

REF200 SBVS020B - SEPTEMBER 2000 - REVISED JULY 2015

REF200 Dual Current Source and Current Sink

Features

- Completely Floating: No Power Supply or Ground Connections
- High Accuracy: 100 µA ±0.5%
- Low Temperature Coefficient: ±25 ppm/°C Wide Voltage Compliance: 2.5 V to 40 V
- Includes Current Mirror

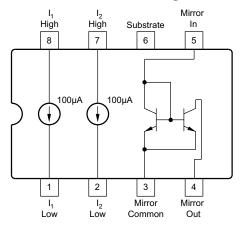
Applications

- Sensor Excitation
- Biasing Circuitry
- Offsetting Current Loops
- Low Voltage References
- Charge-pump Circuitry
- **Hybrid Microcircuits**

3 Description

The REF200 combines three circuit building-blocks on a single monolithic chip: two 100-µA current sources and a current mirror. The sections are dielectrically isolated, making them completely independent. Also, because the current sources are two-terminal devices, they can be used equally well as current sinks. The performance of each section is individually measured and laser-trimmed to achieve high accuracy at low cost.

The sections can be pin-strapped for currents of 50 μA, 100 μA, 200 μA, 300 μA, or 400 μA. External circuitry can obtain virtually any current. These and many other circuit techniques are shown in the Application Information section of this data sheet.


The REF200 is available in an SOIC package.

Device Information⁽¹⁾

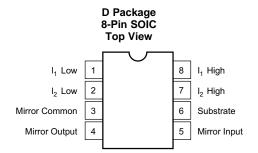
PART NUMBER	PACKAGE	BODY SIZE (NOM)
REF200	SOIC (8)	3.91 mm × 4.90 mm

(1) For all available packages, see the package addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

1	Features 1	8	Application and Implementation	9
2	Applications 1		8.1 Application Information	9
3	Description 1		8.2 Typical Application	
4	Revision History2		8.3 System Examples	
5	Pin Configuration and Functions	9	Power Supply Recommendations	25
6	Specifications	10	Layout	25
•	6.1 Absolute Maximum Ratings		10.1 Layout Guidelines	25
	6.2 ESD Ratings		10.2 Layout Example	25
	6.3 Recommended Operating Conditions	11	Device and Documentation Support	26
	6.4 Electrical Characteristics		11.1 Documentation Support	26
	6.5 Typical Characteristics		11.2 Community Resources	26
7	Detailed Description 7		11.3 Trademarks	26
•	7.1 Overview		11.4 Electrostatic Discharge Caution	26
	7.2 Functional Block Diagram		11.5 Glossary	26
	7.3 Feature Description	12	Mechanical, Packaging, and Orderable Information	26
	7.4 Device Functional Modes 8		IIIOIIIIauoii	20


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	Changes from Revision A (July 2015) to Revision B					
•	Changed multiple instances of "mA" in data sheet back to "µA" (typo)	1				
С	hanges from Original (September 2000) to Revision A	Page				

5 Pin Configuration and Functions

Pin Functions

PIN		DESCRIPTION			
NAME NO.		DESCRIPTION			
I ₁ Low	1	Current source 1 low terminal			
I ₂ Low	2	Current source 2 low terminal			
Mirror Common	3	Current mirror common terminal			
Mirror Output	4	Current mirror output terminal			
Mirror Input	5	Current mirror input terminal			
Substrate	6	Substrate (Usually connected to most negative potential in the system)			
I ₂ High	7	Current source 2 high terminal			
I ₁ High	8	Current source 1 high terminal			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	Applied voltage	-6	40	٧
	Reverse current		-350	μΑ
	Voltage between any two sections		±80	٧
	Operating temperature	-40	85	°C
T _{stg}	Storage temperature	-40	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (1)	±750	V

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

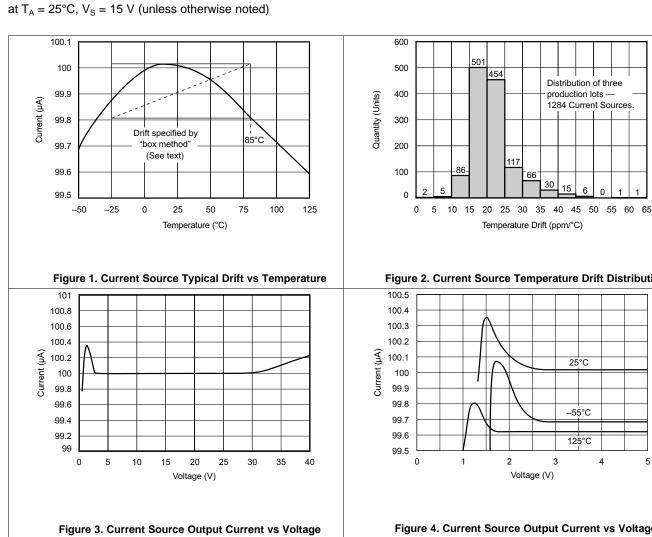
		MIN	NOM MAX	UNIT
V_{COMP}	Compliance voltage	2.5	40	V
T_A	Specified temperature range	-25	85	°C

