

SBOS155A - AUGUST 1987 - REVISED OCTOBER 2002

High-Speed Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

WIDE BANDWIDTH: 6.5MHz
 HIGH SLEW RATE: 35V/µs
 LOW OFFSET: ±250µV max

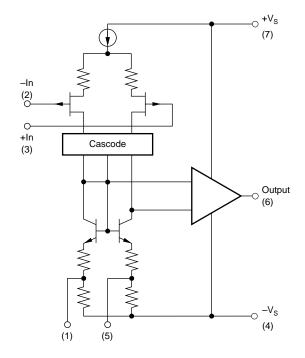
LOW BIAS CURRENT: ±1pA max
 FAST SETTLING TIME: 1µs to 0.01%

UNITY-GAIN STABLE

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic *Difet* (dielectrically isolated FET) construction provides an unusual combination of high-speed and accuracy.

Its wide-bandwidth design minimizes dynamic errors. High slew rate and fast settling time allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion minimize AC errors. All specifications are rated with a 1k Ω resistor in parallel with 500pF load. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500pF.


Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. *Difet* construction achieves extremely low input bias currents (1pA max) without compromising input voltage noise.

The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

Difet® Burr-Brown Corp.

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

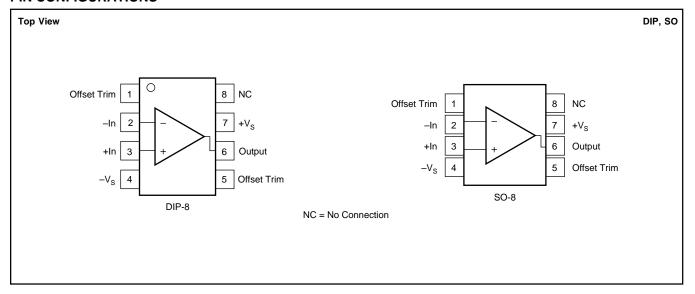
ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage	±18V _{DC}
Internal Power Dissipation (T _J ≤ +175°C)	1000mW
Differential Input Voltage	Total V _S
Input Voltage Range	±V _S
Storage Temperature Range	_
P and U Packages4	10°C to +125°C
Operating Temperature Range	
P and U Packages	25°C to + 85°C
Lead Temperature	
U Package, SO (3s)	+260°C
Output Short-Circuit to Ground (+25°C)	Continuous
Junction Temperature	+175°C

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	OFFSET VOLTAGE MAX (μV) AT 25°C	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
OPA602AP	±2000	DIP-8	Р	−25°C to +85°C	602AP	602AP	Tubes, 50
OPA602BP	±1000	"	"	II .	602BP	602BP	Tubes, 50
OPA602AU	±3000	SO-8	D	–25°C to +85°C	602AU	602AU	Tubes, 100

NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

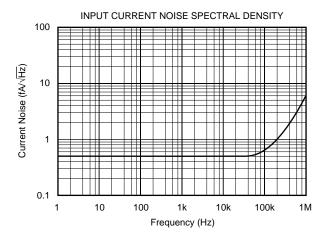
PIN CONFIGURATIONS

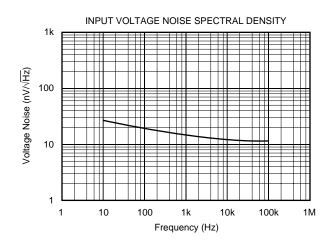
ELECTRICAL CHARACTERISTICS

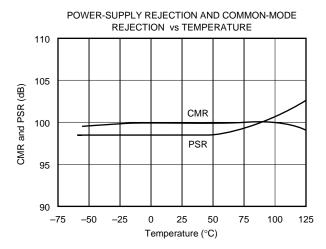
At $V_S = \pm 15 V_{DC}$ and $T_A = +25^{\circ}C$, unless otherwise noted.

