TAS5630

300-W STEREO / 600-W MONO PurePath™ HD ANALOG-INPUT POWER STAGE

Check for Samples: TAS5630

FEATURES

- PurePath ${ }^{\text {TM }}$ HD Enabled Integrated Feedback Provides:
- Signal Bandwidth up to 80 kHz for High-Frequency Content From HD Sources
- Ultralow 0.03\% THD at 1 W into 4Ω
- Flat THD at all Frequencies for Natural Sound
- 80-dB PSRR (BTL, No Input Signal)
- >100-dB (A-weighted) SNR
- Click- and Pop-Free Start-Up
- Multiple Configurations Possible on the Same PCB With Stuffing Options:
- Mono Parallel Bridge-Tied Load (PBTL)
- Stereo Bridge-Tied Load (BTL)
- 2.1 Single-Ended Stereo Pair and Bridge-Tied Load Subwoofer
- Quad Single-Ended Outputs
- Total Output Power at 10\% THD+N
- 600 W in Mono PBTL Configuration
- 300 W per Channel in Stereo BTL Configuration
- 145 W per Channel in Quad Single-Ended Configuration
- High-Efficiency Power Stage (>88\%) With 60-m Ω Output MOSFETs
- Two Thermally Enhanced Package Options:
- PHD (64-Pin QFP)
- DKD (44-Pin PSOP3)
- Self-Protection Design (Including Undervoltage, Overtemperature, Clipping, and Short-Circuit Protection) With Error Reporting
- EMI Compliant When Used With

Recommended System Design

APPLICATIONS

- Mini Combo System
- AV Receivers
- DVD Receivers
- Active Speakers

DESCRIPTION

The TAS5630 is a high-performance analog-input class-D amplifier with integrated closed-loop feedback technology (known as PurePath HD technology) with the ability to drive up to 300 W (1) stereo into $4-\Omega$ to $8-\Omega$ speakers from a single $50-\mathrm{V}$ supply.
PurePath HD technology enables traditional AB-amplifier performance ($<0.03 \%$ THD) levels while providing the power efficiency of traditional class-D amplifiers.
Unlike traditional class-D amplifiers, the distortion curve only increases once the output levels move into clipping.
PurePath HD technology enables lower idle losses, making the device even more efficient. Coupled with Tl's class-G power-supply reference design for TAS563x, industry-leading levels of efficiency can be achieved.

(1) Achievable output power levels are dependent on the thermal configuration of the target application. A high-performance thermal interface material between the exposed package heat slug and the heat sink should be used to achieve high output power levels.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DEVICE INFORMATION

Terminal Assignment

The TAS5630 is available in two thermally enhanced packages:

- 64-Pin QFP (PHD) power package
- 44-Pin PSOP3 package (DKD)

The package types contain heat slugs that are located on the top side of the device for convenient thermal coupling to the heat sink.

PIN ONE LOCATION PHD PACKAGE

MODE SELECTION PINS

MODE PINS			ANALOG INPUT	OUTPUT CONFIGURATION	DESCRIPTION						
M3	M2	M1									
0	0	0	Differential	$2 \times$ BTL	AD mode						
0	0	1	-	-	Reserved						
0	1	0	Differential	$2 \times \mathrm{BTL}$	BD mode						
0	1	1	Differential single-ended	$1 \times$ BTL +2 ×SE	BD mode, BTL differential						
1	0	0	Single-ended	$4 \times$ SE	AD mode						
1	0	1	Differential	$1 \times$ PBTL	INPUT_C ${ }^{(1)}$	INPUT_D ${ }^{(1)}$					
					0	0	AD mode				
					1	0	BD mode				
1	1	0	Reserved								
1	1	1									

(1) INPUT_C and D are used to select between a subset of $A D$ and $B D$ mode operations in PBTL mode ($1=V R E G$ and $0=A G N D$).

PACKAGE HEAT DISSIPATION RATINGS ${ }^{(1)}$

PARAMETER	TAS5630PHD	TAS5630DKD
$\mathrm{R}_{\theta \mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)-2$ BTL or 4 SE channels	2.63	1.4
$\mathrm{R}_{\theta \mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)-1 \mathrm{BTL}$ or 2 SE channel (s)	4.13	2.04
$\mathrm{R}_{\theta \mathrm{JJC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)-1$ SE channel	6.45	3.45
Pad area ${ }^{(2)}$	$64 \mathrm{~mm}^{2}$	$80 \mathrm{~mm}^{2}$

(1) $R_{\theta J C}$ is junction-to-case, $R_{\theta C H}$ is case-to-heat sink
(2) $R_{\theta C H}$ is an important consideration. Assume a 2 -mil ($0.051-\mathrm{mm}$) thickness of thermal grease with a thermal conductivity of $2.5 \mathrm{~W} / \mathrm{mK}$ between the pad area and the heat sink and both channels active. The $\mathrm{R}_{\theta \mathrm{CH}}$ with this condition is $1.1^{\circ} \mathrm{C} / \mathrm{W}$ for the PHD package and $0.44^{\circ} \mathrm{C} / \mathrm{W}$ for the DKD package.