6.4 Electrical Characteristics

at $T_A = 25$ °C, $V_S = 15$ V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT SOURCES					
Current accuracy			±0.25%	±1%	
Current match			±0.25%	±1%	
Temperature drift	Specified temperature range		25		ppm/°C
Output impedance	2.5 V to 40 V	20	100		ΜΩ
Output impedance	3.5 V to 30 V	200		500	IVILZ
Maina	BW = 0.1 Hz to 10 Hz		1		nAp-p
Noise	f = 10 kHz		20		pA/√Hz
Voltage compliance (1%)	T _{MIN} to T _{MAX}	See Typic	See Typical Characteristics		
Capacitance			10		pF
CURRENT MIRROR - I = 100 µA unless oth	erwise noted	·			
Gain		0.995	1	1.005	
Temperature drift			25		ppm/°C
Impedance (output)	2 V to 40 V	40	100		ΜΩ
Nonlinearity	I = 0 μA to 250 μA		0.05%		
Input voltage			1.4		V
Output compliance voltage		See Typic	cal Character	istics	
Frequency response (-3 dB)	Transfer		5		MHz

Product Folder Links: REF200


Distribution of three

1284 Current Sources.

production lots

6.5 Typical Characteristics

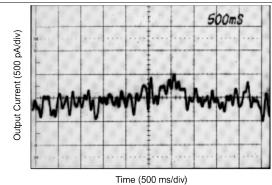
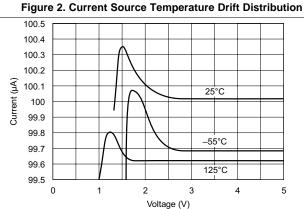



Figure 5. Current Source Current Noise (0.1 Hz to 10 Hz)

501

454

117

66 30 15

Temperature Drift (ppm/°C)

Figure 4. Current Source Output Current vs Voltage

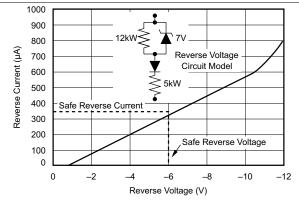


Figure 6. Current Source Reverse Current vs Reverse Voltage

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 15$ V (unless otherwise noted)

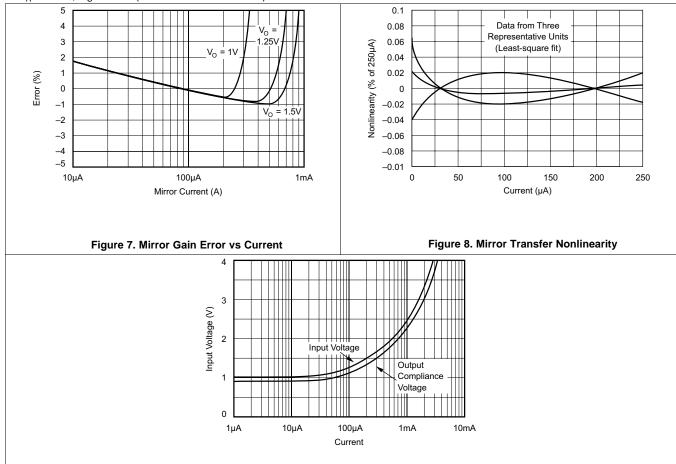
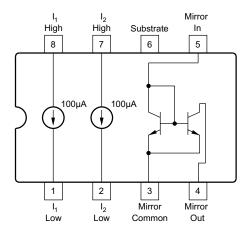


Figure 9. Mirror Input Voltage and Output Compliance Voltage vs Current



7 Detailed Description

7.1 Overview

The REF200 device combines three circuit building-blocks on a single monolithic chip—two 100-µA current sources and a current mirror. The sections are dielectrically isolated, making them completely independent. Also, because the current sources are two terminal devices, they can be used equally well as current sinks. The performance of each section is individually measured and laser-trimmed to achieve high accuracy at low cost.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Temperature Drift

Drift performance is specified by the *box method*, as illustrated in Figure 1. The upper and lower current extremes measured over temperature define the top and bottom of the box. The sides are determined by the specified temperature range of the device. The drift of the unit is the slope of the diagonal, typically 25 ppm/°C from –25°C to +85°C.