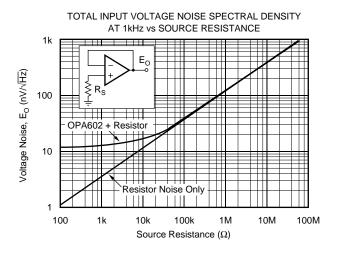
NOTO NOISE Voltage:				OPA602BP		OI	PA602AP, A	AU]	
Voltage:	PARAMETER	CONDITIONS	MIN	MIN TYP MAX			MIN TYP MAX			
f ₀ = 100Hz f ₀ = 10Hz f ₀ = 1	INPUT NOISE									
f ₀ = 100Hz f ₀ = 14Hz f ₀ = 100Hz f ₀ = 14Hz f ₀ = 100Hz f ₀ = 10Hz to 100Hz f ₀ = 10Hz to 100Hz f ₀ = 0.1Hz to 10Hz f ₀ = 0.1Hz to 10Hz f ₀ = 0.1Hz to 20MHz f ₀	Voltage:									
1,	$f_O = 10Hz$			23			*			
f_0 = 164±z	$f_0 = 100Hz$			19			*		nV/√Hz	
1	-			13			*		nV/√Hz	
f _B = 0.1Hz to 10Hz										
f _a = 0.1Hz to 10Hz Current f _a = 0.1Hz to 10Hz f _b = 0.6	-									
Current	2									
fig = 0.1Hz to 20Hz 0.6	2			0.95					μνρ-ρ	
C ₀ = 0.1Hz to 20kHz				40					£ A	
OFFSET VOLTAGE Input Offset Voltage: P Package 0.5 1 1 2 mV P Package U Package 0.5 1 1 3 mV Over Spacified Temperature P, U Packages ±0.75 ±1.5 ±1.5 ±1.5 mV Average Drift**) T _A = T _{MIN} to T _{MAX} ±3 ±5 7 * ±15 mV Supply Rejection ±10 ±1 ±2 ±15 mV mV Supply Rejection ±20 ±20 ±20 ±20 ±10 pA MSA CURRENT Input Blas Current V _{CM} = 0V _{DC} ±1 ±2 ±2 ±10 pA OFFSET CURRENT Input Offset Current V _{CM} = 0V _{DC} 0.5 2 1 10 pA OFFSET CURRENT Input Offset Current V _{CM} = 0V _{DC} 0.5 2 1 1 Q µ pF INPUT MUTAGE RANCE Input Blass Average Current 1 10 ¹³ 1 * * Q pF <	5								1Ap-p	
Input Offset Voltages P Package P P P P P P P Package P P P P P P P P P P P P P P P P P P				0.6			*		TA/ √⊓∠	
P Package U Package 0.5 1 1 2 mV Over Specified Temperature P, U Packages ±0.75 ±1.5 ±1.5 mV P, U Packages ±0.75 ±1.5 ±1.5 mV Average Drift ⁽¹⁾ ±V _S = 12V to 18V 80 100 70 * ±15 mV BIAS CURRENT Input Bias Current V _{CM} = 0V _{DC} ±1 ±2 ±2 ±10 pA OFFSET CURRENT Input Distance Current V _{CM} = 0V _{DC} 0.5 2 1 10 pA Over Specified Temperature V _{CM} = 0V _{DC} 0.5 2 1 10 pA INPUT IMPEDANCE Differential 10 ¹³ 1 * * 0 10 2 1 10 pA INPUT VICTAGE RANGE 10 ¹³ 1 * * W 0 10 ¹³ 1 * * V 0 10 ¹³ 1 * * W U pS dB DPEN-LODG Input Range 10 2 1 10 PA <td>OFFSET VOLTAGE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	OFFSET VOLTAGE									
U Package Over Specified Temperature P. U Packages Average Driff¹¹ Supply Rejection T _A = T _{MIN} 10 T _{MAX} ±V _S = 12V to 18V 80 100 T _O = 11.5 #V _O = 0V _{OC} Supply Rejection V _{CM} = 0V _{OC} U = 11 ±2 ±20 ±20 ±20 ±20 ±20 ±20 ±2	Input Offset Voltage:									
Over Specified Temperature P. U Packages Drift**) T _A = T _{MIN} to T _{MAX} ±0.75 ±1.5 w ±15 mV Average Drift** Supply Rejection ±V _S = 12V to 18V 80 100 70 * ±15 µV/C µV/C µV/C dB BBAS CURRENT mput Bias Current V _{CM} = 0V _{DC} ±1 ±2 ±2 ±10 pA	P Package			0.5	1		1	2	mV	
