SCDS167 - MAY 2004

- Member of the Texas Instruments Widebus™ Family
- High-Bandwidth Data Path (Up To 500 MHz[†])
- 5-V Tolerant I/Os with Device Powered Up or Powered Down
- Low and Flat ON-State Resistance (r_{on})
 Characteristics Over Operating Range (r_{on} = 5 Ω Typical)
- Rail-to-Rail Switching on Data I/O Ports
 0-V to 5-V Switching With 3.3-V V_{CC}
 0-V to 3.3-V Switching With 2.5-V V_{CC}
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion (C_{io(OFF)} = 4 pF Typical)
- Fast Switching Frequency (f_{OE} = 20 MHz Max)
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption (I_{CC} = 1 mA Typical)
- V_{CC} Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0-V to 5-V Signaling Levels (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
- Control Inputs Can be Driven by TTL or 5-V/3.3-V CMOS Outputs
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: PCI Interface, Differential Signal Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating
 - † For additional information regarding the performance characteristics of the CB3Q family, refer to the TI application report, CBT-C, CB3T, and CB3Q Signal-Switch Families, literature number SCDA008.

DGG, DGV, OR DL PACKAGE (TOP VIEW)

	`	,	
NC	\int_{1}^{1}	56 10	F
1A1	Ξ'	55 20	_
1A2		54 1B	
1A3	_	53 T 1B2	
1A4	5	52] 1B3	3
1A5	6	51] 1B4	4
1A6	7	50] 1B	5
GND	8	49] GN	D
1A7	9	48] 1B6	
1A8	_	47 1B	
1A9	_	46] 1B8	
1A10		45 1B9	
1A11	13	44 🛮 1B	
1A12	14	43 🛭 1B	
2A1	15	42 1B	
2A2	16	41 2B	1
V_{CC}	17	40 2B2	2
2A3	18	39 2B3	
GND	19	38 🛮 GN	D
2A4	20	37 2B	1
2A5	21	36 2B	5
2A6	22	35 2B6	3
2A7	23	34 2B	7
2A8	24	33 2B8	
2A9	25	32 2B9	9
2A10	26	31 2B	10
2A11	27	30 2B	11
2A12	28	29 2B	12

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

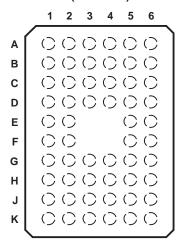
SCDS167 - MAY 2004

description/ordering information

The SN74CB3Q16211 is a high-bandwidth FET bus switch utilizing a charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ON-state resistance (ron). The low and flat ON-state resistance allows for minimal propagation delay and supports rail-to-rail switching on the data input/output (I/O) ports. The device also features low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Specifically designed to support high-bandwidth applications, the SN74CB3Q16211 provides an optimized interface solution ideally suited for broadband communications, networking, and data-intensive computing systems.

The SN74CB3Q16211 is organized as two 12-bit bus switches with separate output-enable (1OE, 2OE) inputs. It can be used as two 12-bit bus switches or as one 24-bit bus switch. When \overline{OE} is low, the associated 12-bit bus switch is ON and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE is high, the associated 12-bit bus switch is OFF, and a high-impedance state exists between the A and B

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry prevents damaging current backflow through the device when it is powered down.


To ensure the high-impedance state during power up or power down, $\overline{\sf OE}$ should be tied to $V_{\sf CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

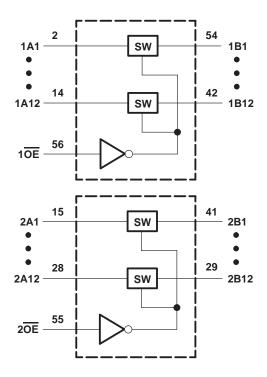
TA	PACKA	GEŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	0000 0	Tube	SN74CB3Q16211DL	000040044
	SSOP – DL	Tape and reel	SN74CB3Q16211DLR	CB3Q16211
-40°C to 85°C	TSSOP – DGG	Tape and reel	SN74CB3Q16211DGGR	CB3Q16211
	TVSOP - DGV	Tape and reel	SN74CB3Q16211DGVR	BW211
	VFBGA – GQL	Tape and reel	SN74CB3Q16211GQLR	