7.4 Device Functional Modes

The three circuit sections of the REF200 are electrically isolated from one another, using a dielectrically-isolated fabrication process. A substrate connection is provided (pin 6), which is isolated from all circuitry. This pin should be connected to a defined circuit potential to assure rated DC performance. The preferred connection is to the most negative constant potential in the system. In most analog systems, this would be $-V_S$. For best ac performance, leave pin 6 open and leave unused sections unconnected. Figure 10 shows the simplified circuit diagram of the REF200.

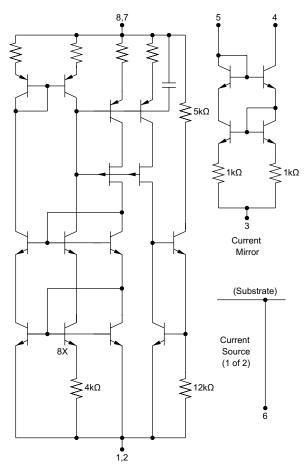


Figure 10. Simplified Circuit Diagram

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

Applications for the REF200 are limitless. Application Bulletin AB-165 (SBOA046) shows additional REF200 circuits as well as other related current source techniques. In this section, a collection of circuits are shown to illustrate some techniques.

If the current sources are subjected to reverse voltage, a protection diode may be required. A reverse voltage circuit model of the REF200 is shown in Figure 6. If reverse voltage is limited to less than 6 V or reverse current is limited to less than 350 μ A, then no protection circuitry is required. A parallel diode (see (a) in Figure 17) protects the device by limiting the reverse voltage across the current source to approximately 0.7 V. In some applications, a series diode may be preferable (see (b) in Figure 17), because it allows no reverse current. This configuration, however, reduces the compliance voltage range by one diode drop.

8.2 Typical Application

Figure 11 shows the schematic of a circuit that translates RTD resistance to a voltage level convenient for an ADC input. The REF200 precision current reference provides excitation and an instrumentation amplifier scales the signal. The design also uses a 3-wire RTD configuration to minimize errors due to wiring resistance.

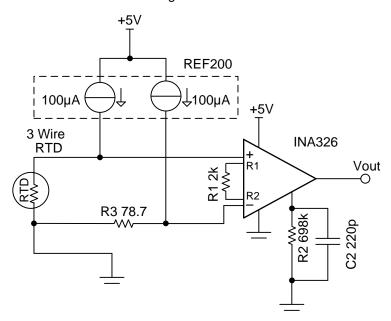


Figure 11. RTD Resistance to Voltage Converter Schematic

Typical Application (continued)

8.2.1 Design Requirements

The design requirements are as follows:

Supply Voltage: 5 V

RTD temperature range: -50°C to +125°C

• RTD resistance range 80.3 Ω to 147.9 Ω

Output: 0.1 V to 4.9 V

The design goals and performance are summarized in Table 1. Figure 15 depicts the measured transfer function of the design.

Table 1. Comparison of Design Goals, Calculations, Simulation, and Measured Performance

V _{OUT}	RTD	GOAL	CALCULATED	SIMULATED	MEASURED
V _{OUT} maximum scale	80.3 Ω	0.1 V	0.112 V	0.117 V	0.11 3 V
V _{OUT} minimum scale	142.9 Ω	4.9 V	4.83 V	4.82 V	4.862 V

8.2.2 Detailed Design Procedure

Figure 12 and Figure 13 shows the schematic of the RTD amplifier for minimum and maximum output conditions. This circuit was designed for a -50° C to 150° C RTD temperature range. At -50° C the RTD resistance is $80.3~\Omega$ and the voltage across it is 8.03~mV ($V_{RTD} = (100~\mu\text{A})~(80.3~\Omega)$, see Figure 2). Notice that R3 develops a voltage drop that opposes the RTD drop. The drop across R3 is used to shift amplifiers input differential voltage to a minimum level. The output is the differential input multiplied by the gain (Vout = $698 \cdot 160~\mu\text{V} = 0.111~\text{V}$). At 150° C, the RTD resistance is $148~\Omega$ and the voltage across it is 14.~8~mV ($V_{RTD} = (100~\mu\text{A} \times 148~\Omega)$). This produces a differential input of 6.93~mV and an output voltage of 4.84~V ($V_{OUT} = 698 \cdot 6.93~\text{mV} = 4.84~\text{V}$), see Figure 13). For more detailed design procedures and results, refer to the reference guide, *RTD to Voltage Reference Design Using Instrumentation Amplifier and Current Reference* (TIDU969).