Table 1. ORDERING INFORMATION ${ }^{(1)}$

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	DESCRIPTION
$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	TAS5630PHD	64 -pin HTQFP
$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	TAS5630DKD	44 -pin PSOP3

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

		VALUE	UNIT
VDD to AGND		-0.3 to 13.2	V
GVDD to AGND		-0.3 to 13.2	V
PVDD_X to GND_X ${ }^{(2)}$		-0.3 to 69	V
OUT_X to GND_X ${ }^{(2)}$		-0.3 to 69	V
BST_X to GND_X ${ }^{(2)}$		-0.3 to 82.2	V
BST_X to GVDD_X ${ }^{(2)}$		-0.3 to 69	V
VREG to AGND		-0.3 to 4.2	V
GND_X to GND		-0.3 to 0.3	V
GND_X to AGND		-0.3 to 0.3	V
OC_ADJ, M1, M2, M3, OSC_IO+, OSC_IO-, FREQ_ADJ, VI_CM, C_STARTUP, PSU_REF to AGND		-0.3 to 4.2	V
INPUT_X		-0.3 to 5	V
$\overline{\text { RESET, }} \overline{\text { SD }}$, $\overline{\text { OTW1 }}$, $\overline{\text { OTW2 }}$, $\overline{\mathrm{CLIP}}, \overline{\text { READY }}$ to AGND		-0.3 to 7	V
Continuous sink current ($\overline{\mathrm{SD}}, \overline{\mathrm{OTW1}}$, $\overline{\mathrm{OTW} 2}, \overline{\mathrm{CLIP}}, \overline{\mathrm{READY}}$)		9	mA
Operating junction temperature range, T_{J}		0 to 150	${ }^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {stg }}$		-40 to 150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge	Human-body model ${ }^{(3)}$ (all pins)	± 2	kV
	Charged-device model ${ }^{(3)}$ (all pins)	± 500	V

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) These voltages represents the dc voltage + peak ac waveform measured at the terminal of the device in all conditions.
(3) Failure to follow good anti-static ESD handling during manufacture and rework contributes to device malfunction. Ensure operators handling the device are adequately grounded through the use of ground straps or alternative ESD protection.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
PVDD_x	Half-bridge supply	DC supply voltage	25	50	52.5	V
GVDD_x	Supply for logic regulators and gate-drive circuitry	DC supply voltage	10.8	12	13.2	V
VDD	Digital regulator supply voltage	DC supply voltage	10.8	12	13.2	V
$\mathrm{R}_{\mathrm{L}}(\mathrm{BTL})$	Load impedance	Output filter according to schematics in the application information section	3.5	4		Ω
$\mathrm{R}_{\mathrm{L}}(\mathrm{SE})$			1.8	2		
R_{L} (PBTL)			1.6	2		
Loutput(BTL)	Output filter inductance	Minimum output inductance at loc	7	10		$\mu \mathrm{H}$
Loutput(SE)			7	15		
Loutput(PBTL)			7	10		
$\mathrm{f}_{\text {PWM }}$	PWM frame rate selectable for AM interference avoidance; 1\% resistor tolerance.	Nominal	385	400	415	kHz
		AM1	315	333	350	
		AM2	260	300	335	
$\mathrm{R}_{\text {FREQ_ADJ }}$	PWM frame-rate-programming resistor	Nominal; master mode	9.9	10	10.1	k Ω
		AM1; master mode	19.8	20	20.2	
		AM2; master mode	29.7	30	30.3	
V FREQ_ADJ	Voltage on FREQ_ADJ pin for slave mode operation	Slave mode		3.3		V
T_{J}	Junction temperature		0		150	${ }^{\circ} \mathrm{C}$