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

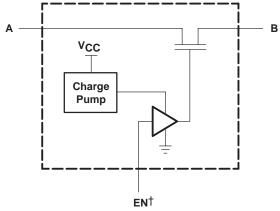
GQL PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	1A2	1A1	NC	1OE	2OE	1B1
В	1A5	1A4	1A3	1B2	1B3	1B4
С	1A7	GND	1A6	1B5	GND	1B6
D	1A10	1A8	1A9	1B8	1B7	1B9
Е	1A12	1A11			1B10	1B11
F	2A1	2A2			2B1	1B12
G	Vcc	GND	2A3	2B3	GND	2B2
Н	2A4	2A5	2A6	2B6	2B5	2B4
J	2A7	2A8	2A9	2B9	2B8	2B7
K	2A10	2A11	2A12	2B12	2B11	2B10


NC - No internal connection

FUNCTION TABLE (each 12-bit bus switch)


	UT E	INPUT/OUTPUT A	FUNCTION			
L	-	В	A port = B port			
H	H	Z	Disconnect			

logic diagram (positive logic)

Pin numbers shown are for the DGG, DGV, and DL packages.

simplified schematic, each FET switch (SW)

[†]EN is the internal enable signal applied to the switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)		. $-0.5\ V$ to $4.6\ V$
Control input voltage range, V _{IN} (see Notes 1 and	d 2)	-0.5 V to 7 V
Switch I/O voltage range, V _{I/O} (see Notes 1, 2, at	nd 3)	-0.5 V to 7 V
Control input clamp current, I _{IK} (V _{IN} < 0)		–50 mA
I/O port clamp current, $I_{I/OK}$ ($V_{I/O}$ < 0)		–50 mA
ON-state switch current, I _{I/O} (see Note 4)		±64 mA
Continuous current through V _{CC} or GND termina	als	±100 mA
Package thermal impedance, θ _{JA} (see Note 5): [DGG package	64°C/W
	DGV package	48°C/W
]	DL package	56°C/W
	GQL package	42°C/W
Storage temperature range, T _{sta}		-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to ground unless otherwise specified.
 - 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 3. V_I and V_O are used to denote specific conditions for V_{I/O}.
 - 4. II and IO are used to denote specific conditions for II/O.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT	
Vcc	Supply voltage	2.3	3.6	V	
.,	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	5.5	,,	
VIH	High-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2	5.5	5.5 V	
.,	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	.,	
VIL	Low-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	0.8	V	
V _{I/O}	Data input/output voltage	0	5.5	V	
TA	Operating free-air temperature	-40	85	°C	

NOTE 6: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS167 - MAY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITION	IS	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 3.6 V,	$I_{I} = -18 \text{ mA}$				-1.8	V	
I _{IN}	Control inputs	V _{CC} = 3.6 V,	V _{IN} = 0 to 5.5 V				±1	μΑ	
l _{OZ} ‡		V _{CC} = 3.6 V,	$V_O = 0$ to 5.5 V, $V_I = 0$,	Switch OFF, V _{IN} = V _{CC} or GND			±1	μΑ	
l _{off}		$V_{CC} = 0$,	$V_0 = 0 \text{ to } 5.5 \text{ V},$	V _I = 0			1	μΑ	
Icc		V _{CC} = 3.6 V,	I _{I/O} = 0, Switch ON or OFF,	$V_{IN} = V_{CC}$ or GND		1	3	mA	
∆l _{CC} §	Control inputs	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V _{CC} or GND			30	μΑ	
ICCD¶	Per control input	V _{CC} = 3.6 V,	A and B ports open, Control input switching	A and B ports open, Control input switching at 50% duty cycle		0.15	0.25	mA/ MHz	
C _{in}	Control inputs	V _{CC} = 3.3 V,	V _{IN} = 5.5 V, 3.3 V, or	0		3.5	5	pF	
C _{io(OFF}	=)	V _{CC} = 3.3 V,	Switch OFF, V _{IN} = V _{CC} or GND,	V _{I/O} = 5.5 V, 3.3 V, or 0		4	5	pF	
C _{io(ON)})	V _{CC} = 3.3 V,	Switch ON, V _{IN} = V _{CC} or GND,	V _{I/O} = 5.5 V, 3.3 V, or 0		10	12.5	pF	
. #		V _{CC} = 2.3 V,	$V_{I} = 0,$	I _O = 30 mA		5	8		
		TYP at $V_{CC} = 2.5 \text{ V}$	$V_{I} = 1.7 \text{ V}, \qquad I_{O} = -15 \text{ mA}$			5	9	Ω	
r _{on} #		Vac - 2 V	$V_{I} = 0$, $I_{O} = 30 \text{ mA}$			5	6.5	22	
		VCC = 3 V	V _I = 2.4 V,	I _O = -15 mA		5	8	1	

