omega$ differential on-chip line termination resistor followed by a digitally controlled bandwidth switch input buffer for rate select. The RATE1 and RATE0 pins can be used to control the bandwidth of the filter. Default bandwidth settings are used; however, these can be changed using registers 4 through 7 via the serial interface. For details regarding the rate selection, see Table 19. A gain stage and an output buffer stage follow the input buffer, which together provide a gain of 40 dB . The device can accept input amplitude levels from 5 $\mathrm{mV}_{\mathrm{pp}}$ up to $2000 \mathrm{mV}_{\mathrm{pp}}$. The amplified data output signal is available at the output pins DOUT+/DOUT- which include on-chip $2 \times 50-\Omega$ back-termination to VCC.
Offset cancellation compensates for internal offset voltages and thus ensures proper operation even for very small input data signals. The offset cancellation can be disabled so that the input threshold voltage can be adjusted to optimize the bit error rate or change the eye crossing to compensate for input signal pulse width distortion. The offset cancellation can be disabled by setting OCDIS $=1$ (bit 1 of register 0). The input threshold level can be adjusted using register settings THADJ[0..7] (register 1). For details regarding input threshold adjust, see Table 19.
The low frequency cutoff is as low as 80 kHz with the built-in filter capacitor. For applications, which require even lower cutoff frequencies, an additional external filter capacitor may be connected to the COC1 and COC2 pins. A value of 330 pF results in a low frequency cutoff of 20 kHz .

BANDGAP VOLTAGE AND BIAS GENERATION

The ONET8501P limiting amplifier is supplied by a single $+3.3-\mathrm{V}$ supply voltage connected to the VCC pins. This voltage is referred to ground (GND).
On-chip bandgap voltage circuitry generates a reference voltage, independent of supply voltage, from which all other internally required voltages and bias currents are derived.

HIGH-SPEED OUTPUT BUFFER

The output amplitude of the buffer can be set to $300 \mathrm{mV}_{\mathrm{pp}}, 600 \mathrm{mV}_{\mathrm{pp}}$ or $900 \mathrm{mV}_{\mathrm{pp}}$ using register settings AMP[0..1] (register 3) via the serial interface. To compensate for frequency dependant losses of transmission lines connected to the output, the ONET8501P has adjustable pre-emphasis of the output stage. The pre-emphasis can be set from 0 to 8 dB in 1 dB steps using register settings PEADJ[0..3] (register 2).

RATE SELECT

There are 16 possible internal filter settings (4 bit) to adjust the small signal bandwidth to the data rate. For fast rate selection, 4 default values can be selected with the RATE1 and RATE0 pins. Using the serial interface, the bandwidth settings can be customized instead of using the default values. The default bandwidths and the registers used to change the bandwidth settings are shown in table 1.

Table 1. Rate Selection Default Settings and Registers Used for Adjustment

RATE1	RATE0	DEFAULT BANDWIDTH $(\mathbf{G H z})$	REGISTER USED FOR ADJUSTMENT
0	0	2.2	RSA (Register 4)
0	1	4.0	RSB (Register 5)
1	1	6.5	RSC (Register 6)
1	0	11.0	RSD (Register 7)

If the rate select register selection bit is set LOW, for example RSASEL $=0$ (bit 7 of register 4), then the default bandwidth for that register is used. If the register selection bit is set HIGH, for example RSASEL $=1$ (bit 7 of register 4), then the content of RSA[0..3] (register 4) is used to set the input filter bandwidth when RATE0 = 0 and RATE1 $=0$. The settings of the rate selection registers RSA, RSB, RSC and RSD and the corresponding filter bandwidths are shown in table 2

Table 2. Available Bandwidth Settings

RSX3	RSX2	RSX1	RSX0	TYPICAL BANDWIDTH (GHz)
0	0	0	0	12.0
0	0	0	1	11.5
0	0	1	0	11.0
0	0	1	1	10.0
0	1	0	0	8.6
0	1	0	1	6.5
0	1	1	0	5.2
0	1	1	1	4.3
1	0	0	0	4.0
1	0	0	1	3.7
1	0	1	0	3.3
1	1	0	1	2.9
1	1	0	0	2.7
1	1	1	1	2.5
1	1	1	0	2.3

The RATE1 and RATE0 pins do not have to be used if the serial interface is being used. If RATE1 is not connected it is internally pulled HIGH and if RATEO is not connected it is internally pulled LOW, thus selecting register 7. Therefore, changing the contents of $\operatorname{RSD}[0 . .3]$ (register 7) through the serial interface can be used to adjust the bandwidth.