PIN FUNCTIONS

PIN			Function ${ }^{(1)}$	DESCRIPTION
NAME	PHD NO.	DKD NO.		
AGND	8	10	P	Analog ground
BST_A	54	43	P	HS bootstrap supply (BST), external 0.033- F F capacitor to OUT_A required.
BST_B	41	34	P	HS bootstrap supply (BST), external 0.033- F F capacitor to OUT_B required.
BST_C	40	33	P	HS bootstrap supply (BST), external $0.033-\mu \mathrm{F}$ capacitor to OUT_C required.
BST_D	27	24	P	HS bootstrap supply (BST), external $0.033-\mu \mathrm{F}$ capacitor to OUT_D required.
$\overline{\mathrm{CLIP}}$	18	-	0	Clipping warning; open drain; active-low
C_STARTUP	3	5	0	Start-up ramp requires a charging capacitor of 4.7 nF to AGND in BTL mode
FREQ_ADJ	12	14	I	PWM frame-rate-programming pin requires resistor to AGND
GND	$\begin{gathered} 7,23,24,57, \\ 58 \end{gathered}$	9	P	Ground
GND_A	48, 49	38	P	Power ground for half-bridge A
GND_B	46, 47	37	P	Power ground for half-bridge B
GND_C	34, 35	30	P	Power ground for half-bridge C
GND_D	32, 33	29	P	Power ground for half-bridge D
GVDD_A	55	-	P	Gate-drive voltage supply requires $0.1-\mu \mathrm{F}$ capacitor to GND_A
GVDD_B	56	-	P	Gate drive voltage supply requires $0.1-\mu \mathrm{F}$ capacitor to GND_B
GVDD_C	25	-	P	Gate drive voltage supply requires $0.1-\mu \mathrm{F}$ capacitor to GND_C
GVDD_D	26	-	P	Gate drive voltage supply requires $0.1-\mu \mathrm{F}$ capacitor to GND_D
GVDD_AB	-	44	P	Gate drive voltage supply requires $0.22-\mu \mathrm{F}$ capacitor to GND_A/GND_B
GVDD_CD	-	23	P	Gate drive voltage supply requires $0.22-\mu \mathrm{F}$ capacitor to GND_C/GND_D
INPUT_A	4	6	1	Input signal for half-bridge A
INPUT_B	5	7	I	Input signal for half-bridge B
INPUT_C	10	12	1	Input signal for half-bridge C
INPUT_D	11	13	1	Input signal for half-bridge D
M1	20	20	I	Mode selection
M2	21	21	1	Mode selection
M3	22	22	1	Mode selection
NC	59-62	-	-	No connect; pins may be grounded.
OC_ADJ	1	3	0	Analog overcurrent-programming pin requires resistor to AGND. 64-pin package $($ PHD $)=22 \mathrm{k} \Omega$. 44-pin PSOP3 $(D K D)=24 \mathrm{k} \Omega$
OSC_IO+	13	15	1/0	Oscillator master/slave output/input
OSC_IO-	14	16	1/0	Oscillator master/slave output/input
OTW	-	18	0	Overtemperature warning signal, open-drain, active-low
$\overline{\text { OTW1 }}$	16	-	0	Overtemperature warning signal, open-drain, active-low
$\overline{\text { OTW2 }}$	17	-	0	Overtemperature warning signal, open-drain, active-low
OUT_A	52, 53	39, 40	0	Output, half-bridge A
OUT_B	44, 45	36	0	Output, half-bridge B
OUT_C	36, 37	31	0	Output, half-bridge C
OUT_D	28, 29	27, 28	0	Output, half-bridge D
PSU_REF	63	1	P	PSU reference requires close decoupling of 330 pF to AGND.
PVDD_A	50,51	41, 42	P	Power-supply input for half-bridge A requires close decoupling of $0.01-\mu \mathrm{F}$ capacitor in parallel with $2.2-\mu \mathrm{F}$ capacitor to GND_A.
PVDD_B	42, 43	35	P	Power-supply input for half-bridge B requires close decoupling of $0.01-\mu \mathrm{F}$ capacitor in parallel with $2.2-\mu \mathrm{F}$ capacitor to GND_B.
PVDD_C	38, 39	32	P	Power-supply input for half-bridge C requires close decoupling of $0.0-\mu \mathrm{F}$ capacitor in parallel with $2.2-\mu \mathrm{F}$ capacitor to GND_C.

(1) $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{P}=$ Power

PIN FUNCTIONS (continued)

PIN			Function ${ }^{(1)}$	DESCRIPTION
NAME	PHD NO.	DKD NO.		
PVDD_D	30, 31	25, 26	P	Power-supply input for half-bridge D requires close decoupling of $0.01-\mu \mathrm{F}$ capacitor in parallel with $2.2-\mu \mathrm{F}$ capacitor to GND_D.
READY	19	19	0	Normal operation; open-drain; active-high
RESET	2	4	1	Device reset input; active-low
$\overline{\mathrm{SD}}$	15	17	0	Shutdown signal, open-drain, active-low
VDD	64	2	P	Power supply for digital voltage regulator requires a $10-\mu \mathrm{F}$ capacitor in parallel with a $0.1-\mu \mathrm{F}$ capacitor to GND for decoupling.
VI_CM	6	8	0	Analog comparator reference node requires close decoupling of 1 nF to AGND.
VREG	9	11	P	Digital regulator supply filter pin requires $0.1-\mu \mathrm{F}$ capacitor to AGND .

TYPICAL SYSTEM BLOCK DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

TAS5630
www.ti.com
SLES220B -JUNE 2009-REVISED FEBRUARY 2010

AUDIO CHARACTERISTICS (BTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency $=1 \mathrm{kHz}, \mathrm{PVDD} _\mathrm{X}=50 \mathrm{~V}$, GVDD_X $=12 \mathrm{~V}, R_{L}=4 \Omega, f_{S}=400 \mathrm{kHz}, R_{\mathrm{OC}}=22 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$; output filter: $\mathrm{L}_{\mathrm{DEM}}=7 \mu \mathrm{H}, \mathrm{C}_{\mathrm{DEM}}=680 \mathrm{nF}$,
MODE $=010$, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
P_{0}	Power output per channel	$\mathrm{R}_{\mathrm{L}}=4 \Omega, 10 \%$ THD +N , clipped output signal	300		W
		$\mathrm{R}_{\mathrm{L}}=6 \Omega, 10 \%$ THD +N , clipped output signal	210		
		$\mathrm{R}_{\mathrm{L}}=8 \Omega, 10 \%$ THD +N , clipped output signal	160		
		$\mathrm{R}_{\mathrm{L}}=4 \Omega, 1 \% \mathrm{THD}+\mathrm{N}$, unclipped output signal	240		
		$R_{L}=6 \Omega, 1 \%$ THD $+N$, unclipped output signal	160		
		$\mathrm{R}_{\mathrm{L}}=8 \Omega, 1 \% \mathrm{THD}+\mathrm{N}$, unclipped output signal	125		
THD + N	Total harmonic distortion + noise	1 W	0.03\%		
V_{n}	Output integrated noise	A-weighted, AES17 filter, input capacitor grounded	270		$\mu \mathrm{V}$
$\left\|\mathrm{V}_{\mathrm{OS}}\right\|$	Output offset voltage	Inputs ac-coupled to AGND	40	150	mV
SNR	Signal-to-noise ratio ${ }^{(1)}$	A-weighted, AES17 filter	100		dB
DNR	Dynamic range	A-weighted, AES17 filter	100		dB
$P_{\text {idle }}$	Power dissipation due to idle losses ($\mathrm{l}_{\text {PVDD_ }}$)	$\mathrm{P}_{\mathrm{O}}=0$, four channels switching ${ }^{(2)}$	2.7		W

(1) SNR is calculated relative to 1% THD +N output level.
(2) Actual system idle losses also are affected by core losses of output inductors.