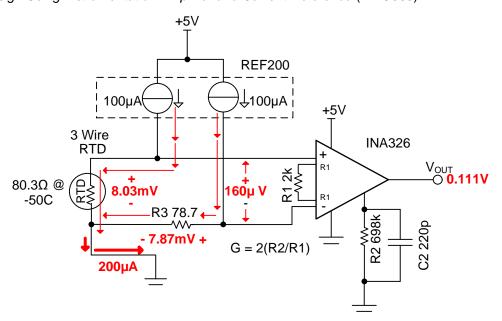


Figure 12. RTD Amplifier with Minimum Output Condition

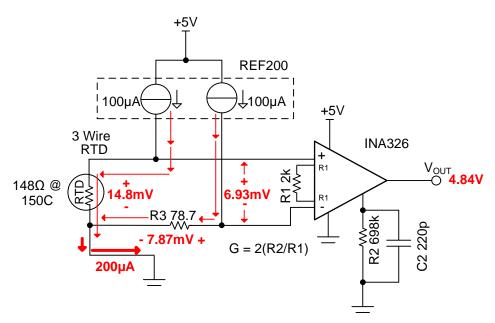


Figure 13. RTD Amplifier with Maximum Output Condition

8.2.2.1 Lead Resistance Cancelation (3-Wire RTD)

Figure 14 shows the 3-wire RTD configuration can be used to cancel lead resistance. The resistance in each lead must be equal to cancel the error. Also, the two current sources in the REF200 must be equal. Notice that the voltage developed on the two top leads of the RTD are equal and opposite polarity so that the amplifiers input is only from the RTD voltage. In this example, the RTD drop is 14.8 mV and the leads each have 1 mV. Notice that the 1 mV drops cancel. Finally, notice that the voltage on the 3rd lead (2 mV) creates a small shift in the common mode voltage. In some applications, a larger resistor is intentionally added to shift the common-mode voltage. However, the INA326 has a rail-to-rail common mode range, so it can accept common-mode voltages near ground.

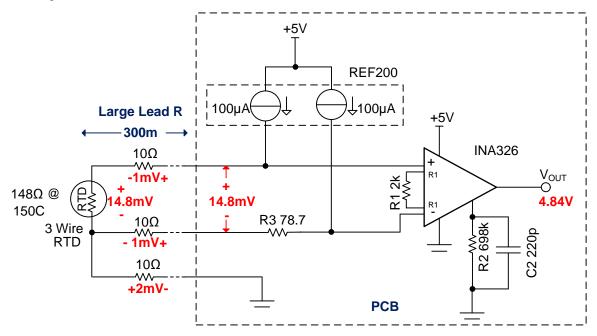
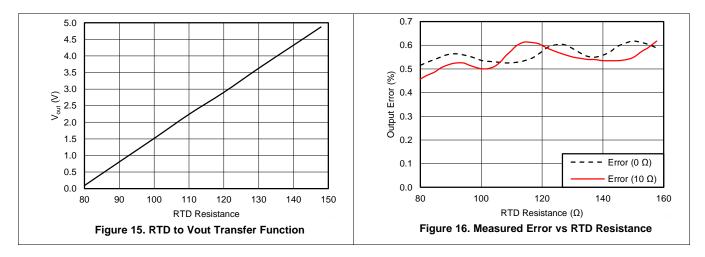