Over Specified Temperature P. U Packages Driff¹¹⟩ T _A = T _{MM} 10 T _{MAX} ±0.75 ±1.5 ±1.5 µV/C µV/C <td< td=""><td>U Package</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>3</td><td>m∨</td></td<>	U Package						1	3	m∨	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>									
Average Driff()				+0.75	+1.5		+1.5		m\/	
Supply Rejection		T - T +o T						±15		
BIAS CURRENT Input Bias Current V _{CM} = 0V _{DC}	•		00		±3	70		1 -13		
Input Bias Current	Supply Rejection	±V _S = 12V to 18V	80	100		70	*		ав	
Over Specified Temperature										
OFFSET CURRENT Input Offset Current Over Specified Temperature V _{CM} = 0V _{DC} 0.5 2 2 200 200 20 500 pA Over Specified Temperature V _{CM} = 0V _{DC} 0.5 2 2 200 200 20 500 pA INPUT IMPEDANCE Differential 101 ¹³ 1	•	$V_{CM} = 0V_{DC}$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Over Specified Temperature			±20	±200		±20	±500	pА	
Over Specified Temperature 20 200 20 500 pA INPUT IMPEDANCE Differential 1013 1 1014 3 * Ω pF Common-Mode 1014 3 * Ω pF INPUT VOLTAGE RANGE 2000	OFFSET CURRENT									
Over Specified Temperature 20 200 20 500 pA INPUT IMPEDANCE Differential 1013 1 1014 3 * Ω pF Common-Mode 1014 3 * Ω pF INPUT VOLTAGE RANGE 2000	Input Offset Current	$V_{CM} = 0V_{DC}$		0.5	2		1	10	pА	
INPUT IMPEDANCE Differential	•	Civi Bo			200		20	500		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>								'	
Common-Mode $10^{14} \parallel 3$ * $Ω \parallel pF$ INPUT VOLTAGE RANGE Common-Mode Input Range $V_{IN} = \pm 10V_{DC}$ ± 10.2 ± 1311 * * V <td></td> <td></td> <td></td> <td> 42</td> <td></td> <td></td> <td></td> <td></td> <td></td>				42						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Common-Mode			1014 3			*		Ω pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INPUT VOLTAGE RANGE									
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain $R_L \ge 1k\Omega$ 88 100 75 * dB FREQUENCY RESPONSE Gain = 100 4 6.5 3.5 * MHz Gain Bandwidth 20Vp-p, $R_L = 1k\Omega$ 570 * * kHz Slew Rate $V_0 = \pm 10V$, $R_L = 1k\Omega$ 24 35 20 * V/μs Settling Time: 0.1% Gain = -1, $R_L = 1k\Omega$ 0.6 * * μs 0.1% Gain = -1, $R_L = 1k\Omega$ 0.6 * * μs RATED OUTPUT Voltage Output $R_L = 1k\Omega$ ±11.5 +12.9, -13.8 ±11 * V Current Output $V_0 = \pm 10V_{DC}$ ±15 ±2.0 * * mA Current Output $V_0 = \pm 10V_{DC}$ ±15 ±20 * * mA Current Output $V_0 = \pm 10V_{DC}$ ±15 ±20 * * mA PShort-Circuit Current $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ <	Common-Mode Input Range		±10.2	+13, -11		*	*		V	