AUDIO SPECIFICATION (Single-Ended Output)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency $=1 \mathrm{kHz}, \mathrm{PVDD} _\mathrm{X}=50 \mathrm{~V}$, GVDD_X $=12 \mathrm{~V}, R_{L}=4 \Omega, f_{S}=400 \mathrm{kHz}, R_{\text {OC }}=22 \mathrm{k} \Omega, T_{C}=75^{\circ} \mathrm{C}$; output filter: $L_{\text {DEM }}=15 \mu \mathrm{H}, \mathrm{C}_{\text {DEM }}=470 \mu \mathrm{~F}$, MODE $=100$, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Po	Power output per channel	$\mathrm{R}_{\mathrm{L}}=2 \Omega, 10 \%$ THD+N, clipped output signal	145		
		$\mathrm{R}_{\mathrm{L}}=3 \Omega, 10 \%$ THD +N , clipped output signal	100		W
		$R_{L}=4 \Omega, 10 \%$ THD+N, clipped output signal	75		
		$R_{L}=2 \Omega, 1 \%$ THD $+N$, unclipped output signal	110		
		$R_{L}=3 \Omega, 1 \%$ THD $+N$, unclipped output signal	75		
		$\mathrm{R}_{\mathrm{L}}=4 \Omega, 1 \%$ THD +N , unclipped output signal	55		
THD + N	Total harmonic distortion + noise	1 W	0.07\%		
V_{n}	Output integrated noise	A-weighted, AES17 filter, input capacitor grounded	340		$\mu \mathrm{V}$
SNR	Signal-to-noise ratio ${ }^{(1)}$	A-weighted, AES17 filter	93		dB
DNR	Dynamic range	A-weighted, AES17 filter	93		dB
Pidle	Power dissipation due to idle losses (lpVDD_x)	$\mathrm{P}_{\mathrm{O}}=0$, four channels switching ${ }^{(2)}$	2		W

(1) SNR is calculated relative to 1% THD +N output level.
(2) Actual system idle losses are affected by core losses of output inductors.

AUDIO SPECIFICATION (PBTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency $=1 \mathrm{kHz}, \mathrm{PVDD} _\mathrm{X}=50 \mathrm{~V}$, GVDD_X $=12 \mathrm{~V}, R_{L}=2 \Omega, f_{S}=400 \mathrm{kHz}, R_{\mathrm{OC}}=22 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$; output filter: $\mathrm{L}_{\mathrm{DEM}}=7 \mu \mathrm{H}, \mathrm{C}_{\mathrm{DEM}}=1.5 \mu \mathrm{~F}$, MODE $=101-10$, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
P_{0}	Power output per channel	$\mathrm{R}_{\mathrm{L}}=2 \Omega, 10 \%$ THD +N , clipped output signal	600		W
		$\mathrm{R}_{\mathrm{L}}=3 \Omega, 10 \%$ THD+N, clipped output signal	400		
		$\mathrm{R}_{\mathrm{L}}=4 \Omega, 10 \%$ THD $+N$, clipped output signal	300		
		$R_{L}=2 \Omega, 1 \%$ THD $+N$, unclipped output signal	480		
		$R_{L}=3 \Omega, 1 \%$ THD $+N$, unclipped output signal	310		
		$R_{L}=4 \Omega, 1 \%$ THD $+N$, unclipped output signal	230		
THD+N	Total harmonic distortion + noise	1 W	0.05\%		
V_{n}	Output integrated noise	A-weighted	260		$\mu \mathrm{V}$
SNR	Signal to noise ratio ${ }^{(1)}$	A-weighted	100		dB
DNR	Dynamic range	A-weighted	100		dB
$\mathrm{P}_{\text {idle }}$	Power dissipation due to idle losses (IPVDD_X)	$\mathrm{P}_{\mathrm{O}}=0$, four channels switching ${ }^{(2)}$	2.7		W

(1) SNR is calculated relative to 1% THD-N output level.
(2) Actual system idle losses are affected by core losses of output inductors.