NOTE 7: VIN and IN refer to control inputs. VI, VO, II, and IO refer to data pins.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	TO	V _{CC} =	2.5 V 2 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
fOE	ŌĒ	A or B		10		20	MHz
t _{pd} ☆	A or B	B or A		0.15		0.25	ns
t _{en}	ŌE	A or B	1.5	8	1.5	8	ns
^t dis	ŌĒ	A or B	1	7.5	1	7.5	ns

II Maximum switching frequency for control input ($V_O > V_{CC}$, $V_I = 5$ V, $R_L \ge 1$ M Ω , $C_L = 0$)

 $^{^{\}dagger}$ All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25 $^{\circ}$ C.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

[¶] This parameter specifies the dynamic power-supply current associated with the operating frequency of a single control input (see Figure 2).

[#] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

^{*}The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

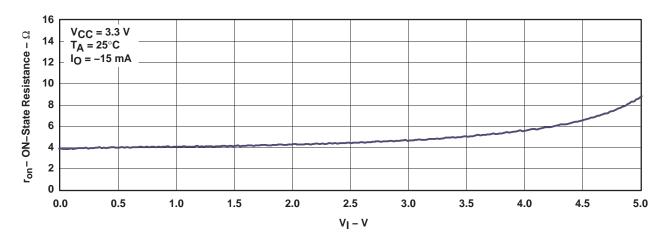
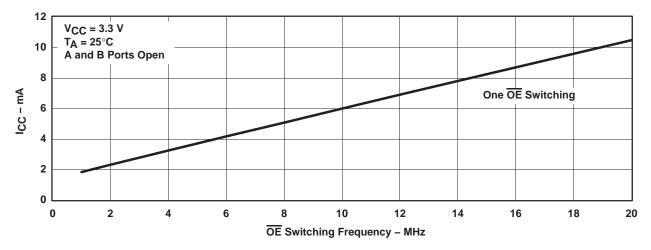
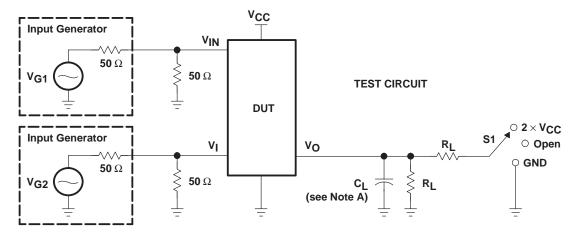
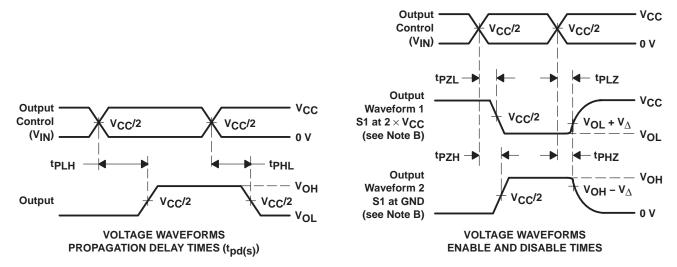