LOSS OF SIGNAL DETECTION

The loss of signal detection is done by 2 separate level detectors to cover a wide dynamic range. The peak values of the input signal and the output signal of the gain stage are monitored by the peak detectors. The peak values are compared to a pre-defined loss of signal threshold voltage inside the loss of signal detection block. As a result of the comparison, the LOS signal, which indicates that the input signal amplitude is below the defined threshold level, is generated. The LOS assert level is settable through the serial interface. There are 2 LOS ranges settable with the LOSRNG bit (bit 2, register 0) via the serial interface. By setting the bit LOSRNG = 1, the high range of the LOS assert values are used ($35 \mathrm{mV}_{\mathrm{pp}}$ to $80 \mathrm{mV}_{\mathrm{pp}}$) and by setting the bit LOSRNG $=0$, the low range of the LOS assert values are used ($15 \mathrm{mV}_{\mathrm{pp}}$ to $35 \mathrm{mV}_{\mathrm{pp}}$).

There are 128 possible internal LOS settings (7 bit) for each LOS range to adjust the LOS assert level. For fast LOS selection, 4 default values can be selected with the RATE1 and RATEO pins; however, the LOS settings can be customized instead of using the default values. The default LOS assert levels and the registers used to change the LOS settings are shown in Table 3.

Table 3. LOS Assert Level Default Settings and Registers Used for Adjustment

RATE1	RATE0	DEFAULT LOS ASSERT LEVEL $\left(\mathbf{m V}_{\text {pp }}\right)$	REGISTER USED FOR ADJUSTMENT
0	0	15	LOSA (Register 8)
0	1	18	LOSB (Register 9)
1	1	26	LOSC (Register 10)
1	0	26	LOSD (Register 11)

If the LOS register selection bit is set LOW, for example LOSASEL $=0$ (bit 7, register 8), then the default LOS assert level for that register is used. If the register selection bit is set HIGH, for example LOSASEL $=1$ (bit 7, register 8), then the content of LOSA[0..6] (register 8) is used to set the LOS assert level when RATE1 $=0$ and RATE $=0$. The RATE1 and RATE0 pins do not have to be used if the serial interface is being used. If RATE1 is not connected it is internally pulled HIGH and if RATEO is not connected it is internally pulled LOW, thus selecting register 11. Therefore, changing the contents of LOSD[0..6] (register 11) through the serial interface can be used to adjust the LOS assert level.

2-WIRE INTERFACE AND CONTROL LOGIC

The ONET8501P uses a 2 -wire serial interface for digital control. The two circuit inputs, SDA and SCK, are driven, respectively, by the serial data and serial clock from a microcontroller, for example. Both inputs include $100-\mathrm{k} \Omega$ pull-up resistors to VCC. For driving these inputs, an open drain output is recommended.
The 2 -wire interface allows write access to the internal memory map to modify control registers and read access to read out control and status signals. The ONET8501P is a slave device only which means that it can not initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The master device provides the clock signal as well as the START and STOP commands. The protocol for a data transmission is as follows:

1. START command
2. 7-bit slave address (1000100) followed by an eighth bit which is the data direction bit (R/W). A zero indicates a WRITE and a 1 indicates a READ.
3. 8-bit register address
4. 8-bit register data word
5. STOP command

Regarding timing, the ONET8501P is $I^{2} \mathrm{C}$ compatible. The typical timing is shown in Figure 3 and a complete data transfer is shown in Figure 4. Parameters for Figure 3 are defined in table 4.
Bus Idle: Both SDA and SCK lines remain HIGH
Start Data Transfer: A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START condition (S). Each data transfer begins with a START condition.
Stop Data Transfer: A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition (P). Each data transfer ends with a STOP condition; however, if the master still wishes to communicate on the bus, it can generate a repeated START condition and address another slave without first generating a STOP condition.