Figure 14. 3-Wire RTD Configuration Cancels Lead Resistance

TEXAS INSTRUMENTS

8.2.3 Application Curves

8.3 System Examples

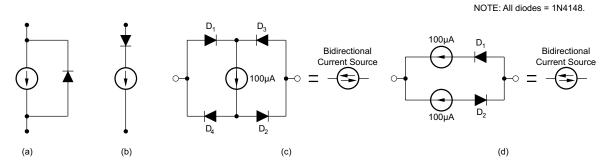


Figure 17. Reverse Voltage Protection

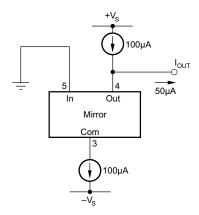


Figure 18. 50-µA Current Source

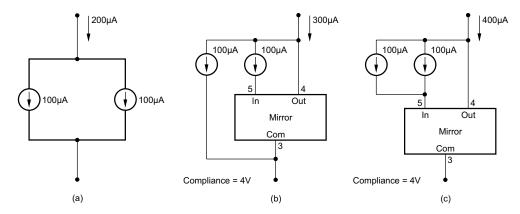
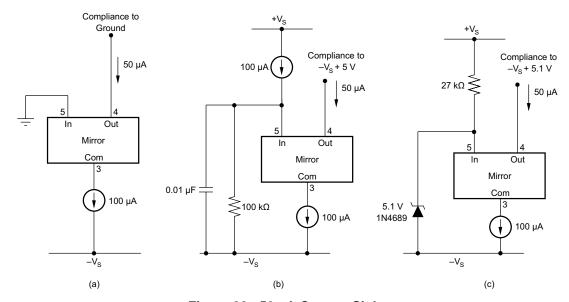
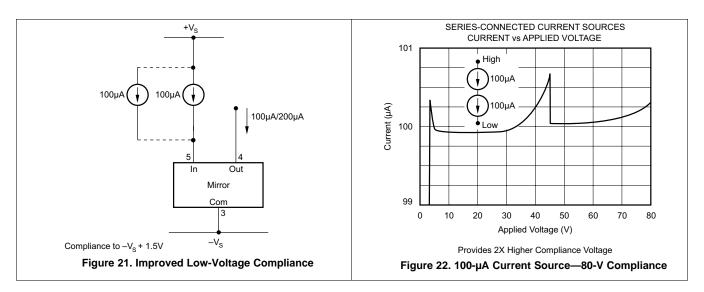
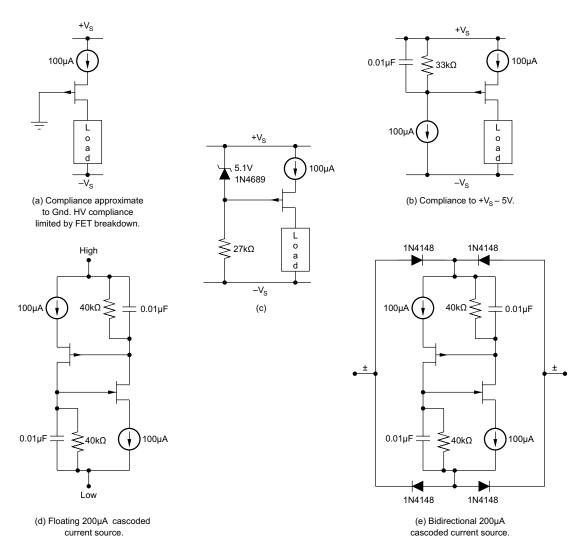


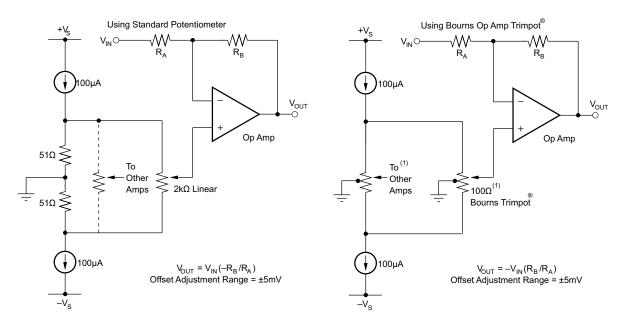
Figure 19. 200-μA, 300-μA, and 400-μA Floating Current Sources


Figure 20. 50-µA Current Sinks

Copyright © 2000–2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS


System Examples (continued)

NOTES: (1) FET cascoded current sources offer improved output impedance and high frequency operation. Circuit in (b) also provides improved PSRR. (2) For current sinks (Circuits (a) and (b) only), invert circuits and use "N" channel JFETS.

Figure 23. FET Cascode Circuits

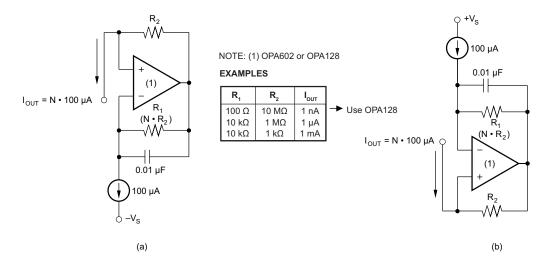

NOTE: (1) For N Op Amps, use Potentiometer Resistance = N • 100 Ω .

Figure 24. Operational Amplifier Offset Adjustment Circuits

Copyright © 2000–2015, Texas Instruments Incorporated

Product Folder Links: REF200

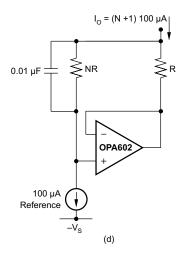
FEATURES:

- (1) Zero volts shunt compliance.
- (2) Adjustable only to values above reference value.

NOTE:

100 μΑ

OPA602


(c)

Current source/sink swing to the Load Return rail is limited only by the op amp's input common mode range and output swing capability. Voltage drop across R can be tailored for any amplifier to allow swing to zero volts from rail.