Figure 1. Typical r_{on} vs V_{I}


Figure 2. Typical I_{CC} vs \overline{OE} Switching Frequency

PARAMETER MEASUREMENT INFORMATION

TEST	VCC	S1	RL	VI	CL	${f v}_{\Delta}$
tpd(s)	2.5 V \pm 0.2 V	Open	500 Ω	V _{CC} or GND	30 pF	
-pu(s)	3.3 V \pm 0.3 V	Open	500 Ω	V _{CC} or GND	50 pF	
tplz/tpzl	2.5 V \pm 0.2 V	2×V _{CC}	500 Ω	GND	30 pF	0.15 V
'PLZ''PZL	3.3 V \pm 0.3 V	2×VCC	500 Ω	GND	50 pF	0.3 V
4/4	2.5 V ± 0.2 V	GND	500 Ω	VCC	30 pF	0.15 V
tPHZ/tPZH	3.3 V \pm 0.3 V	GND	500 Ω	VCC	50 pF	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd(s). The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Test Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74CB3Q16211DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB3Q16211	Samples
SN74CB3Q16211DGVR	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BW211	Samples
SN74CB3Q16211DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB3Q16211	Samples
SN74CB3Q16211DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CB3Q16211	Samples
SN74CB3Q16211ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BW211	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

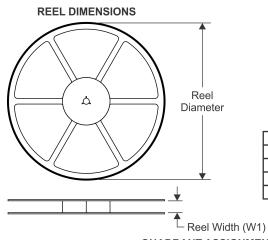
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

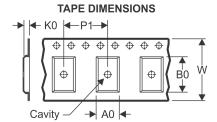
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

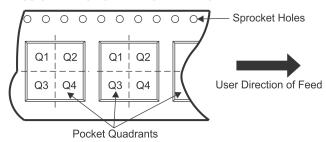
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

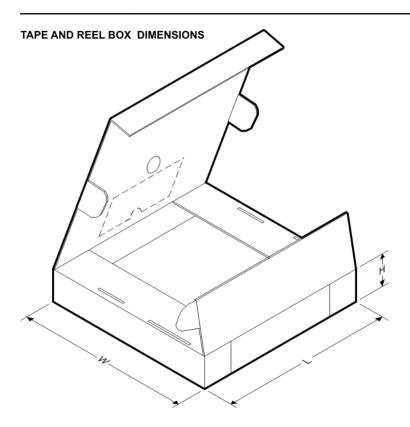

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Jan-2015


TAPE AND REEL INFORMATION

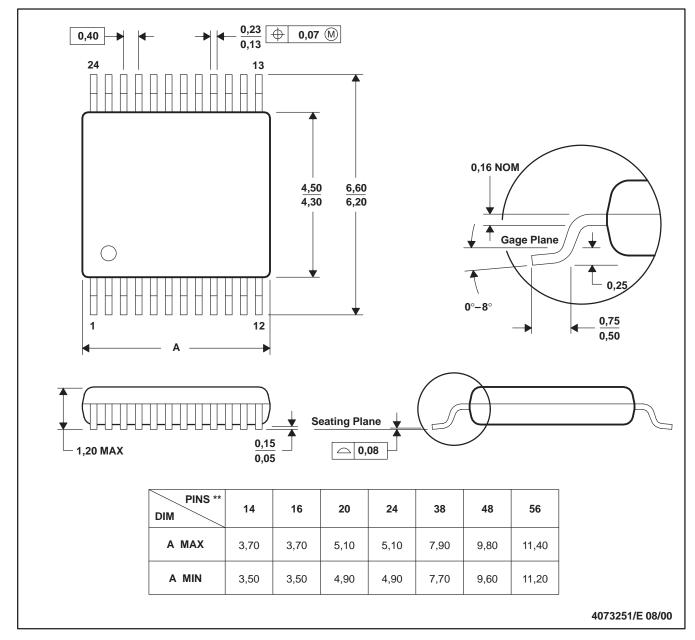
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74CB3Q16211DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74CB3Q16211DGVR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1
SN74CB3Q16211DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
SN74CB3Q16211ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1