Data Transfer: Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the transfer of data.
Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledgment bit. The transmitter releases the SDA line and a device that acknowledges, must pull down the SDA line during the acknowledge clock pulse simultaneously so the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Set-up and hold times must be taken into account. When a slave-receiver fails to acknowledge the slave address, the data line must be left HIGH by the slave. The master can generate a STOP condition to prevent the transfer. If the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data bytes, the master must cancel the transfer. This is indicated by the slave generating the not acknowledge on the first following byte. The slave leaves the data line HIGH and the master generates the STOP condition.

Figure 3. $1^{2} \mathrm{C}$ Timing Diagram
Table 4. Timing Diagram Definitions

PARAMETER		MIN	MAX	UNIT
$\mathrm{f}_{\text {SCK }}$	SCK clock frequency		400	kHz
$\mathrm{t}_{\text {BUF }}$	Bus free time between START and STOP conditions	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HDSTA }}$	Hold time after repeated START condition. After this period, the first clock pulse is generated	0.6		$\mu \mathrm{s}$
tLow	Low period of the SCK clock	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	High period of the SCK clock	0.6		$\mu \mathrm{s}$
tsusta	Setup time for a repeated START condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HDDAT }}$	Data HOLD time	0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SUDAT }}$	Data setup time	100		ns
t_{R}	Rise time of both SDA and SCK signals		300	ns
t_{F}	Fall time of both SDA and SCK signals		300	ns
tsusto	Setup time for STOP condition	0.6		$\mu \mathrm{s}$

Figure 4. ${ }^{2} \mathrm{C}$ Data Transfer

REGISTER MAPPING

The register mapping for read/write register addresses $0(0 \times 00)$ through 11 ($0 \times 0 \mathrm{~B}$) are shown in Table 5 through Table 16. The register mapping for the read only register addresses $14(0 \times 0 \mathrm{E})$ and 15 ($0 \times 0 \mathrm{~F}$) are shown in Table 17 and Table 18.
Table 19 describes the circuit functionality based on the register settings.

Table 5. Register 0 (0x00) Mapping - Control Settings

register address $\mathbf{0}(\mathbf{0 x 0 0})$							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
-	-	-	-	DIS	LOSRNG	OCDIS	I2CDIS

Table 6. Register 1 (0x01) Mapping - Input Threshold Adjust

	register address $\mathbf{1}(\mathbf{0 x 0 1})$								
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$		
THADJ7	THADJ6	THADJ5	THADJ4	THADJ3	THADJ2	THADJ1	THADJ0		

Table 7. Register 2 (0x02) Mapping - Pre-emphasis Adjust

register address $\mathbf{2}$ (0x02)							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit 3	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
-	-	-	-	PEADJ3	PEADJ2	PEADJ1	PEADJ0

Table 8. Register 3 (0x03) Mapping - Output Amplitude Adjust

register address 3 (0x03)							
bit $\mathbf{7}$	bit 6	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
-	-	-	-	-	-	AMP1	AMP0

Table 9. Register 4 (0x04) Mapping - Rate Selection Register A

register address $\mathbf{4}$ (0x04)							
bit $\mathbf{7}$	bit 6	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
RSASEL	-	-	-	RSA3	RSA2	RSA1	RSA0

Table 10. Register 5 (0x05) Mapping - Rate Selection Register B

register address $\mathbf{5}$ (0x05)							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit $\mathbf{4}$	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
RSBSEL	-	-	-	RSB3	RSB2	RSB1	RSB0

Table 11. Register 6 (0x06) Mapping - Rate Selection Register C

register address 6 (0x06)							
bit 7	bit 6	bit 5	bit4	bit 3	bit 2	bit 1	bit 0
RSCSEL	-	-	-	RSC3	RSC2	RSC1	RSC0

Table 12. Register 7 (0x07) Mapping - Rate Selection Register D

register address $\mathbf{7}(\mathbf{0 x 0 7})$							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
RSDSEL	-	-	-	RSD3	RSD2	RSD1	RSD0

Table 13. Register 8 (0x08) Mapping - LOS Assert Level Register A

register address $\mathbf{8}(\mathbf{0 x 0 8})$							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit $\mathbf{4}$	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
LOSASEL	LOSA6	LOSA5	LOSA4	LOSA3	LOSA2	LOSA 1	LOSA0