EXAMPLES

= (N +1) 100 μA

R	NR	I _{out}
1 kΩ	4 kΩ	500 µA
1 kΩ	9 kΩ	1 mA
100 kΩ	9.9 kΩ	10 mA

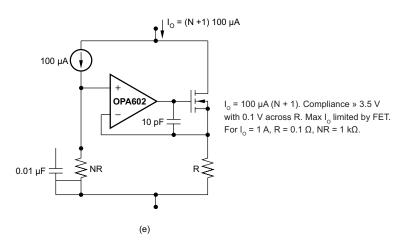


Figure 25. Adjustable Current Sources

Submit Documentation Feedback

0.01 µF

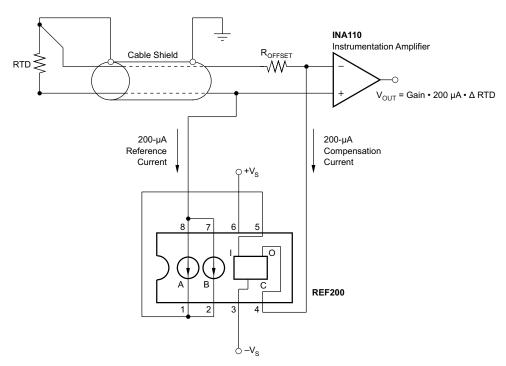
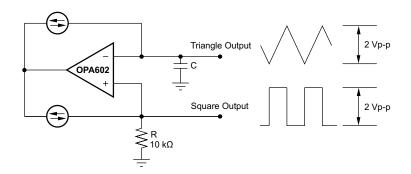



Figure 26. RTD Excitation With Three-Wire Lead Resistance Compensation

Frequency = 1/4RC (Hz) Frequency = 25/C (Hz) (C is in μ F and R = 10 k Ω)

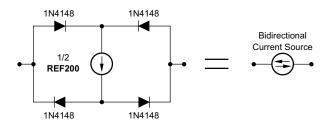
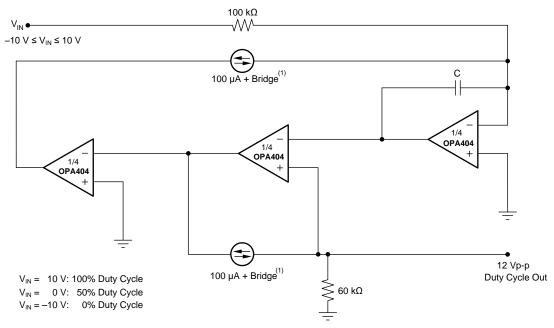



Figure 27. Precision Triangle Waveform Generator

Copyright © 2000-2015, Texas Instruments Incorporated Product Folder Links: REF200

(1) See Figure 27.