ELECTRICAL CHARACTERISTICS

PVDD_X $=50 \mathrm{~V}, \mathrm{GVDD} _\mathrm{X}=12 \mathrm{~V}, \mathrm{VDD}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}$ (Case temperature) $=75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=400 \mathrm{kHz}$, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION						
VREG	Voltage regulator, only used as reference node, VREG	$\mathrm{VDD}=12 \mathrm{~V}$	3	3.3	3.6	V
VI_CM	Analog comparator reference node, VI_CM		1.5	1.75	1.9	V
IvDD	VDD supply current	Operating, 50\% duty cycle		22.5		mA
		Idle, reset mode		22.5		
IGVDD_X	GVDD_x gate-supply current per half-bridge	50\% duty cycle		12.5		mA
		Reset mode		1.5		
IPVDD_X	Half-bridge supply current	50% duty cycle with recommended output filter		13.3		mA
		Reset mode, No switching		870		$\mu \mathrm{A}$
ANALOG INPUTS						
$\mathrm{R}_{\text {IN }}$	Input resistance	READY $=$ HIGH		33		k Ω
$\mathrm{V}_{\text {IN }}$	Maximum input voltage swing			5		V
I_{N}	Maximum input current			342		$\mu \mathrm{A}$
G	Voltage gain ($\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$)			23		dB
OSCILLATOR						
fosc_10+	Nominal, master mode	$\mathrm{FPWM} \times 10$	3.85	4	4.15	MHz
	AM1, master mode		3.15	3.33	3.5	
	AM2, master mode		2.6	3	3.35	
V_{IH}	High level input voltage		1.86			V
$\mathrm{V}_{\text {IL }}$	Low level input voltage				1.45	V
OUTPUT-STAGE MOSFETs						
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain-to-source resistance, low side (LS)	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, excludes metallization resistance, GVDD $=12 \mathrm{~V}$		60	100	$\mathrm{m} \Omega$
	Drain-to-source resistance, high side (HS)			60	100	$\mathrm{m} \Omega$

InSTRUMENTS
TAS5630

ELECTRICAL CHARACTERISTICS (continued)

PVDD_X $=50 \mathrm{~V}, \mathrm{GVDD} _\mathrm{X}=12 \mathrm{~V}, \mathrm{VDD}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}$ (Case temperature) $=75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=400 \mathrm{kHz}$, unless otherwise specified.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I/O PROTECTION						
$\mathrm{V}_{\text {uvp, }, \mathrm{G}}$	Undervoltage protection limit, GVDD_x and VDD		9.5			V
$\mathrm{V}_{\text {uvp,hyst }}{ }^{(1)}$				0.6		V
OTW1 ${ }^{(1)}$	Overtemperature warning 1		95	100	105	${ }^{\circ} \mathrm{C}$
OTW2 ${ }^{(1)}$	Overtemperature warning 2		115	125	135	${ }^{\circ} \mathrm{C}$
OTW ${ }_{\text {hyst }}{ }^{(1)}$	Temperature drop needed below OTW temperature for OTW to be inactive after OTW event		25			${ }^{\circ} \mathrm{C}$
OTE ${ }^{(1)}$	Overtemperature error		145	155	165	${ }^{\circ} \mathrm{C}$
	OTE-OTW differential			30		${ }^{\circ} \mathrm{C}$
OTE ${ }_{\text {hyst }}{ }^{(1)}$	A reset must occur for $\overline{\mathrm{SD}}$ to be released following an OTE event.			25		${ }^{\circ} \mathrm{C}$
OLPC	Overload protection counter	$\mathrm{f}_{\text {PWM }}=400 \mathrm{kHz}$		2.6		ms
loc	Overcurrent limit protection	Resistor - programmable, nominal peak current in $1-\Omega$ load, 64-pin QFP package (PHD) $\mathrm{R}_{\mathrm{OCP}}=22 \mathrm{k} \Omega$	19			A
		Resistor - programmable, nominal peak current in 1- Ω load, 44-Pin PSOP3 package (DKD), $\mathrm{R}_{\mathrm{OCP}}=24 \mathrm{k} \Omega$		19		A
	Overcurrent limit protection, latched	Resistor - programmable, nominal peak current in $1-\Omega$ load, $\mathrm{R}_{\mathrm{OCP}}=47 \mathrm{k} \Omega$		19		A
loct	Overcurrent response time	Time from switching transition to flip-state induced by overcurrent		150		ns
IPD	Internal pulldown resistor at output of each half-bridge	Connected when RESET is active to provide bootstrap charge. Not used in SE mode		3		mA

STATIC DIGITAL SPECIFICATIONS

V_{IH}	High-level input voltage	INPUT_X, M1, M2, M3, RESET	2		V
V_{IL}	Low-level input voltage			0.8	V
$\mathrm{l}_{\text {kg }}$	Input leakage current			100	$\mu \mathrm{A}$
OTW/SHUTDOWN (SD)					
$\mathrm{R}_{\text {INT_PU }}$	Internal pullup resistance, $\overline{\text { OTW1 }}$ to VREG, $\overline{\text { OTW2 }}$ to VREG, $\overline{\text { SD }}$ to VREG		2026	32	k Ω
V_{OH}	High-level output voltage	Internal pullup resistor	$3 \quad 3.3$	3.6	V
		External pullup of $4.7 \mathrm{k} \Omega$ to 5 V	4.5	5	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{l}_{\mathrm{O}}=4 \mathrm{~mA}$	200	500	mV
FANOUT	Device fanout $\overline{\mathrm{OTW}} 1, \overline{\mathrm{OTW}}, \overline{\mathrm{SD}}, \overline{\mathrm{CLIP}}$, READY	No external pullup	30		devices

(1) Specified by design.

Figure 2.

SYSTEM EFFICIENCY vs
OUTPUT POWER

Figure 4.

InSTRUMENTS

TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)

SYSTEM POWER LOSS
vs
OUTPUT POWER

Figure 5.

OUTPUT POWER
vs
CASE TEMPERATURE

Figure 6.

NOISE AMPLITUDE
vs
FREQUENCY

Figure 7.

TYPICAL CHARACTERISTICS, SE CONFIGURATION

Figure 8.

OUTPUT POWER
VS
SUPPLY VOLTAGE

Figure 9.

Figure 10.

TYPICAL CHARACTERISTICS, PBTL CONFIGURATION

TOTAL HARMONIC DISTORTION + NOISE
VS
OUTPUT POWER

Figure 11.