OPEN-LOOP GAIN, DC Open-Loop Voltage Gain $R_L \ge 1k\Omega$ 88 100 75 * dB FREQUENCY RESPONSE Gain = 100 4 6.5 3.5 * MHz Gain Bandwidth 20Vp-p, $R_L = 1k\Omega$ 570 * * kHz Slew Rate $V_0 = \pm 10V$, $R_L = 1k\Omega$ 24 35 20 * V/μs Settling Time: 0.1% Gain = -1, $R_L = 1k\Omega$ 0.6 * * μs 0.1% Gain = -1, $R_L = 1k\Omega$ 0.6 * * μs RATED OUTPUT Voltage Output $R_L = 1k\Omega$ ±11.5 +12.9, -13.8 ±11 * V Current Output $V_0 = \pm 10V_{DC}$ ±15 ±2.0 * * mA Current Output $V_0 = \pm 10V_{DC}$ ±15 ±20 * * mA Current Output $V_0 = \pm 10V_{DC}$ ±15 ±20 * * mA PShort-Circuit Current $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ <	Common-Mode Rejection	$V_{IN} = \pm 10 V_{DC}$	88	100		75	*		dB	
Open-Loop Voltage Gain $R_L ≥ 1kΩ$ 88 100 75 * dB FREQUENCY RESPONSE Gain Bandwidth Gain = 100 4 6.5 3.5 * MHz Full-Power Response $20Vp-p, R_L = 1kΩ$ 570 * * kHz Slew Rate $V_0 = \pm 10V, R_L = 1kΩ$ 24 35 20 * V/μs Settling Time: 0.1% Gain = -1, R_L = 1kΩ 0.6 * * μs 0.1% Gain = -1, R_L = 1kΩ 0.6 * * μs No.1% C _L = 500pF, 10V Step 1.0 * * μs RATED OUTPUT Voltage Output R _L = 1kΩ ±11.5 +12.9, ±11 * V Current Output V ₀ = ±10V _{DC} ±15 ±20 * * mA Current Septaction Stability Gain = +1 ±500 ±50 * pF Short-Circuit Current ±30 ±50 ±25 * mA <t< td=""><td>OPEN-LOOP GAIN DC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	OPEN-LOOP GAIN DC									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Open-Loop Voltage Gain	$R_L \ge 1k\Omega$	88	100		75	*		dB	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EDECLIENCY DESPONSE									
		Gain - 100	1	6.5		2.5	<u> </u>		MUz	
Slew Rate V_0 = $\pm 10V$, R_L = $1k\Omega$ 24 35 20 * V/µs Settling Time: 0.1% Gain = -1, R_L = $1k\Omega$ 0.6 0.6 0.6 0.01% µs µs 0.01% C_L = $500pF$, $10V$ Step 1.0 1.0 $1 + 11 + 11 + 11 + 11 + 11 + 11 + 11$			1 4			3.3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·		0.4			-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$V_0 = \pm 10V, R_L = 1K\Omega$	24	35		20	*		V/μS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							*		μs	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.01%	C _L = 500pF, 10V Step		1.0					μs	
Current Output V _O = ±10V _{DC} ±15 ±20 * * * mA Output Resistance 1MHz, Open Loop 80 * * Ω Load Capacitance Stability Gain = +1 1500 * pF Short-Circuit Current ±30 ±50 ±25 * mA POWER SUPPLY Rated Voltage ±15 * * V _{DC} Voltage Range, Derated Performance ±18 * * V _{DC} Current, Quiescent Io = 0mADC 3 4 * * mA Over Specified Temperature 3.5 4.5 * * mA TEMPERATURE RANGE Ambient Temperature -25 +85 * * °C Operating: P, U Packages -25 +85 * * °C Storage: P, U Packages -40 +125 * * * °C	RATED OUTPUT									
Current Output $V_{O} = \pm 10V_{DC}$ ± 15 ± 20 ± 80 ± 80 ± 25	Voltage Output	$R_L = 1k\Omega$	±11.5	+12.9,		±11	*		V	