Figure 28. Precision Duty-Cycle Modulator

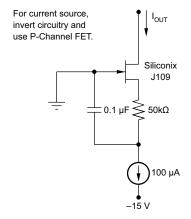


Figure 29. Low Noise Current Sink

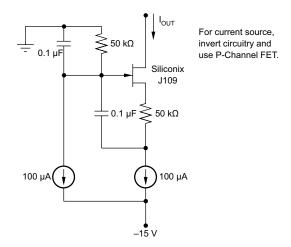


Figure 30. Low Noise Current Sink With Compliance Below Ground

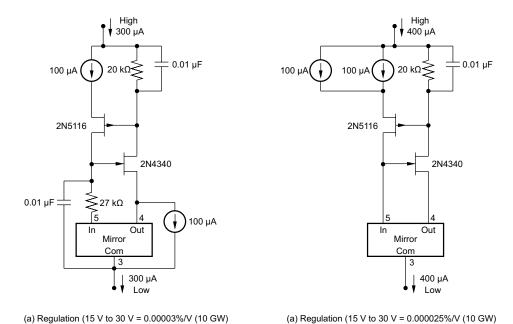


Figure 31. Floating 300-µA and 400-µA Cascoded Current Sources

Copyright © 2000–2015, Texas Instruments Incorporated

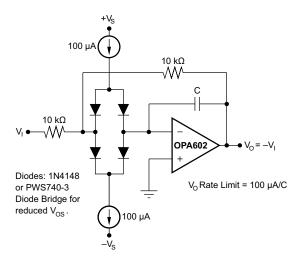


Figure 32. Rate Limiter

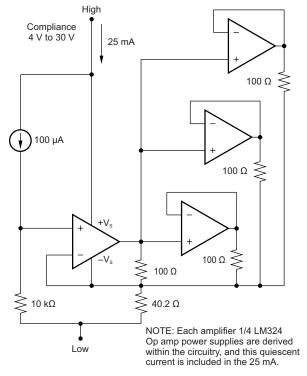


Figure 33. 25-mA Floating Current Source

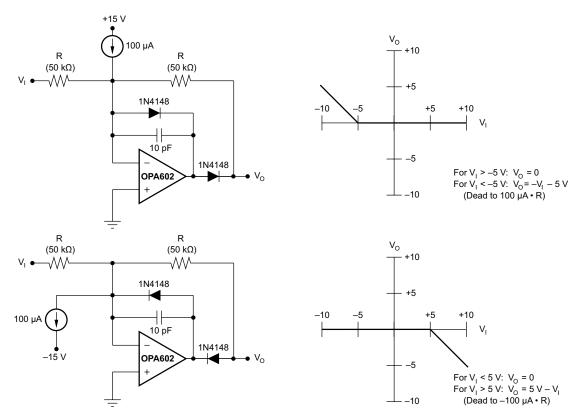


Figure 34. Dead-Band Circuit

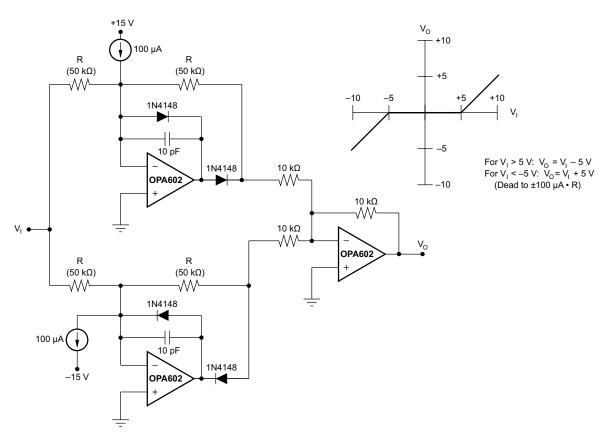


Figure 35. Double Dead-Band Circuit

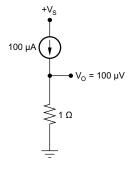


Figure 36. Low-Voltage Reference

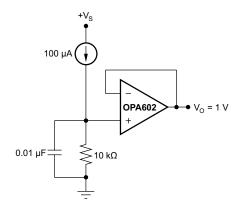
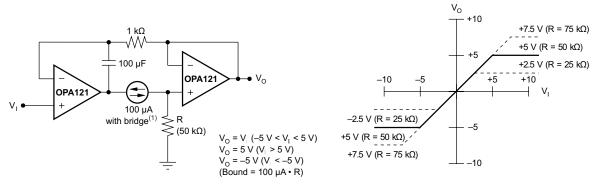



Figure 37. Voltage Reference

(1) See Figure 17.

Figure 38. Bipolar Limiting Circuit

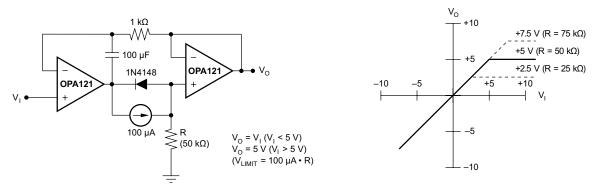


Figure 39. Limiting Circuit

Copyright © 2000–2015, Texas Instruments Incorporated

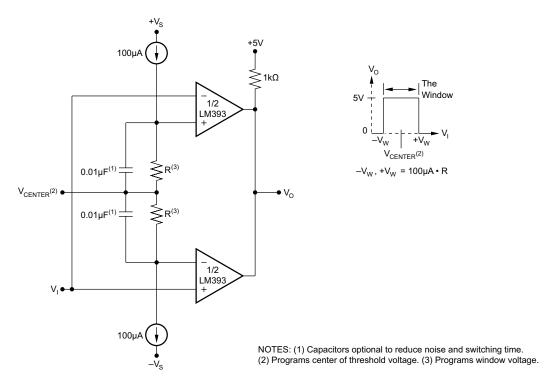


Figure 40. Window Comparator

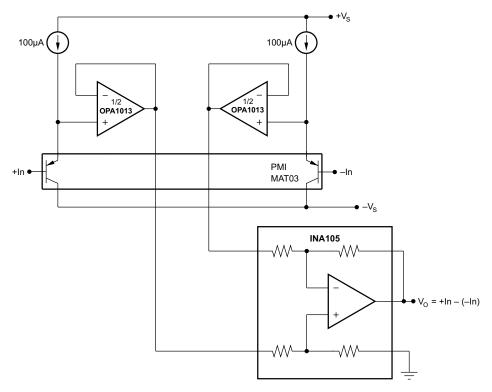


Figure 41. Instrumentation Amplifier With Compliance to -V_S

9 Power Supply Recommendations

The REF200 device has completely floating current sources and current mirror. The REF200 device has a wide compliance voltage range from 2.5 V to 40 V.

10 Layout

10.1 Layout Guidelines

Figure 42 illustrates an example of a printed-circuit-board (PCB) layout for a data acquisition system using the REF2030. Some key considerations are:

- Minimize trace lengths in the current source and current mirror paths to reduce impedance.
- Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary.