Table 14. Register 9 (0x09) Mapping - LOS Assert Level Register B

register address 9 (0x09)							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
LOSBSEL	LOSB6	LOSB5	LOSB4	LOSB3	LOSB2	LOSB1	LOSB0

Table 15. Register 10 (0x0A) Mapping - LOS Assert Level Register C

register address $\mathbf{1 0}$ (0x0A)							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
LOSCSEL	LOSC6	LOSC5	LOSC4	LOSC3	LOSC2	LOSC1	LOSC0

Table 16. Register 11 (0x0B) Mapping - LOS Assert Level Register D

register address $\mathbf{1 1}$ (0x0B)							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit $\mathbf{3}$	bit $\mathbf{2}$	bit $\mathbf{1}$	bit $\mathbf{0}$
LOSDSEL	LOSD6	LOSD5	LOSD4	LOSD3	LOSD2	LOSD1	LOSD0

Table 17. Register 14 (0x0E) Mapping - Selected Rate Setting (Read Only)

register address 14 (0x0E)							
bit 7	bit 6	bit 5	bit4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	SELRATE3	SELRATE2	SELRATE1	SELRATE0

Table 18. Register 15 (0x0F) Mapping - Selected LOS Level (Read Only)

register address $\mathbf{1 5}(\mathbf{0 x 0 F})$							
bit $\mathbf{7}$	bit $\mathbf{6}$	bit $\mathbf{5}$	bit4	bit 3	bit 2	bit $\mathbf{1}$	bit $\mathbf{0}$
-	SELLOS6	SELLOS5	SELLOS4	SELLOS3	SELLOS2	SELLOS1	SELLOS0

Table 19. Register Functionality

SYMBOL	REGISTER BIT	FUNCTION
DIS	Output disable bit 3	Output disable bit: 1 = output disabled 0 = output enabled
LOSRNG	LOS Range bit 2	LOS range bit: 1 = high LOS assert voltage range $0=$ low LOS assert voltage range
OCDIS	Offset cancellation disable bit 1	Offset cancellation disable bit: 1 = offset cancellation is disabled $0=$ offset cancellation is enabled
I2CDIS	$\mathrm{I}^{2} \mathrm{C}$ disable bit 0	$1^{2} \mathrm{C}$ disable bit: $1=I^{2} \mathrm{C}$ is disabled. $0=I^{2} \mathrm{C}$ is enabled. This is the default setting.
THADJ7	Input threshold adjust bit 7 (MSB)	Input threshold adjustment setting:
THADJ6	Input threshold adjust bit 6	Maximum positive sift for 00000001 (1)
THADJ5	Input threshold adjust bit 5	Minimum positive shift for 01111111 (127)
THADJ4	Input threshold adjust bit 4	Zero shift for 10000000 (128)
THADJ3	Input threshold adjust bit 3	Minimum negative shift for 10000001 (129)
THADJ2	Input threshold adjust bit 2	Maximum negative shift for 11111111 (255)
THADJ1	Input threshold adjust bit 1	
THADJ0	Input threshold adjust bit 0 (LSB)	

Table 19. Register Functionality (continued)

SYMBOL	REGISTER BIT	FUNCTION	
PEADJ3	Pre-emphasis adjust bit 3 (MSB)	Pre-emphasis setting:	
PEADJ2	Pre-emphasis adjust bit 2	Pre-emphasis (dB)	Register Setting
PEADJ1	Pre-emphasis adjust bit 1	0	0000
PEADJ0	Pre-emphasis adjust bit 0 (LSB)	1	0001
		2	0011
		3	0100
		4	0101
		5	0111
		6	1100
		7	1101
		8	1111
AMP1	Output amplitude adjustment bit 1	Output amplitude adjustment:$\begin{aligned} & 00=300 \mathrm{mV}_{\mathrm{pp}} \\ & 01=600 \mathrm{mV}_{\mathrm{pp}} \\ & 10=600 \mathrm{mV}_{\mathrm{pp}} \\ & 11=900 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$	
AMP0	Output amplitude adjustment bit 0		
RSASEL	Register RSA select bit 7 (MSB)	Rate selection register A	
-		RSASEL = 1	
-		Content of register A bits 3 to 0 is used to select the input filter BW	
-		RSASEL = 0	
RSA3	Rate select register A bit 3	Default BW of 2.2 GHz is used	
RSA2	Rate select register A bit 2	Register RSA is used when RATE1 $=0$ and RATE0 $=0$	
RSA1	Rate select register A bit 1		
RSA0	Rate select register A bit 0 (LSB)		
RSBSEL	Register RSA select bit 7 (MSB)	Rate selection register B	
-		$\text { RSBSEL = } 1$	
-		Content of register B bits 3 to 0 is used to select the input filter BW	
-		RSBSEL $=0$	
RSB3	Rate select register B bit 3	Default BW of 4.0 GHz is used	
RSB2	Rate select register B bit 2	Register RSB is used when RATE1 $=0$ and RATE0 $=1$	
RSB1	Rate select register B bit 1		
RSB0	Rate select register B bit 0 (LSB)		
RSCSEL	Register RSA select bit 7 (MSB)	Rate selection register \mathbf{C}	
-		RSCSEL = 1	
-		Content of register C bits 3 to 0 is used to select the input filter BW	
-		RSCSEL = 0	
RSC3	Rate select register C bit 3	Default BW of 6.5 GHz is used	
RSC2	Rate select register C bit 2	Register RSC is used when RATE1 = 1 and RATE0 $=1$	
RSC1	Rate select register C bit 1		
RSC0	Rate select register C bit 0 (LSB)		

Table 19. Register Functionality (continued)

SYMBOL	REGISTER BIT	FUNCTION
RSDSEL	Register RSD select bit 7 (MSB)	Rate selection register D RSDSEL = 1 Content of register D bits 3 to 0 is used to select the input filter BW RSDSEL = 0 Default BW of 11.0 GHz is used Register RSD is used when RATE1 $=1$ and RATE0 $=0$ or RATE1 and RATE0 are not connected
-		
-		
-		
RSD3	Rate select register D bit 3	
RSD2	Rate select register D bit 2	
RSD1	Rate select register D bit 1	
RSD0	Rate select register D bit 0 (LSB)	
LOSASEL	Register LOSA select bit 7 (MSB)	LOS assert level register A LOSASEL = 1 Content of register A bits 6 to 0 is used to select the LOS assert level Minimum LOS assert level for 0000000 Maximum LOS assert level for 1111111 LOSASEL = 0 Default LOS assert level of 15 mVpp is used Register LOSA is used when RATE1 $=0$ and RATE0 $=0$
LOSA6	LOS assert level register A bit 6	
LOSA5	LOS assert level register A bit 5	
LOSA4	LOS assert level register A bit 4	
LOSA3	LOS assert level register A bit 3	
LOSA2	LOS assert level register A bit 2	
LOSA1	LOS assert level register A bit 1	
LOSA0	LOS assert level register A bit 0 (LSB)	
LOSBSEL	Register LOSB select bit 7 (MSB)	LOS assert level register B LOSBSEL = 1 Content of register B bits 6 to 0 is used to select the LOS assert level Minimum LOS assert level for 0000000 Maximum LOS assert level for 1111111 LOSBSEL = 0 Default LOS assert level of 18 mVpp is used Register LOSB is used when RATE1 $=0$ and RATE0 $=1$
LOSB6	LOS assert level register B bit 6	
LOSB5	LOS assert level register B bit 5	
LOSB4	LOS assert level register B bit 4	
LOSB3	LOS assert level register B bit 3	
LOSB2	LOS assert level register B bit 2	
LOSB1	LOS assert level register B bit 1	
LOSB0	LOS assert level register B bit 0 (LSB)	
LOSCSEL	Register LOSC select bit 7 (MSB)	LOS assert level register C $\text { LOSCSEL = } 1$ Content of register C bits 6 to 0 is used to select the LOS assert level Minimum LOS assert level for 0000000 Maximum LOS assert level for 1111111 $\text { LOSCSEL = } 0$ Default LOS assert level of 26 mVpp is used Register LOSC is used when RATE1 $=1$ and RATE0 $=1$
LOSC6	LOS assert level register C bit 6	
LOSC5	LOS assert level register C bit 5	
LOSC4	LOS assert level register C bit 4	
LOSC3	LOS assert level register C bit 3	
LOSC2	LOS assert level register C bit 2	
LOSC1	LOS assert level register C bit 1	
LOSC0	LOS assert level register C bit 0 (LSB)	
LOSDSEL	Register LOSD select bit 7 (MSB)	LOS assert level register D LOSDSEL = 1 Content of register D bits 6 to 0 is used to select the LOS assert level Minimum LOS assert level for 0000000 Maximum LOS assert level for 1111111 LOSDSEL = 0 Default LOS assert level of 26 mVpp is used Register LOSD is used when RATE1 $=1$ and RATE $=0$ or RATE1 and RATE0 are not connected
LOSD6	LOS assert level register D bit 6	
LOSD5	LOS assert level register D bit 5	
LOSD4	LOS assert level register D bit 4	
LOSD3	LOS assert level register D bit 3	
LOSD2	LOS assert level register D bit 2	
LOSD1	LOS assert level register D bit 1	
LOSD0	LOS assert level register D bit 0 (LSB)	
SELRATE3	Selected rate setting bit 3	Selected rate setting (read only)
SELRATE2	Selected rate setting bit 2	
SELRATE1	Selected rate setting bit 1	
SELRATE0	Selected rate setting bit 0	