www.ti.com 22-Jan-2015


*All dimensions are nominal

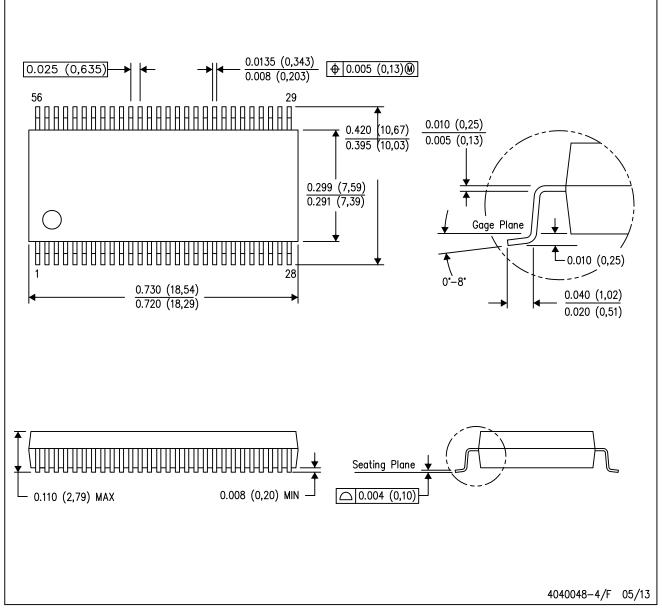
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CB3Q16211DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74CB3Q16211DGVR	TVSOP	DGV	56	2000	367.0	367.0	45.0
SN74CB3Q16211DLR	SSOP	DL	56	1000	367.0	367.0	55.0
SN74CB3Q16211ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

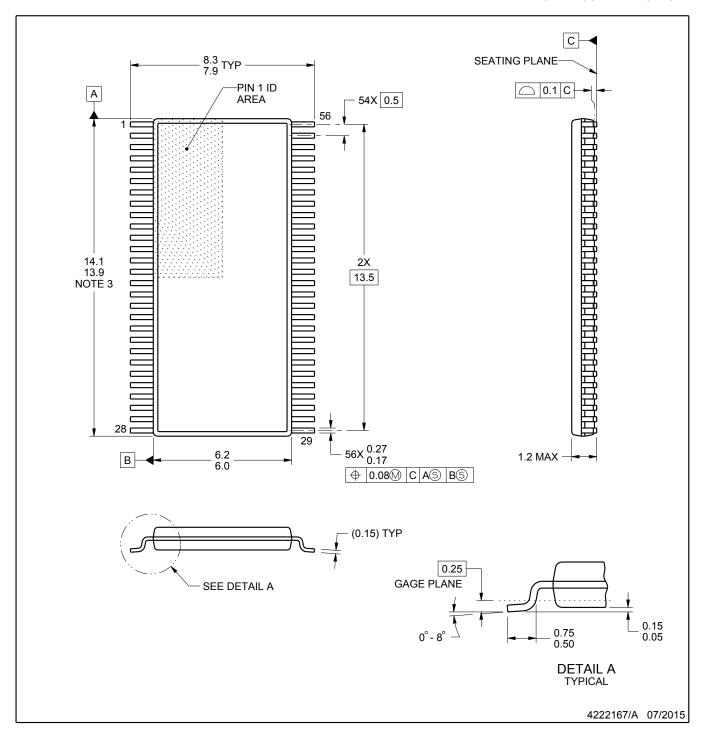
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