OUTPUT POWER
VS
SUPPLY VOLTAGE

Figure 12

Figure 13.

APPLICATION INFORMATION

PCB MATERIAL RECOMMENDATION

FR-4 2-oz. $(70-\mu \mathrm{m})$ glass epoxy material is recommended for use with the TAS5630. The use of this material can provide for higher power output, improved thermal performance, and better EMI margin (due to lower PCB trace inductance).

PVDD CAPACITOR RECOMMENDATION

The large capacitors used in conjunction with each full bridge are referred to as the PVDD capacitors. These capacitors should be selected for proper voltage margin and adequate capacitance to support the power requirements. In practice, with a well-designed system power supply, $1000 \mu \mathrm{~F}, 63-\mathrm{V}$ supports more applications. The PVDD capacitors should be the low-ESR type, because they are used in a circuit associated with high-speed switching.

DECOUPLING CAPACITOR RECOMMENDATIONS

To design an amplifier that has robust performance, passes regulatory requirements, and exhibits good audio performance, quality decoupling capacitors should be used. In practice, X7R should be used in this application.
The voltage of the decoupling capacitors should be selected in accordance with good design practices. Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the selection of the $2.2-\mu \mathrm{F}$ capacitor that is placed on the power supply to each half-bridge. It must withstand the voltage overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the ripple current created by high power output. A minimum voltage rating of 63 V is required for use with a $50-\mathrm{V}$ power supply.

SYSTEM DESIGN RECOMMENDATIONS

The following schematics and PCB layouts illustrate best practices used for the TAS5630.

Figure 14. Typical Differential-Input BTL Application With BD Modulation Filters

Figure 15. Typical Differential (2N) PBTL Application With BD Modulation Filters

Figure 16. Typical SE Application

Figure 17. Typical 2.1 System Differential-Input BTL and Unbalanced-Input SE Application

Figure 18. Typical Differential-Input BTL Application With BD Modulation Filters, DKD Package

THEORY OF OPERATION

POWER SUPPLIES

To facilitate system design, the TAS5630 needs only a $12-\mathrm{V}$ supply in addition to the (typical) $50-\mathrm{V}$ power-stage supply. An internal voltage regulator provides suitable voltage levels for the digital and low-voltage analog circuitry. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only an external capacitor for each half-bridge.

To provide outstanding electrical and acoustical characteristics, the PWM signal path, including gate drive and output stage, is designed as identical, independent half-bridges. For this reason, each half-bridge has separate gate drive supply pins (GVDD_X), bootstrap pins (BST_X), and power-stage supply pins (PVDD_X). Furthermore, an additional pin (VDD) is provided as supply for all common circuits. Although supplied from the same 12-V source, it is highly recommended to separate GVDD_A, GVDD_B, GVDD_C, GVDD_D, and VDD on the printed-circuit board (PCB) by RC filters (see application diagram for details). These RC filters provide the recommended high-frequency isolation. Special attention should be paid to placing all decoupling capacitors as close to their associated pins as possible. In general, inductance between the power supply pins and decoupling capacitors must be avoided. (See reference board documentation for additional information.)
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin (BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-drive power-supply pin (GVDD_X) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM switching frequencies in the range from 300 kHz to 400 kHz , it is recommended to use $33-\mathrm{nF}$ ceramic capacitors, size 0603 or 0805 , for the bootstrap supply. These $33-\mathrm{nF}$ capacitors ensure sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during the remaining part of the PWM cycle.
Special attention should be paid to the power-stage power supply; this includes component selection, PCB placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_X). For optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X pin is decoupled with a $2.2-\mu \mathrm{F}$ ceramic capacitor placed as close as possible to each supply pin. It is recommended to follow the PCB layout of the TAS5630 reference design. For additional information on recommended power supply and required components, see the application diagrams in this data sheet.
The $12-\mathrm{V}$ supply should be from a low-noise, low-output-impedance voltage regulator. Likewise, the $50-\mathrm{V}$ power-stage supply is assumed to have low output impedance and low noise. The power-supply sequence is not critical as facilitated by the internal power-on-reset circuit. Moreover, the TAS5630 is fully protected against erroneous power-stage turnon due to parasitic gate charging. Thus, voltage-supply ramp rates ($\mathrm{dV} / \mathrm{dt}$) are non-critical within the specified range (see the Recommended Operating Conditions table of this data sheet).

SYSTEM POWER-UP/POWER-DOWN SEQUENCE

Powering Up

The TAS5630 does not require a power-up sequence. The outputs of the H -bridges remain in a high-impedance state until the gate-drive supply voltage (GVDD_X) and VDD voltage are above the undervoltage protection (UVP) voltage threshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is recommended to hold RESET in a low state while powering up the device. This allows an internal circuit to charge the external bootstrap capacitors by enabling a weak pulldown of the half-bridge output.

Powering Down

The TAS5630 does not require a power-down sequence. The device remains fully operational as long as the gate-drive supply (GVDD_X) voltage and VDD voltage are above the undervoltage protection (UVP) voltage threshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is a good practice to hold RESET low during power down, thus preventing audible artifacts including pops or clicks.