Output Resistance 1MHz, Open Loop 80 * * pF Short-Circuit Current ±30 ±50 ±25 * mA POWER SUPPLY Rated Voltage ±15 * * V _{DC} Voltage Range, Derated Performance ±5 ±18 * * mA Current, Quiescent Io = 0mADC 3 4 * * mA Over Specified Temperature 3.5 4.5 * * mA TEMPERATURE RANGE Specification Ambient Temperature -25 +85 * * °C Operating: -25 +85 * * °C Storage: P, U Packages -40 +125 * * * °C				-13.8						
Output Resistance Load Capacitance Stability 1MHz, Open Loop Gain = +1 80 * * pF Short-Circuit Current ±30 ±50 ±25 * mA POWER SUPPLY Rated Voltage Woltage Range, Derated Performance Current, Quiescent Over Specified Temperature 10 = 0mADC ±15 * * V _{DC} Current, Quiescent Over Specified Temperature 10 = 0mADC 3 4 * * mA TEMPERATURE RANGE Specification Operating: P, U Packages Ambient Temperature -25 +85 * * °C Storage: P, U Packages -25 +85 * * °C Storage: P, U Packages -40 +125 * * °C	Current Output	$V_{O} = \pm 10 V_{DC}$	±15	±20		*	*		mA	
Description	•						*		Ω	
Short-Circuit Current ±30										
POWER SUPPLY Rated Voltage		Sain = 11	+30			+25				
Rated Voltage ±15 ±18 * * V _{DC} Voltage Range, Derated Performance I _O = 0mADC ±15 ±18 * * * w mA Over Specified Temperature 3.5 4.5 * * mA TEMPERATURE RANGE Specification Ambient Temperature -25 +85 * * °C Operating: -25 +85 * * °C Storage: P, U Packages -40 +125 * * °C			1 200	±30			,		111/1	
Voltage Range, Derated Performance Current, Quiescent Over Specified Temperature Io = 0mADC ±5 ±18 * * * mA Over Specified Temperature 3.5 4.5 * * mA TEMPERATURE RANGE Specification Ambient Temperature -25 +85 * * °C Operating: P, U Packages -25 +85 * * °C Storage: P, U Packages -40 +125 * * °C		1	1							
Current, Quiescent Over Specified Temperature I _O = 0mADC 3			1	±15			*			
Over Specified Temperature 3.5 4.5 * * mA TEMPERATURE RANGE Specification Operating: P, U Packages	0 0,		±5	1	±18	*		*	V_{DC}	
TEMPERATURE RANGE Specification Ambient Temperature -25 +85 * °C Operating: -25 +85 * °C Storage: -25 +85 * * °C Storage: -40 +125 * * °C	Current, Quiescent	$I_O = 0mADC$	1	3	4		*	*	mA	
Specification Ambient Temperature -25 +85 * * °C Operating: P, U Packages -25 +85 * * °C Storage: P, U Packages -40 +125 * * °C	Over Specified Temperature			3.5	4.5		*	*	mA	
Specification Ambient Temperature -25 +85 * * °C Operating: P, U Packages -25 +85 * * °C Storage: P, U Packages -40 +125 * * °C	TEMPERATURE RANGE									
Operating: P, U Packages -25 +85 * °C Storage: P, U Packages -40 +125 * * °C		Ambient Temperature	-25		+85	*		*	°C	
P, U Packages -25 +85 * °C Storage: P, U Packages -40 +125 * * °C			-			'				
Storage: -40 +125 * * °C			_25	1	+85	*		*	∘C	
P, U Packages		1	23		100				l	
		1	_40		+125	*		*	°C	
	i, o i aonayos	1			123				ı	