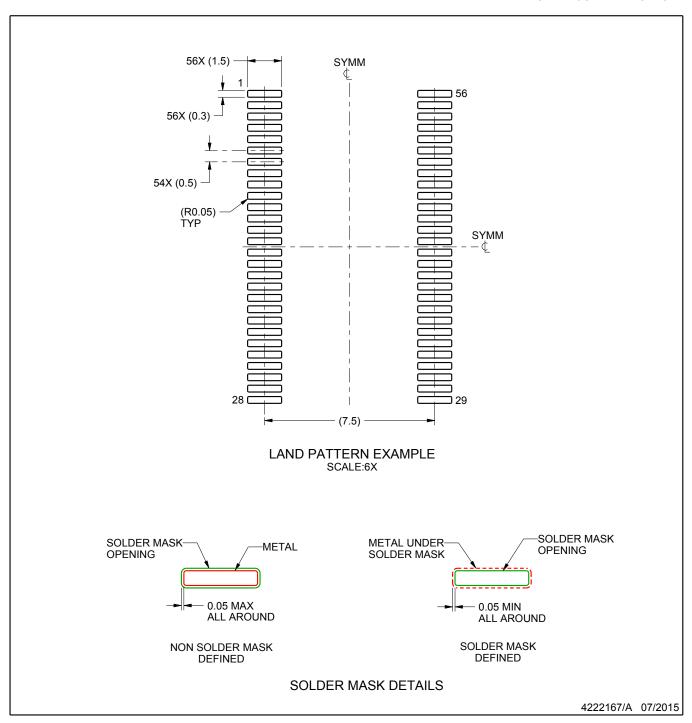
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

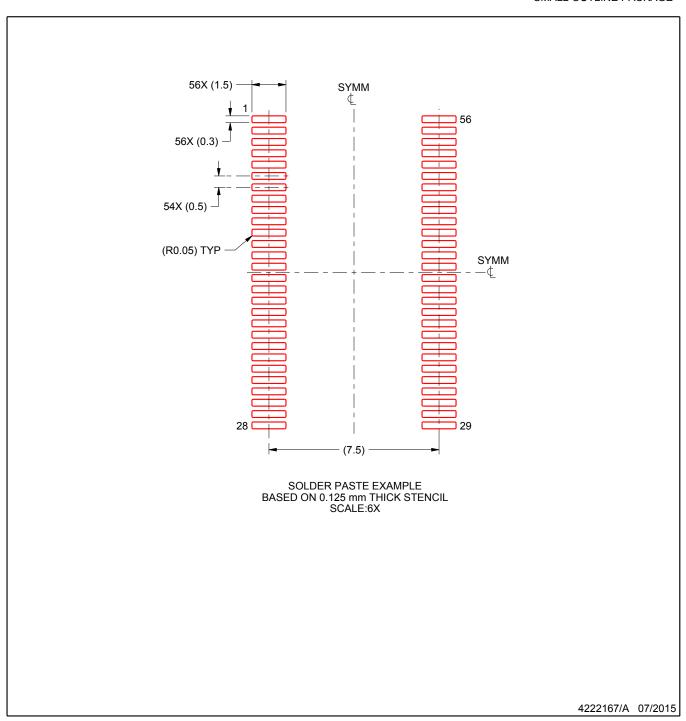
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

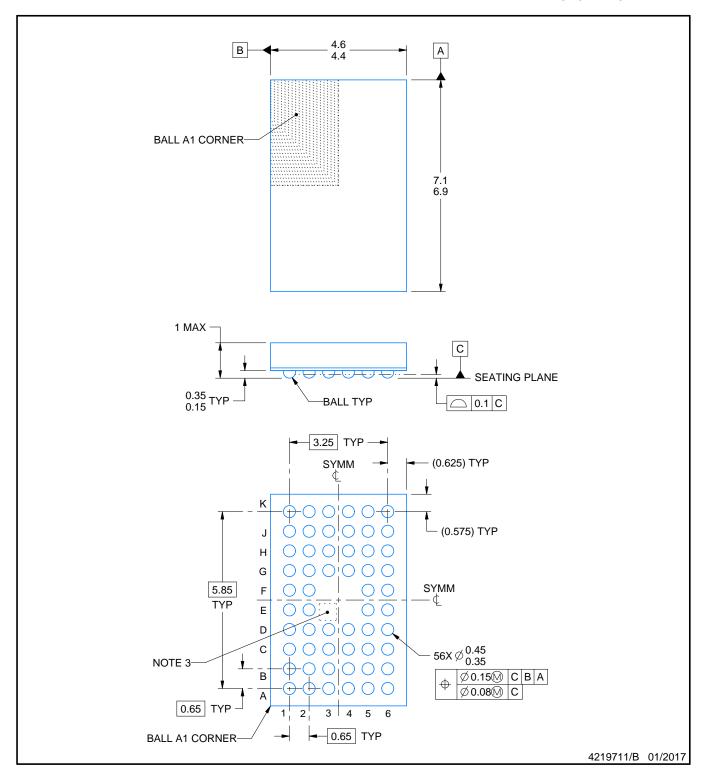
SMALL OUTLINE PACKAGE



NOTES: (continued)