ERROR REPORTING

The $\overline{\mathrm{SD}}, \overline{\mathrm{OTW}}, \overline{\mathrm{OTW}} 1 \mathrm{and} \overline{\mathrm{OTW} 2}$ pins are active-low, open-drain outputs. Their function is for protection-mode signaling to a PWM controller or other system-control device.
Any fault resulting in device shutdown is signaled by the $\overline{\mathrm{SD}}$ pin going low. Likewise, $\overline{\mathrm{OTW}}$ and $\overline{\mathrm{OTW}}$ go low when the device junction temperature exceeds $125^{\circ} \mathrm{C}$ and OTW1 goes low when the junction temperature exceeds $100^{\circ} \mathrm{C}$ (see the following table).

$\overline{\text { SD }}$	$\overline{\text { OTW1 }}$	$\overline{\text { OTW2 }}$, $\overline{\text { OTW }}$	DESCRIPTION
0	0	0	Overtemperature (OTE) or overload (OLP) or undervoltage (UVP)
0	0	1	Overload (OLP) or undervoltage (UVP). Junction temperature higher than $100^{\circ} \mathrm{C}$ (overtemperature warning)
0	1	1	Overload (OLP) or undervoltage (UVP)
1	0	0	Junction temperature higher than $125^{\circ} \mathrm{C}$ (overtemperature warning)
1	0	1	Junction temperature higher than $100^{\circ} \mathrm{C}$ (overtemperature warning)
1	1	1	Junction temperature lower than $100^{\circ} \mathrm{C}$ and no OLP or UVP faults (normal operation)

Note that asserting either $\overline{\text { RESET }}$ low forces the $\overline{\mathrm{SD}}$ signal high, independent of faults being present. TI recommends monitoring the OTW signal using the system microcontroller and responding to an overtemperature warning signal by, e.g., turning down the volume to prevent further heating of the device resulting in device shutdown (OTE).
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both $\overline{\mathrm{SD}}$ and $\overline{\mathrm{OTW}}$ outputs. Level compliance for $5-\mathrm{V}$ logic can be obtained by adding external pullup resistors to 5 V (see the Electrical Characteristics table of this data sheet for further specifications).

DEVICE PROTECTION SYSTEM

The TAS5630 contains advanced protection circuitry carefully designed to facilitate system integration and ease of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as short circuits, overload, overtemperature, and undervoltage. The TAS5630 responds to a fault by immediately setting the power stage in a high-impedance (Hi-Z) state and asserting the SD pin low. In situations other than overload and overtemperature error (OTE), the device automatically recovers when the fault condition has been removed, i.e., the supply voltage has increased.
The device functions on errors, as shown in the following table.

BTL Mode		PBTL Mode		SE Mode	
Local error in	Turns Off or in	Local error in	Turns Off or in	Local error in	Turns Off or in
A	$A+B$	A	$A+B+C+D$	A	$A+B$
B		B		B	
C	$C+D$	C		C	$C+D$
D		D		D	

Bootstrap UVP does not shut down according to the table; it shuts down the respective half-bridge.

PIN-TO-PIN SHORT-CIRCUIT PROTECTION (PPSC)

The PPSC detection system protects the device from permanent damage if a power output pin (OUT_X) is shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent after the demodulation filter, whereas PPSC detects shorts directly at the pin before the filter. PPSC detection is performed at startup, i.e., when VDD is supplied; consequently, a short to either GND_X or PVDD_X after system startup does not activate the PPSC detection system. When PPSC detection is activated by a short on the output, all half-bridges are kept in a Hi-Z state until the short is removed; the device then continues the startup sequence and starts switching. The detection is controlled globally by a two-step sequence. The first step ensures that there are no shorts from OUT_X to GND_X; the second step tests that there are no shorts from OUT_X to PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC
filter. The typical duration is $<15 \mathrm{~ms} / \mu \mathrm{F}$. While the PPSC detection is in progress, $\overline{\mathrm{SD}}$ is kept low, and the device does not react to changes applied to the RESET pins. If no shorts are present the PPSC detection passes, and $\overline{S D}$ is released, a device reset does not start a new PPSC detection. PPSC detection is enabled in BTL and PBTL output configurations; the detection is not performed in SE mode. To make sure the PPSC detection system is not tripped, it is recommended not to insert resistive load to GND_X or PVDD_X.

OVERTEMPERATURE PROTECTION

The two different package options have individual overtemperature protection schemes.

PHD Package:

The TAS5630 PHD package option has a three-level temperature-protection system that asserts an active-low warning signal ($\overline{\mathrm{OTW} 1}$) when the device junction temperature exceeds $100^{\circ} \mathrm{C}$ (typical), ($\overline{\mathrm{OTW} 2}$) when the device junction temperature exceeds $125^{\circ} \mathrm{C}$ (typical) and, if the device junction temperature exceeds $155^{\circ} \mathrm{C}$ (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-impedance (Hi-Z) state and SD being asserted low. OTE is latched in this case. To clear the OTE latch, $\overline{\text { RESET must be asserted. }}$ Thereafter, the device resumes normal operation.

DKD Package:

The TAS5630 DKD package option has a two-level temperature-protection system that asserts an active-low warning signal (OTW) when the device junction temperature exceeds $125^{\circ} \mathrm{C}$ (typical) and, if the device junction temperature exceeds $155^{\circ} \mathrm{C}$ (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-impedance (Hi-Z) state and SD being asserted low. OTE is latched in this case. To clear the OTE latch, RESET must be asserted. Thereafter, the device resumes normal operation.