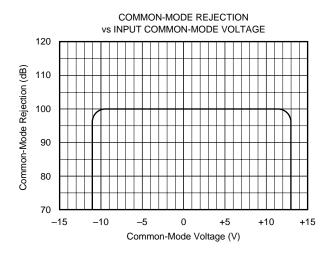
 $[\]ensuremath{\texttt{*}}$ Same specifications as OPA602BP.

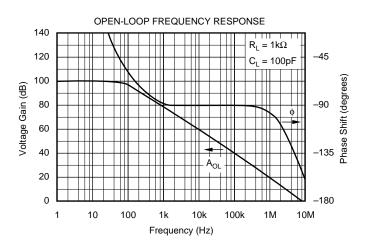

NOTE: (1) OPA602AP, AU ensured by design with a 99% confidence level.

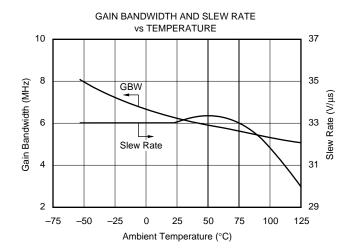


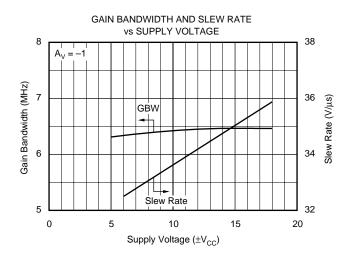


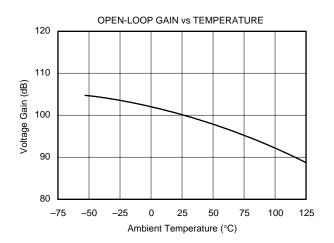

TYPICAL CHARACTERISTICS

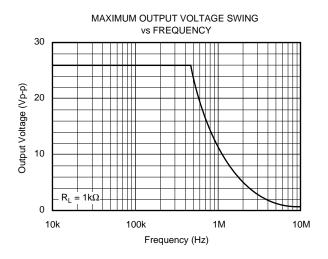

At $T_A = +25^{\circ}C$ and $V_S = \pm 15V_{DC}$, unless otherwise noted.

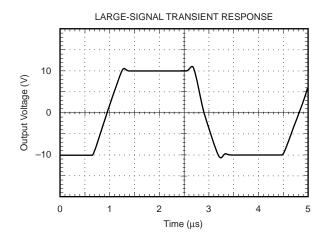


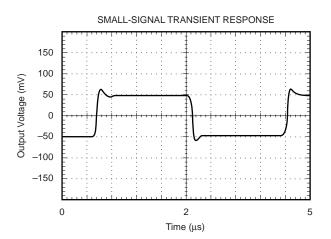


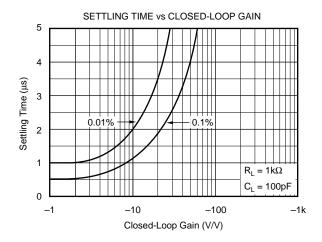


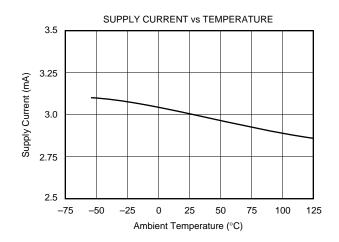


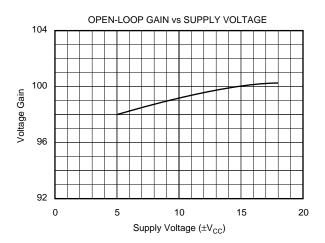

TYPICAL CHARACTERISTICS (Cont.)

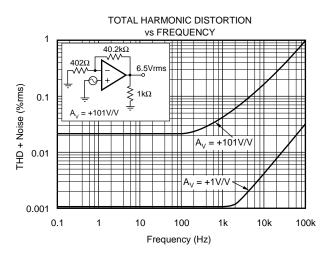

At $T_A = +25$ °C and $V_S = \pm 15 V_{DC}$, unless otherwise noted.

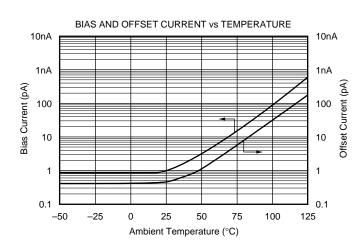


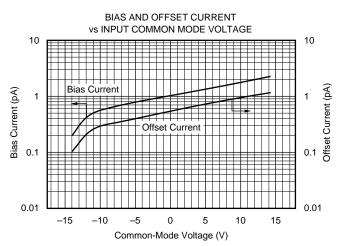


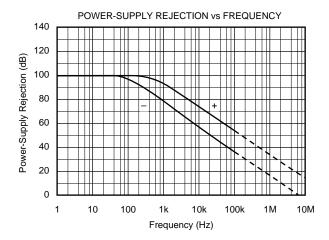


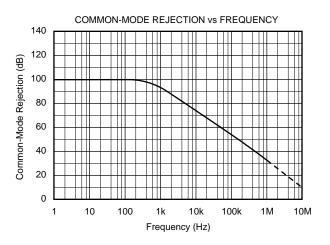



TYPICAL CHARACTERISTICS (Cont.)