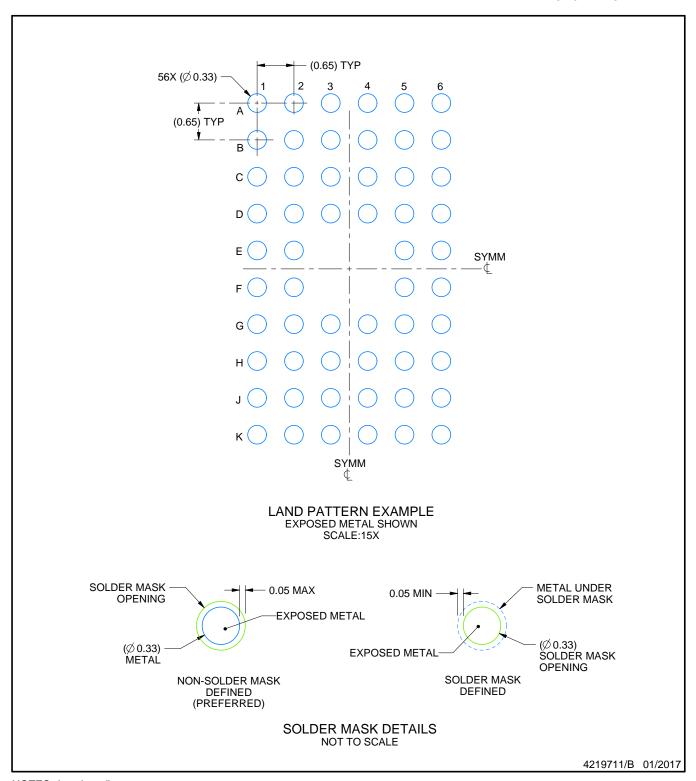
- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

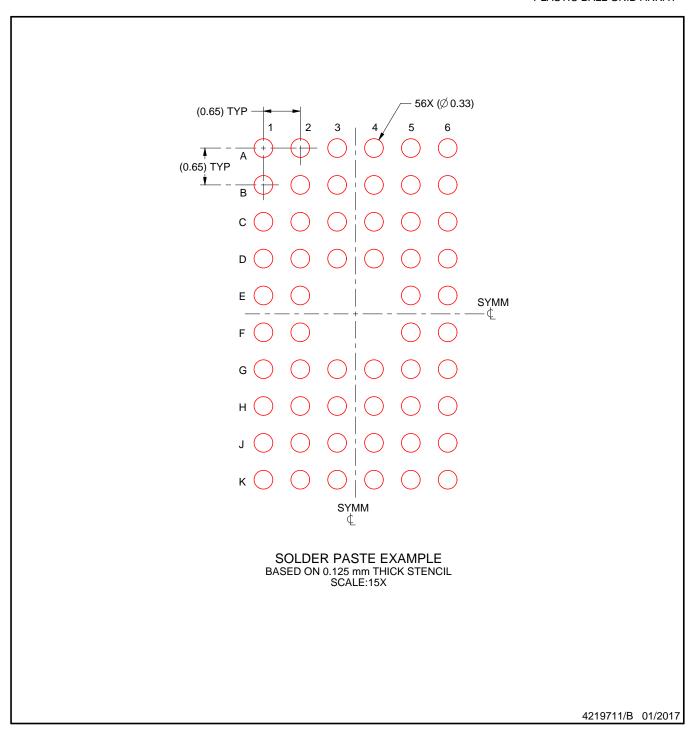
PLASTIC BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.

PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