10.2 Layout Example

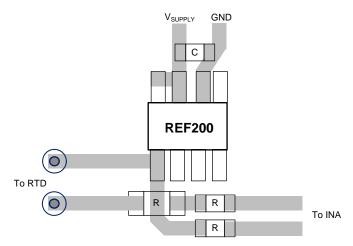


Figure 42. Example Layout of REF200 in a RTD Measurement System

Copyright © 2000–2015, Texas Instruments Incorporated

Submit Documentation Feedback

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

- RTD to Voltage Reference Design Using Instrumentation Amplifier and Current Reference, TIDU969
- Implementation and Applications of Current Sources and Current Receivers, SBOA046

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
REF200AU	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	REF 200U	Samples
REF200AU/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	REF 200U	Samples
REF200AU/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	REF 200U	Samples
REF200AUE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	REF 200U	Samples
REF200AUG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	REF 200U	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

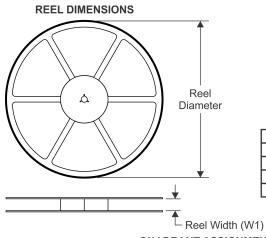
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

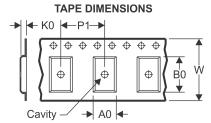
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

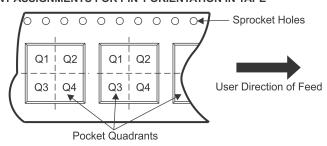
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

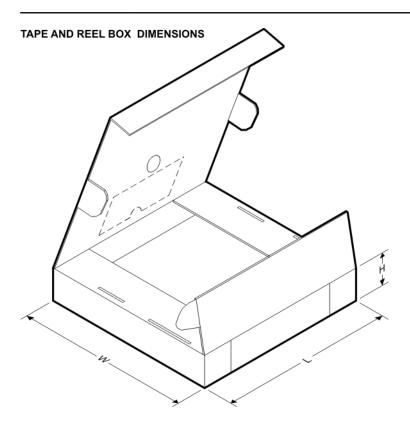

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2015


TAPE AND REEL INFORMATION

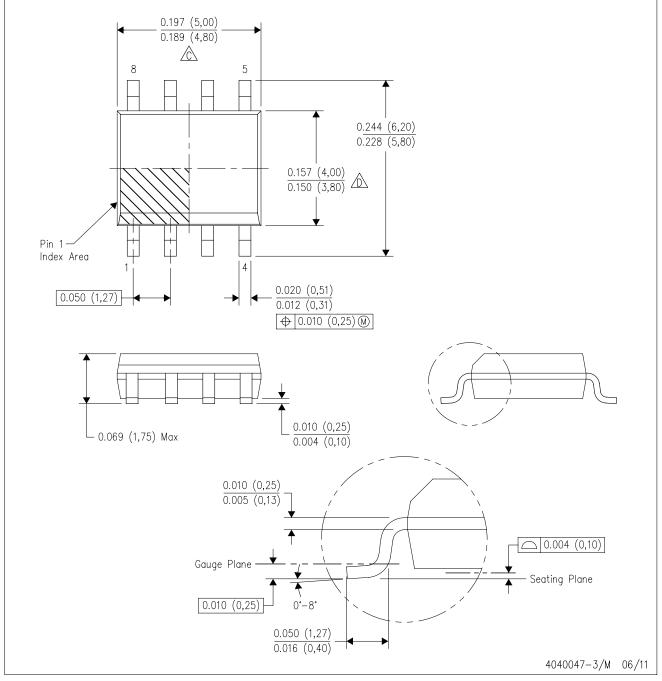
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REF200AU/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 23-Jul-2015

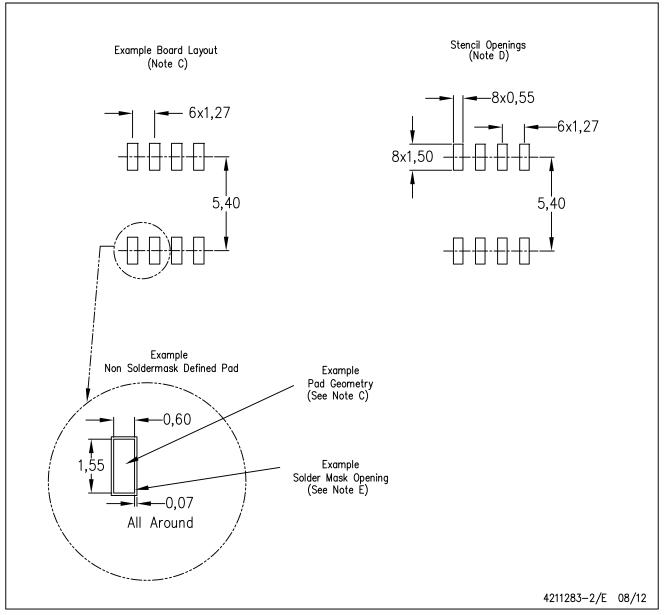


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
REF200AU/2K5	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