Table 19. Register Functionality (continued)

SYMBOL	REGISTER BIT	
SELLOS6	Selected LOS assert level bit $6(\mathrm{MSB})$	Selected LOS assert level (read only)
SELLOS5 5	Selected LOS assert level bit 5	
SELLOS4	Selected LOS assert level bit 4	
SELLOS3	Selected LOS assert level bit 3	
SELLOS2	Selected LOS assert level bit 2	
SELLOS1	Selected LOS assert level bit 1	
SELLOS0	Selected LOS assert level bit 0 (LSB)	

TYPICAL OPERATION CHARACTERISTICS

Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AMP} 1=0, \mathrm{AMP}=1$ (Register 3) and maximum bandwidth unless otherwise noted.

Figure 5.

Figure 6.

TYPICAL OPERATION CHARACTERISTICS (continued)
Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AMP1}=0, \mathrm{AMPO}=1$ (Register 3) and maximum bandwidth unless otherwise noted.

Figure 7.
DIFFERENTIAL OUTPUT RETURN GAIN
FREQUSENCY

Figure 9.

Figure 8.
BIT-ERROR RATIO
INPUT VOLTAGE (11.3GBPS)

Figure 10.

TYPICAL OPERATION CHARACTERISTICS (continued)
Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AMP} 1=0, \mathrm{AMPO}=1$ (Register 3) and maximum bandwidth unless otherwise noted.

Figure 11.

Figure 13.

Figure 12.

Figure 14.

TYPICAL OPERATION CHARACTERISTICS (continued)

Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AMP} 1=0, \mathrm{AMP}=1$ (Register 3) and maximum bandwidth unless otherwise noted.

Figure 15.

Figure 17.

LOS HYSTERESIS
vS
REGISTER SETTING LOSRNG = 1

Figure 16.
OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND MAXIMUM INPUT VOLTAGE (2000 mV PP)

Figure 18.

TYPICAL OPERATION CHARACTERISTICS (continued)

Typical operating condition is at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AMP} 1=0, \mathrm{AMPO}=1$ (Register 3) and maximum bandwidth unless otherwise noted.

OUTPUT EYE-DIAGRAM AT 8.5 GBPS AND MINIMUM INPUT VOLTAGE (10 mV PP)

Figure 19.

OUTPUT EYE-DIAGRAM AT 8.5 GBPS AND MAXIMUM INPUT VOLTAGE (2000 mV PP)

Figure 20.

APPLICATION INFORMATION

Figure 21] shows a typical application circuit using the ONET8501P.

Figure 21. AC Coupled Differential Drive

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ONET8501PRGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 100	850P	Samples
ONET8501PRGTT	ACTIVE	QFN	RGT	16	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 100	850P	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-$ Free/Green conversion plan has not been defined
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
ONET8501PRGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ONET8501PRGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ONET8501PRGTT	QFN	RGT	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ONET8501PRGTR	QFN	RGT	16	3000	367.0	367.0	35.0
ONET8501PRGTR	QFN	RGT	16	3000	336.6	336.6	28.6
ONET8501PRGTT	QFN	RGT	16	250	336.6	336.6	28.6

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('Tl") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, Tl's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