UNDERVOLTAGE PROTECTION (UVP) AND POWER-ON RESET (POR)

The UVP and POR circuits of the TAS5630 fully protect the device in any power-up/down and brownout situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are fully operational when the GVDD_X and VDD supply voltages reach the levels stated in the Electrical Characteristics table. Although GVDD_X and VDD are independently monitored, a supply voltage drop below the UVP threshold on any VDD or GVDD_X pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and $\overline{\text { SD }}$ being asserted low. The device automatically resumes operation when all supply voltages have increased above the UVP threshold.

DEVICE RESET

When RESET is asserted low, all power-stage FETs in the four half-bridges are forced into a high-impedance (Hi-Z) state.
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the reset input low enables weak pulldown of the half-bridge outputs. In the SE mode, the output is forced into a high-impedance state when asserting the reset input low. Asserting reset input low removes any fault information to be signaled on the $\overline{\mathrm{SD}}$ output; i.e., $\overline{\mathrm{SD}}$ is forced high. A rising-edge transition on reset input allows the device to resume operation after an overload fault. To ensure thermal reliability, the rising edge of reset must occur no sooner than 4 ms after the falling edge of $\overline{S D}$.

SYSTEM DESIGN CONSIDERATIONS

A rising-edge transition on the reset input allows the device to execute the startup sequence and starts switching.
Apply audio only when the state of READY is high; that starts and stops the amplifier without having audible artifacts that are heard in the output transducers. If an overcurrent protection event is introduced, the READY signal goes low; hence, filtering is needed if the signal is intended for audio muting in non-microcontroller systems.
The CLIP signal indicates that the output is approaching clipping. The signal can be used to either an audio volume decrease or intelligent power supply controlling a low and a high rail.
The device inverts the audio signal from input to output.
The VREG pin is not recommended to be used as a voltage source for external circuitry.

Texas
InSTRUMENTS

OSCILLATOR

The oscillator frequency can be trimmed by external control of the FREQ_ADJ pin.
To reduce interference problems while using a radio receiver tuned within the AM band, the switching frequency can be changed from nominal to lower values. These values should be chosen such that the nominal and the lower-value switching frequencies together result in the fewest cases of interference throughout the AM band, and can be selected by the value of the FREQ_ADJ resistor connected to AGND in master mode.
For slave-mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to VREG. This configures the OSC_I/O pins as inputs, which must be slaved from an external clock.

PRINTED CIRCUIT BOARD RECOMMENDATION

Use an unbroken ground plane to have a good low-impedance and -inductance return path to the power supply for power and audio signals. PCB layout, audio performance and EMI are linked closely together. The circuit contains high, fast-switching currents; therefore, care must be taken to prevent damaging voltage spikes. Routing of the audio input should be kept short and together with the accompanying audio-source ground. A local ground area underneath the device is important to keep solid to minimize ground bounce.
Netlist for this printed circuit board is generated from the schematic in Figure 14.

Note T1: PVDD bulk decoupling capacitors C60-C64 should be as close as possible to the PVDD_X and GND_X pins; the heat sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without going through vias. No vias or traces should be blocking the current path.
Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and close to the pins.

Note T3: Heat sink must have a good connection to PCB ground.
Note T4: Output filter capacitors must be linear in the applied voltage range, preferably metal film types.
Figure 19. Printed Circuit Board - Top Layer

Note B1: It is important to have a direct-low impedance return path for high current back to the power supply. Keep impedance low from top to bottom side of PCB through a lot of ground vias.
Note B2: Bootstrap low-impedance X7R ceramic capacitors placed on bottom side provide a short, low-inductance current loop.
Note B3: Return currents from bulk capacitors and output filter capacitors
Figure 20. Printed Circuit Board - Bottom Layer

REVISION HISTORY

Changes from Original (July 2009) to Revision APage- Deleted Product Preview from the PHD package 3
Changes from Revision A (September 2009) to Revision B Page
- Changed several frame-rate specifications in Recommended Operating Conditions 4
- Changed oscillator frequency specifications in Electrical Characteristics 10
- Changed specification for overload protection counter in Electrical Characteristics 11

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings (4)	Samples
TAS5630DKD	NRND	HSSOP	DKD	44	29	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-4-260C-72 HR	0 to 70	TAS5630	
TAS5630DKDR	NRND	HSSOP	DKD	44	500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-4-260C-72 HR	0 to 70	TAS5630	
TAS5630PHD	NRND	HTQFP	PHD	64	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-5A-260C-24 HR	0 to 70	TAS5630	
TAS5630PHDR	NRND	HTQFP	PHD	64	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-5A-260C-24 HR	0 to 70	TAS5630	

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TAS5630DKDR	HSSOP	DKD	44	500	330.0	24.4	14.7	16.4	4.0	20.0	24.0	Q1
TAS5630PHDR	HTQFP	PHD	64	1000	330.0	24.4	17.0	17.0	1.5	20.0	24.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TAS5630DKDR	HSSOP	DKD	44	500	367.0	367.0	45.0
TAS5630PHDR	HTQFP	PHD	64	1000	367.0	367.0	45.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:
PowerPAD is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. The exposed thermal pad is designed to be attached to an external heatsink.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 MM THICK STENCIL SCALE:6X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

PHD (S-PQFP-G64) PowerPAD ${ }^{\text {TM }}$ PLASTIC QUAD FLATPACK (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion
(1) This package is designed to be attached directly to an external heatsink. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. See the product data sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

NOTE: A. All linear dimensions are in millimeters
PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('Tl") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, Tl's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