At $T_A = +25$ °C and $V_S = \pm 15 V_{DC}$, unless otherwise noted.







TYPICAL CHARACTERISTICS (Cont.)

At $T_A = +25$ °C and $V_S = \pm 15 V_{DC}$, unless otherwise noted.

APPLICATIONS INFORMATION

Unity-gain stability with good phase margin and excellent output drive characteristics bring freedom from the subtle problems associated with other high-speed amplifiers. However, as with any high-speed, wide bandwidth circuitry, careful circuit layout will ensure best performance. Make short, direct interconnections and avoid stray wiring capacitance—especially at the inverting input pin.

Power supplies should be bypassed with good high-frequency capacitors positioned close to the op amp pins. In most cases $0.1\mu F$ ceramic capacitors are adequate. Applications with heavier loads and fast transient waveforms may benefit from use of additional $1.0\mu F$ tantalum bypass capacitors.

INPUT BIAS CURRENT GUARDING

Leakage currents across printed circuit boards can easily exceed the input bias current of the OPA602. A circuit board "guard" pattern, as shown in Figure 1, is an effective solution to difficult leakage problems. This guard pattern must be repeated on all layers of a multilayer board. By surrounding critical high impedance input circuitry with a low impedance circuit connection at the same potential, leakage currents will flow harmlessly to the low-impedance node.

Input bias current may also be degraded by improper handling or cleaning. Contamination from handling parts and circuit boards may be cleaned with appropriate solvents and deionized water. Each rinsing operation should be followed by a 30-minute bake at +85°C.

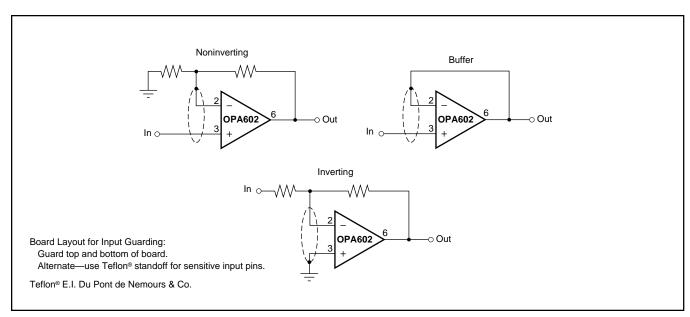


FIGURE 1. Connection of Input Guard.

APPLICATION CIRCUITS

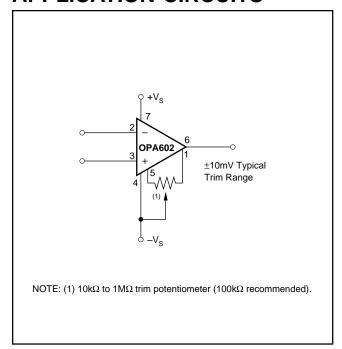


FIGURE 2. Offset Voltage Trim.

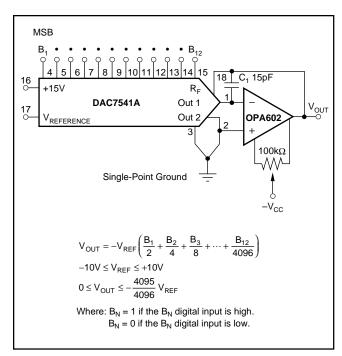


FIGURE 3. Voltage Output Digital-to-Analog Converter.

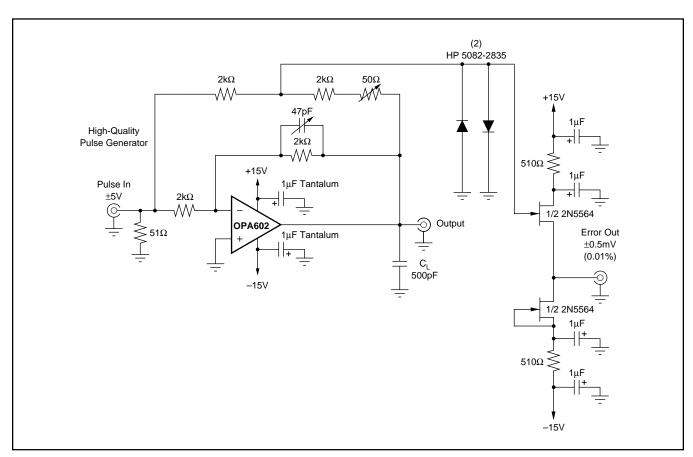
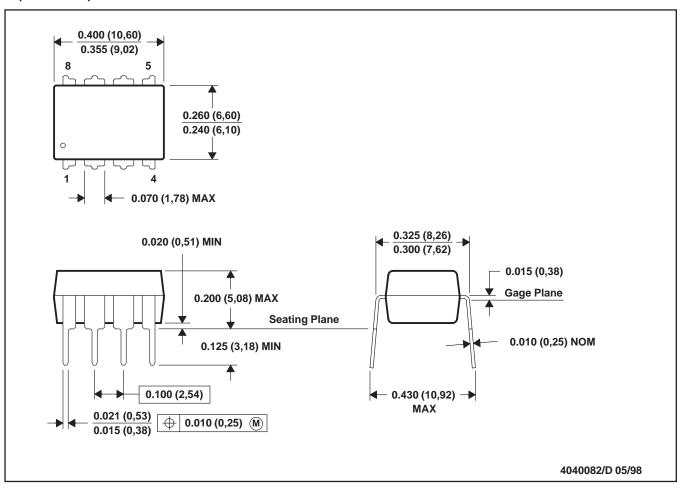
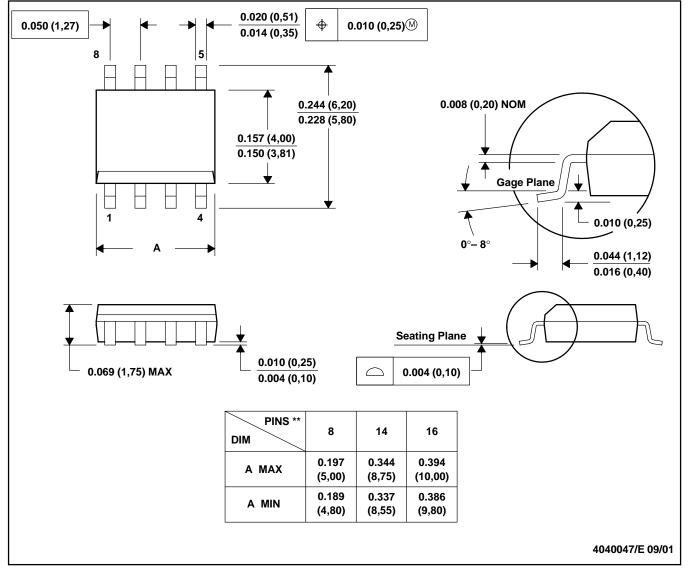



FIGURE 4. Settling Time and Slew Rate Test Circuit.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
OPA602AP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type		OPA602AP	Samples
OPA602AU	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-25 to 85	OPA 602AU	Samples
OPA602AU/2K5	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-25 to 85	OPA 602AU	Samples
OPA602AU/2K5E4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-25 to 85	OPA 602AU	Samples
OPA602AUE4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-25 to 85	OPA 602AU	Samples
OPA602BP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type		OPA602BP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

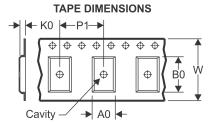
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- ⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

10-Dec-2020

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

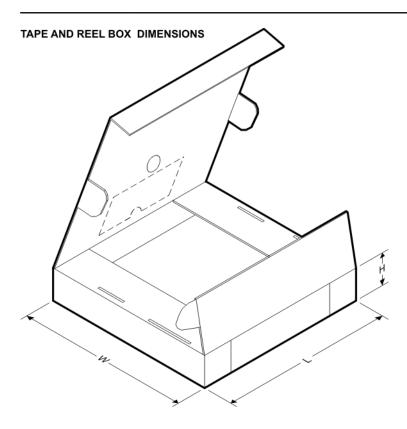
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Nov-2020

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA602AU/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Nov-2020

*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
I	OPA602AU/2K5	SOIC	D	8	2500	853.0	449.0	35.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated