6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module

NOMINAL SIZE = 0.75 in x 0.5 in (19,05 mm x 12,7 mm)

Features

- Up to 6-A Output Current
- 3.3 V Input Voltage
- Wide-Output Voltage Adjust (0.9 V to 2.5 V)
- Efficiencies up to 95 %
- 115 W/in³ Power Density
- On/Off Inhibit
- Under-Voltage Lockout

- Output Current Limit
- Over-Temperature Protection
- Operating Temp: -40 to +85 °C
- Surface Mount Package
- Safety Agency Approvals (Pending): UL 1950, CŚA 22.2 950, EN60950 & VDE

Description

The PTH03000 series of non-isolated power modules are small in size and high on performance. Using double-sided surface mount construction and synchronous rectification technology, these regulators deliver up to 6 A of output current while occupying a PCB area of about half the size of a standard postage stamp. They are an ideal choice for applications where space, performance and cost are important design constraints.

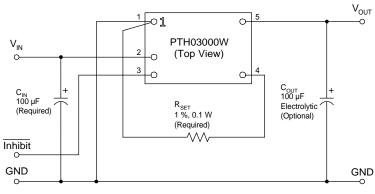
The series operates from an input voltage of 3.3 V to provide step-down power conversion to any output voltage over the range, 0.9 V to 2.5 V. The output voltage of the PTH03000W is set within this range using a single resistor.

Operating features include an on/off inhibit, output voltage adjust (trim), an output current limit, and over-temperature protection.

Target applications include telecom, industrial, and general purpose circuits, including low-power dual-voltage systems that use a DSP, microprocessor, or ASIC.

Package options include both throughhole and surface mount configurations.

Pin Configuration


Pin Function GND 1 2 Vin 3 Inhibit 4 Vo Adjust 5 Vout

* Denotes negative logic: Oven = Output On Ground = Output Off

Standard Application

 $\begin{array}{l} R_{set} & = Required \ to \ set \ the \ output \ voltage \ to \ a \ value \\ & higher \ than \ 0.9 \ V \ (see \ spec. \ table \ for \ values) \\ C_{in} & = Required \ 100 \ \mu F \ capacitor \end{array}$

Cin Cout = Optional 100 µF capacitor

Ordering Information

Output \	/oltage (PTH03000]xx)	Packa	ge Options (PTH0300	0x]) ⁽¹⁾
Code	Voltage	Code	Description	Pkg Ref. (2)
W	0.9 V – 2.5 V (Adjust)	AH	Horiz. T/H	(EUS)
		AS	SMD, Standard ⁽³⁾	(EUT)

Notes: (1) Add "T" to end of part number for tape and reel on SMD packages only.

(2) Reference the applicable package reference drawing for the dimensions and PC board layout

(3) "Standard" option specifies 63/37, Sn/Pb pin solder material.

Pin Descriptions

Vin: The positive input voltage power node to the module, which is referenced to common GND.

Vout: The regulated positive power output with respect to the GND node.

GND: This is the common ground connection for the 'V_{in}' and 'V_{out}' power connections. It is also the 0 VDC reference for the 'Inhibit' and 'V_o Adjust' control inputs.

Inhibit: The Inhibit pin is an open-collector/drain negative logic input that is referenced to GND. Applying a low-level ground signal to this input disables the module's output and turns off the output voltage. When the Inhibit control is active, the input current drawn by the regulator is significantly reduced. If the Inhibit pin is left open-circuit, the module will produce an output whenever a valid input source is applied.

Vo Adjust: A 0.1 W 1 % resistor must be directly connected between this pin and the *GND* pin to set the output voltage to a value higher than 0.9 V. The temperature stability of the resistor should be 100 ppm/°C (or better). The set point range for the output voltage is from 0.9 V to 2.5 V. The resistor required for a given output voltage may be calculated from the following formula. If left open circuit, the output voltage will default to its lowest value. For further information on output voltage adjustment, consult the related application note.

$$R_{set} ~~= 10 \; k\Omega \cdot \; \frac{0.891 \; V}{V_{out} - 0.9 \; V} ~~- 4.99 \; k\Omega$$

The specification table gives the preferred resistor values for a number of standard output voltages.

6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module

Environmental & Absolute Maximum Ratings

Characteristics Symbols		Conditions	Min	Тур	Max	Units
Operating Temperature Range	T _a	Over V _{in} Range	-40 (i)	—	+85	°C
Solder Reflow Temperature	T _{reflow}	Surface temperature of module body or pins			235 (ii)	°C
Storage Temperature	Ts	_	-40	_	+125	°C
Over Temperature Protection	OTP	IC junction temperature	_	150	_	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3 1 msec, ½ sine, mounted	—	500	—	G's
Mechanical Vibration		Mil-STD-883D, Method 2007.2 20-2000 Hz	—	20	_	G's
Weight				2		grams
Flammability	_	Meets UL 94V-O				

Notes: (i) During reflow of SMD package version do not elevate peak temperature of the module, pins or internal components above the stated maximum.

Characteristics	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	$0.9 \text{ V} \le \text{V}_{0} \le 2.5 \text{ V}, \begin{array}{c} \text{T}_{a} = 60 \text{ °C}, 200 \text{ LFM airflow} \\ \text{T}_{a} = 25 \text{ °C}, \text{natural convection} \end{array}$	0 0	_	6 (1) 6 (1)	А
Input Voltage Range	Vin	Over I _o range	3	—	3.6	V
Set-Point Voltage Tolerance	V _o tol		—	—	±2 (2)	%Vo
Temperature Variation	$\Delta \text{Reg}_{\text{temp}}$	$-40 ^{\circ}\text{C} < T_a < +85 ^{\circ}\text{C}$	_	±0.5	_	%Vo
Line Regulation	ΔReg _{line}	Over V _{in} range	_	±5	_	mV
Load Regulation	$\Delta \text{Reg}_{\text{load}}$	Over I _o range	_	±5	_	mV
Total Output Variation	$\Delta \text{Reg}_{\text{tot}}$	Includes set-point, line, load, -40 °C $\leq T_a \leq +85$ °C	_		±3 (2)	%Vo
Efficiency	η	$ \begin{array}{c} I_{o} = \!$	 	93 91 90 88 86 86 84		%
Vo Ripple (pk-pk)	Vr	20 MHz bandwidth	_	20	_	mVpp
Transient Response	$t_{ m tr} \Delta V_{ m tr}$	1 A/µs load step, 50 to 100 % I _o max, V _o =1.8 V, C _{out} =100 μF Recovery time V _o over/undershoot	_	70 100	_	μSec mV
Current Limit	I _{lim}	$\Delta V_0 = -50 \text{ mV}$	_	13		А
Under-Voltage Lockout	UVLO	V _{in} increasing V _{in} decreasing	2.6	2.95 2.8	3	V
Inhibit Control (pin 3) Input High Voltage Input Low Voltage	$V_{\mathrm{IH}} \ V_{\mathrm{IL}}$	Referenced to GND	V _{in} -0.5 -0.2		Open (3) 0.8	V
Input Low Current	I _{IL}	Pin 3 to GND	_	-10	_	μA
Standby Input Current	I _{in} inh	pins 1 & 3 connected	_	1	_	mA
Switching Frequency	f_{s}	Over Vin and Io ranges	_	700	_	kHz
External Input Capacitance	Cin		100 (4)	_	_	μF
External Output Capacitance	C _{out}	Capacitance value non-ceramic ceramic	0 0	100 (5)	1,000 (6) 300	μF
		Equiv. series resistance (non-ceramic)	4 (7)	_	_	mΩ
Reliability	MTBF	Per Bellcore TR-332 50 % stress, T _a =40 °C, ground benign	28		—	106 Hrs

Electrical Specifications Unless otherwise stated, $T_a = 25 \text{ °C}$, $V_{in} = 3.3 \text{ V}$, $V_o = 2 \text{ V}$, $C_{in} = 100 \text{ }\mu\text{F}$, $C_{out} = 0 \text{ }\mu\text{F}$, and $I_o = I_o \text{max}$

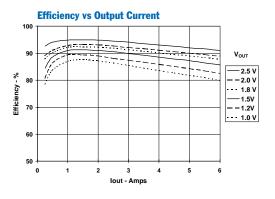
Notes: (1) See SOA curves or consult factory for appropriate derating.

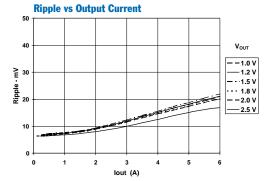
(1) See SOA times of conduct factory for appropriate detailing.
 (2) The set-point voltage tolerance is affected by the tolerance and stability of R_{SET}. The stated limit is unconditionally met if R_{SET} has a tolerance of 1 % with 100 ppm/°C or better temperature stability.
 (3) The Inhibit control (pin 3) has an internal pull-up to Vin, and if left open-circuit the module will operate when input power is applied. A small low-leakage (<100 nA) MOSFET is recommended to control this input. See application notes for more information.
 (4) The regulator requires a minimum of 100 µF input capacitor with a minimum 300 mArms ripple current rating. For further information, consult the well application role on Construct Proceedings.

related application note on Capacitor Recommendations.

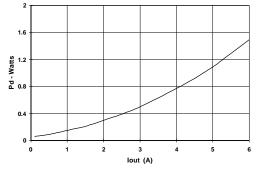
(5) An external output capacitor is not required for basic operation. Adding 100 µF of distributed capacitance at the load will improve the transient response.

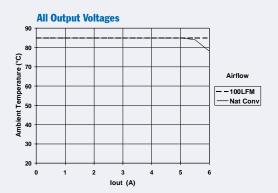
(6) This is the calculated maximum. The minimum ESR limitation will often result in a lower value. Consult the application notes for further guidance.


(7) This is the typical ESR for all the electrolytic (non-ceramic) output capacitance. Use 7 $m\Omega$ as the minimum when using max-ESR values to calculate.



6-A, 3.3-V Input Non-Isolated Wide-Output Adjust Power Module


SLTS200C - MAY 2003 - REVISED DECEMBER 2003


Characteristic Data; V_{in} =3.3V (See Note A)

Power Dissipation vs Output Current

Safe Operating Area; V_{in} =3.3 V (See Note B)

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the Converter. Note B: SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 4 in. × 4 in. double-sided PCB with 1 oz. copper.

Capacitor Recommendations for the PTH03000W, Wide-Output Adjust Power Modules

Input Capacitor

The recommended input capacitor(s) is determined by the 100 μ F minimum capacitance and 300 mArms minimum ripple current rating.

Ripple current, less than 300 m Ω equivalent series resistance (ESR), and temperature are the major considerations when selecting input capacitors. Unlike polymer tantalum, regular tantalum capacitors have a recommended minimum voltage rating of 2 × (maximum DC voltage + AC ripple). This is standard practice to ensure reliability.

For improved ripple reduction on the input bus, ceramic capacitors ^[2] may used to complement electrolytic types and achieve the minimum required capacitance.

Output Capacitors (Optional)

For applications with load transients (sudden changes in load current), regulator response will benefit from an external output capacitance. The recommended output capacitance of $100 \,\mu\text{F}$ will allow the module to meet its transient response specification (see product data sheet). For most applications, a high quality computer-grade aluminum electrolytic capacitor is adequate. These capacitors provide decoupling over the frequency range, 2 kHz to 150 kHz, and are suitable for ambient temperatures above 0 °C. For operation below 0 °C tantalum, ceramic or Os-Con type capacitors are recommended. When using one or more non-ceramic capacitors, the calculated equivalent ESR should be no lower than $4 \text{ m}\Omega$ (7 m Ω using the manufacturer's maximum ESR for a single capacitor). A list of preferred low-ESR type capacitors are identified in Table 1-1.

Ceramic Capacitors

Above 150 kHz the performance of aluminum electrolytic capacitors becomes less effective. To further improve the reflected input ripple current [2] or the output transient response, multilayer ceramic capacitors can also be added. Ceramic capacitors have very low ESR and their resonant frequency is higher than the bandwidth of the regulator. When used on the output their combined ESR is not critical as long as the total value of ceramic capacitance does not exceed 300 μ F. Also, to prevent the formation of local resonances, do not place more than five identical ceramic capacitors in parallel with values of 10 μ F or greater.

Tantalum Capacitors

Tantalum type capacitors can be used at both the input and output, and are recommended for applications where the ambient operating temperature can be less than 0 °C. The AVX TPS, Sprague 593D/594/595 and Kemet T495/ T510 capacitor series are suggested over many other tantalum types due to their higher rated surge, power dissipation, and ripple current capability. As a caution many general purpose tantalum capacitors have considerably higher ESR, reduced power dissipation and lower ripple current capability. These capacitors are also less reliable as they have lower power dissipation and surge current ratings. Tantalum capacitors that do not have a stated ESR or surge current rating are not recommended for power applications.

When specifying Os-Con and polymer tantalum capacitors for the output, the minimum ESR limit will be encountered well before the maximum capacitance value is reached.

Capacitor Table

Table 1-1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The recommended number of capacitors required at both the input and output buses is identified for each capacitor type.

This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The RMS ripple current rating and ESR (at 100 kHz) are critical parameters necessary to insure both optimum regulator performance and long capacitor life.

Designing for Very Fast Load Transients

The transient response of the DC/DC converter has been characterized using a load transient with a di/dt of 1 A/µs. The typical voltage deviation for this load transient is given in the data sheet specification table using the optional value of output capacitance. As the di/dt of a transient is increased, the response of a converter's regulation circuit ultimately depends on its output capacitor decoupling network. This is an inherent limitation with any DC/DC converter once the speed of the transient exceeds its bandwidth capability. If the target application specifies a higher di/dt or lower voltage deviation, the requirement can only be met with additional output capacitor decoupling. In these cases special attention must be paid to the type, value and ESR of the capacitors selected.

If the transient performance requirements exceed that specified in the data sheet, the selection of output capacitors becomes more important. For further guidance consult the separate application note, "Selecting Output Capacitors for PTH Products in High-Performance Applications."

PTH03000W

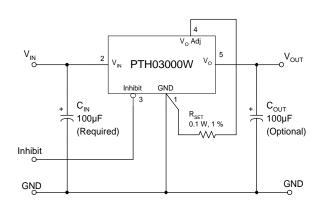
Table 1-1: Input/Output Capacitors

Capacitor Vendor, Type/ Series (Style)		C	apacitor Chara	Quantity				
	Working Voltage	Value (µF)	Max. (ESR) at 100 kHz	Max. Ripple at 85 °C Current (Irms)	Physical Size (mm)	Input Bus	Output Bus	Vendor Number
Panasonic FC, Aluminum (SMD) WA, Poly-Aluminum (SMD)	25 V 10 V	100 µF 120 µF	0.300 Ω 0.035 Ω	450 mA 2800 mA	8×10 8.3×6.9	1 1	1 ≤3	EEVFC1E101P EEFWA1A121P
Panasonic, Aluminum FC (Radial) FK (SMD)	16 V 16 V	220 µF 330 µF	0.150 Ω 0.160 Ω	555 mA 600 mA	10×10.2 8×10.2	1 1	≤5 ≤3	EEUFC1C221 EEVFK1C331P
United Chemi–Con FS, Os-con (Radial) PXA, Poly-Alum (SMD) MVZ, Aluminum (SMD) PS, Poly-Alum. (Radial)	10 V 10 V 16 V 10 V	100 μF 120 μF 220 μF 100 μF	0.040 Ω 0.027 Ω 0.170 Ω 0.024 Ω	2100 mA 2430 mA 450 mA 4420 mA	6.3×9.8 8×6.7 8×10 8×11.5	1 1 1 1	≤3 ≤3 ≤5 ≤3	10FS100M PXA10VC121MH80TP MVZ25VC221MH10TP 10PS270MH11
Nichicon, Aluminum WG, Aluminum (SMD) PM, (Radial) F55, Tantalum (SMD)	35 V 25 V 10 V	100 µF 150 µF 100 µF	0.150 Ω 0.160 Ω 0.055 Ω	670 mA 460 mA 2000 mA	10×10 10×11.5 7.7×4.3	1 1 1	1 ≤5 ≤3	UWG1V101MNR1GS UPM1E151MPH F551A107MN
Sanyo SVP, Os-con (SMD) SP, Os-con (Radial) TPE, Poscap Polymer (SMD)	10 V 16 V 10 V	120 µF 100 µF 220 µF	0.040 Ω 0.025 Ω 0.025 Ω	>2500 mA >2800 mA >2400mA	7×8 6.3×9.8 7.3×5.7	1 1 1	≤3 ≤2 ≤2	10SVP120M 16SPS100M 10TPE220ML
AVX, Tantalum TPS (SMD)	10 V 10 V	100 μF 220 μF	0.100 Ω 0.100 Ω	>1090 mA >1414 mA	7.3L ×4.3W ×4.1H	1 1	≤3 ≤3	TPSD107M010R0100 TPSV227M010R0100
Kemet T520, Poly-Alum (SMD) T495,Tantalum (SMD) A700-Poly-Alum. (SMD)	10 V 10 V 6.3 V	100 µF 100 µF 100 µF	$\begin{array}{c} 0.080 \ \Omega \\ 0.100 \ \Omega \\ 0.018 \ \Omega \end{array}$	1200 mA >1100 mA 2900 mA	7.3L×5.7W ×4.0H	1 1 1	≤4 ≤4 ≤2	T520D107M010AS T495X107M010AS A700D107M006AT
Vishay-Sprague 594D, Tantalum (SMD) 595D, Tantalum (SMD) 94SA, Os-con (Radial)	10 V 10 V 10 V	150 µF 120 µF 100 µF	0.090 Ω 0.140 Ω 0.030 Ω	1100 mA >1000 mA 2670 mA	7.3L ×6.0W ×4.1H 8×10.5	1 1 1	≤4 ≤4 ≤2	594D157X0010C2T 595D127X0010D2T 94SA107X0010EBP
Kemet, Ceramic X5R (SMD)	16 V 6.3 V	10 47	0.002 Ω 0.002 Ω	-	1210 case 3225 mm	1 2 [1]	≤5 ≤2	C1210C106M4PAC C1210C476K9PAC
Murata, Ceramic X5R (SMD)	6.3 V 6.3 V 16 V 16 V	100 47 22 10	0.002 Ω	-	1210 case 3225 mm	1 2 [1] 5 1 [2]	≤1 ≤2 ≤3 ≤5	GRM32ER60J107M GRM32ER60J476M GRM32ER61C226K GRM32DR61C106K
TDK, Ceramic X5R (SMD)	6.3 V 6.3 V 16 V 16 V	100 47 22 10	0.002 Ω	-	1210 case 3225 mm	1 2 [1] 5 1 [2]	≤1 ≤2 ≤3 ≤5	C3225X5R0J107MT C3225X5R0J476MT C3225X5R1C226MT C3225X5R1C106MT

A total capacitance of 94 µF is acceptable based on the combined ripple current rating.
 A ceramic capacitor may be used to complement electrolytic types at the input to further reduce bigh-frequency ripple current.

Adjusting the Output Voltage of the PTH03000W Wide-Output Adjust Power Modules

The V_o Adjust control (pin 4) sets the output voltage of the PTH03000Wproduct. The adjustment range is from 0.9 V to 2.5 V. The adjustment method requires the addition of a single external resistor, R_{set}, that must be connected directly between the V_o Adjust and GND pins ¹. Table 2-1 gives the preferred value of the external resistor for a number of standard voltages, along with the actual output voltage that this resistance value provides.


For other output voltages the value of the required resistor can either be calculated using the following formula, or simply selected from the range of values given in Table 2-2. Figure 2-1 shows the placement of the required resistor.

$$R_{set} = 10 \text{ k}\Omega \cdot \frac{0.891 \text{ V}}{\text{V}_{out} - 0.9 \text{ V}} - 4.99 \text{ k}\Omega$$

Table 2-1; Preferred Values of R_{set} for Standard Output Voltages

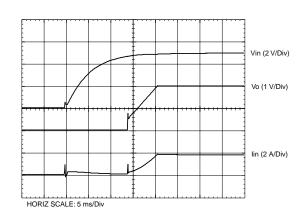
V _{out} (Standard)	R _{set} (Pref'd Value)	V _{out} (Actual)
2.5 V	576Ω	2.501V
2 V	3.09 kΩ	$2.003\mathrm{V}$
$1.8\mathrm{V}$	4.87 kΩ	$1.804\mathrm{V}$
1.5 V	9.76 kΩ	$1.504\mathrm{V}$
1.2 V	24.3 kΩ	$1.204\mathrm{V}$
$1\mathrm{V}$	82.5 kΩ	$1.002\mathrm{V}$
0.9 V	Open	0.9 V

Figure 2-1; V Adjust Resistor Placement

Table 2-2; Output Voltage Set-Point Resistor Value	Table 2-2;	Output	Voltage	Set-Point	Resistor	Value
--	------------	--------	---------	-----------	----------	-------

Va Req'd	R _{set}	Va Req'd	R _{set}
0.900	Open	1.50	9.86 kΩ
0.925	351 kΩ	1.55	8.72 kΩ
0.950	173 kΩ	1.60	7.74 kΩ
0.975	114 kΩ	1.65	6.89 kΩ
1.000	84.1 kΩ	1.70	6.15 kΩ
1.025	66.3 kΩ	1.75	5.49 kΩ
1.050	54.4 kΩ	1.80	4.91 kΩ
1.075	45.9 kΩ	1.85	4.39 kΩ
1.100	39.6 kΩ	1.90	3.92 kΩ
1.125	34.6 kΩ	1.95	3.50 kΩ
1.150	30.7 kΩ	2.00	3.11 kΩ
1.175	27.4 kΩ	2.05	2.76 kΩ
1.200	24.7 kΩ	2.10	2.44 kΩ
1.225	22.4 kΩ	2.15	2.14 kΩ
1.250	20.5 kΩ	2.20	1.86 kΩ
1.275	18.8 kΩ	2.25	1.61 kΩ
1.300	17.3 kΩ	2.30	1.37 kΩ
1.325	16.0 kΩ	2.35	1.15 kΩ
1.350	14.8 kΩ	2.40	950 Ω
1.375	13.8 kΩ	2.45	758Ω
1.400	12.8 kΩ	2.50	579Ω
1.425	12.0 kΩ		
1.450	11.2 kΩ		
1.475	10.5 kΩ		

Notes:


- Use a 0.1 W resistor. The tolerance should be 1 %, with a temperature stability of 100 ppm/°C (or better). Place the resistor as close to the regulator as possible. Connect the resistor directly between pins 4 and 1 using dedicated PCB traces.
- Never connect capacitors from V_o Adjust to either GND or V_{out}. Any capacitance added to the V_o Adjust pin will affect the stability of the regulator.

Power-Up Characteristics

When configured per their standard application, the PTH03000 and PTH05000 series of power modules will produce a regulated output voltage following the application of a valid input source voltage. During power up, internal soft-start circuitry slows the rate that the output voltage rises, thereby limiting the amount of in-rush current that can be drawn from the input source. The soft-start circuitry introduces a short time delay (typically 10 ms) into the power-up characteristic. This is from the point that a valid input source is recognized. Figure 3-1 shows the power-up waveforms for a PTH05000W (5-V input), with the output voltage set point adjusted for a 2-V output. The waveforms were measured with a 5-A resistive load. The initial rise in input current when the input voltage first starts to rise is the charge current drawn by the input capacitors.

Figure 3-1

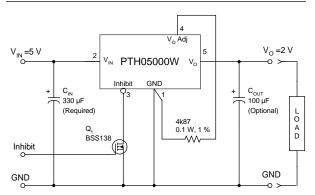
Current Limit Protection

The PTHxx000W modules protect against load faults with a continuous current limit characteristic. Under a load fault condition the output current cannot exceed the current limit value. Attempting to draw current that exceeds the current limit value causes the output voltage to be progressively reduced. Current is continuously supplied to the fault until it is removed. Upon removal of the fault, the output voltage will promptly recover.

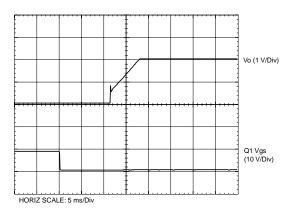
Thermal Shutdown

Thermal shutdown protects the module's internal circuitry against excessively high temperatures. A rise in temperature may be the result of a drop in airflow, a high ambient temperature, or a sustained current limit condition. If the junction temperature of the internal components exceed 150 °C, the module will shutdown. This reduces the output voltage to zero. The module will start up automatically, by initiating a soft-start power up when the sensed temperature decreases 10 °C below the thermal shutdown trip point.

Output On/Off Inhibit


For applications requiring output voltage on/off control, the PTH03000W & PTH05000W power modules incorporate an output on/off *Inhibit* control (pin 3). The inhibit feature can be used wherever there is a requirement for the output voltage from the regulator to be turned off.

The power module functions normally when the *Inhibit* pin is left open-circuit, providing a regulated output whenever a valid source voltage is connected to V_{in} with respect to *GND*.


Figure 3-2 shows the typical application of the inhibit function. Note the discrete transistor (Q_1) . The *Inhibit* control has its own internal pull-up to V_{in} potential. An open-collector or open-drain device is recommended to control this input.

Turning Q_1 on applies a low voltage to the *Inhibit* control pin and disables the output of the module. If Q_1 is then turned off, the module will execute a soft-start power-up sequence. A regulated output voltage is produced within 20 msec. Figure 3-3 shows the typical rise in the output voltage, following the turn-off of Q_1 . The turn off of Q_1 corresponds to the fall in the waveform, $Q_1 V_{gs}$. The waveforms were measured with a 5-A resistive load.

27-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
PTH03000WAD	ACTIVE	Through- Hole Module	EUS	5	56	RoHS (In Work) & Green (In Work)	SN	N / A for Pkg Type			Samples
PTH03000WAH	ACTIVE	Through- Hole Module	EUS	5	56	RoHS (In Work) & Green (In Work)	SN	N / A for Pkg Type	-40 to 85		Samples
PTH03000WAS	ACTIVE	Surface Mount Module	EUT	5	49	RoHS (In Work) & Green (In Work)	SNPB	Level-1-235C-UNLIM/ Level-3-260C-168HRS	-40 to 85		Samples
PTH03000WAST	ACTIVE	Surface Mount Module	EUT	5	250	RoHS (In Work) & Green (In Work)	SNPB	Level-1-235C-UNLIM/ Level-3-260C-168HRS			Samples
PTH03000WAZ	ACTIVE	Surface Mount Module	EUT	5	49	RoHS (In Work) & Green (In Work)	SNAGCU	Level-3-260C-168 HR	-40 to 85		Samples
PTH03000WAZT	ACTIVE	Surface Mount Module	EUT	5	250	RoHS (In Work) & Green (In Work)	SNAGCU	Level-3-260C-168 HR	-40 to 85		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

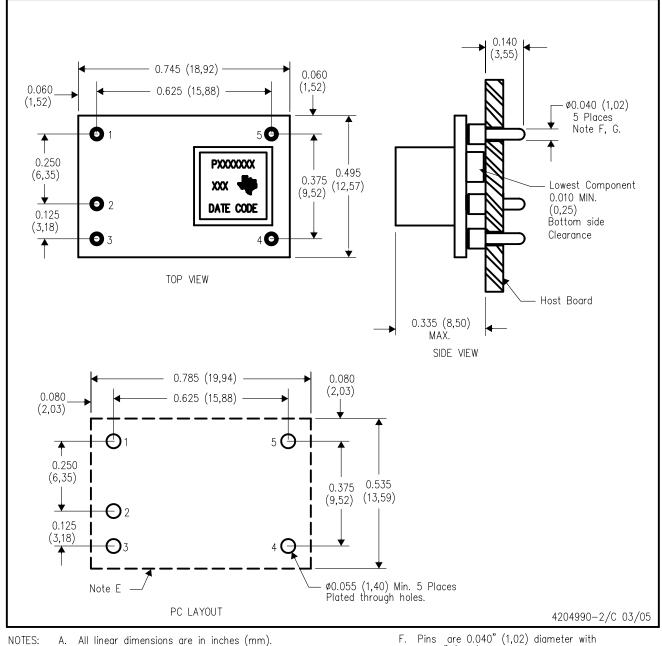
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

27-Apr-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

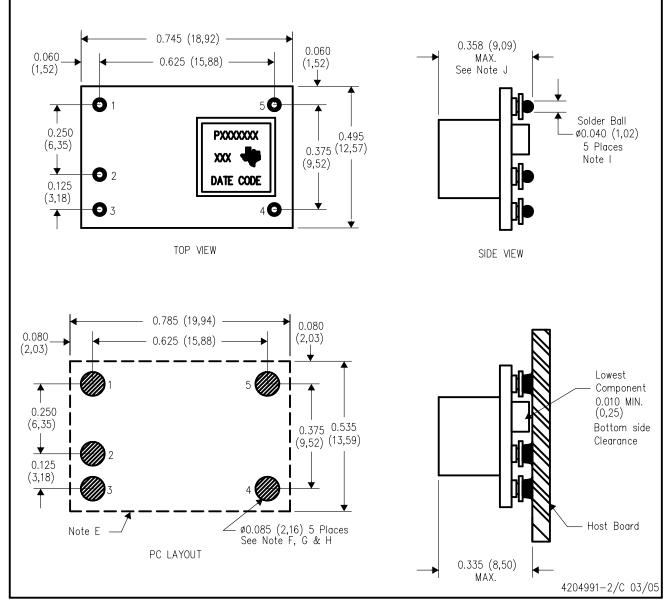

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

EUS (R-PDSS-T5)

DOUBLE SIDED MODULE


B. This drawing is subject to change without notice.
 C. 2 place decimals are ±0.030 (±0,76mm).

- D. 3 place decimals are ± 0.000 ($\pm 0,70$ mm).
- E. Recommended keep out area for user components.
- F. Pins are 0.040 (1,02) diameter with 0.070" (1,78) diameter standoff shoulder.
 G. All pins: Material - Copper Alloy
 - Finish Tin (100%) over Nickel plate

EUT (R-PDSS-B5)

DOUBLE SIDED MODULE

NOTES: All linear dimensions are in inches (mm).

- А. В. This drawing is subject to change without notice.
- C. 2 place decimals are ± 0.030 (± 0.76 mm). D. 3 place decimals are ± 0.010 (± 0.25 mm).
- Ε. Recommended keep out area for user components.
- F. Power pin connection should utilize two or more vias to the interior power plane of 0.025 (0,63) I.D. per input, ground and output pin (or the electrical equivalent).
- G. Paste screen opening: 0.080 (2,03) to 0.085 (2,16). Paste screen thickness: 0.006 (0,15).
- H. Pad type: Solder mask defined.
- All pins: Material Copper Alloy Finish Tin (100%) over Nickel plate Ι. Solder Ball - See product data sheet.
- J. Dimension prior to reflow solder.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated