features

- Analog Input Range
 - TLC5510 . . . 2 V Full Scale
 - TLC5510A . . . 4 V Full Scale
- 8-Bit Resolution
- Integral Linearity Error
 - ±0.75 LSB Max (25°C)
 - ±1 LSB Max (-20°C to 75°C)
- Differential Linearity Error ±0.5 LSB Max (25°C)
 - ±0.75 LSB Max (-20°C to 75°C)
- Maximum Conversion Rate
 20 Mega-Samples per Second
 (MSPS) Max

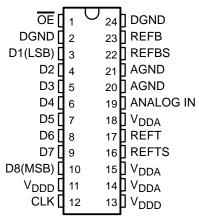
description

The TLC5510 and TLC5510A are CMOS, 8-bit, 20 MSPS analog-to-digital converters (ADCs) that utilize a semiflash architecture. The TLC5510 and TLC5510A operate with a single 5-V supply and typically consume only 130 mW of power. Included is an internal sample-and-hold circuit, parallel outputs with high-impedance mode, and internal reference resistors.

The semiflash architecture reduces power consumption and die size compared to flash converters. By implementing the conversion in a 2-step process, the number of comparators is significantly reduced. The latency of the data output valid is 2.5 clocks.

The TLC5510 uses the three internal reference resistors to create a standard, 2-V, full-scale

5-V Single-Supply Operation


 Low Power Consumption TLC5510...127.5 mW Typ TLC5510A...150 mW Typ (includes reference resistor dissipation)

TLC5510 is Interchangeable With Sony CXD1175

applications

- Digital TV
- Medical Imaging
- Video Conferencing
- High-Speed Data Conversion
- QAM Demodulators

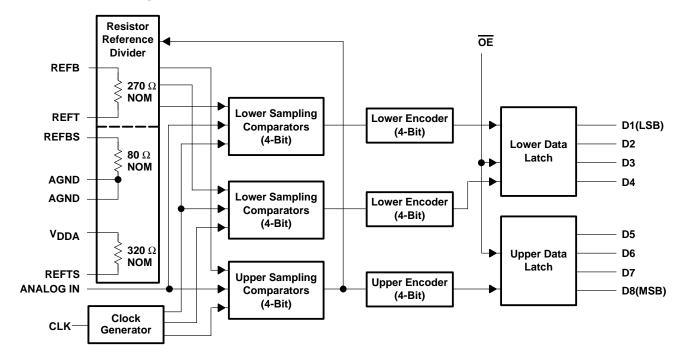
PW OR NS PACKAGE[†] (TOP VIEW)

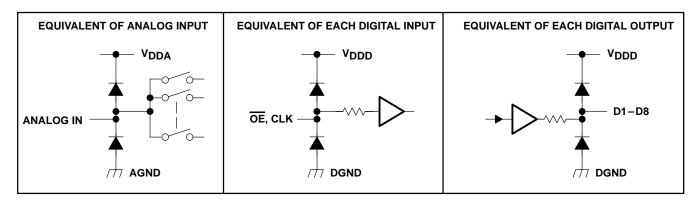
† Available in tape and reel only and ordered as the shown in the Available Options table

conversion range using V_{DDA} . Only external jumpers are required to implement this option and eliminates the need for external reference resistors. The TLC5510A uses only the center internal resistor section with an externally applied 4-V reference such that a 4-V input signal can be used. Differential linearity is 0.5 LSB at 25°C and a maximum of 0.75 LSB over the full operating temperature range. Typical dynamic specifications include a differential gain of 1% and differential phase of 0.7 degrees.

The TLC5510 and TLC5510A are characterized for operation from -20°C to 75°C.

AVAILABLE OPTIONS


	Р	MAXIMUM FULL-SCALE	
TA TSSOP (PW)		SOP (NS) (TAPE AND REEL ONLY)	INPUT VOLTAGE
-20°C to 75°C	TLC5510IPW	TLC5510INSLE	2 V
-20 0 10 75 0	_	TLC5510AINSLE	4 V


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

schematics of inputs and outputs

Terminal Functions

TERM	INAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AGND	20, 21		Analog ground
ANALOG IN	19	1	Analog input
CLK	12	- 1	Clock input
DGND	2, 24		Digital ground
D1-D8	3-10	0	Digital data out. D1 = LSB, D8 = MSB
ŌE	1	ı	Output enable. When \overline{OE} = low, data is enabled. When \overline{OE} = high, D1 – D8 is in high-impedance state.
V_{DDA}	14, 15, 18		Analog supply voltage
V_{DDD}	11, 13		Digital supply voltage
REFB	23	- 1	Reference voltage in bottom
REFBS	22		Reference voltage in bottom. When using the TLC5510 internal voltage divider to generate a nominal 2-V reference, REFBS is shorted to REFB (see Figure 3). When using the TLC5510A, REFBS is connected to ground.
REFT	17	I	Reference voltage in top
REFTS	16		Reference voltage in top. When using the TLC5510 internal voltage divider to generate a nominal 2-V reference, REFTS is shorted to REFT (see Figure 3). When using the TLC5510A, REFTS is connected to VDDA.

absolute maximum ratings†

Supply voltage, V _{DDA} , V _{DDD}	7 V
Reference voltage input range, V _{REFT} , V _{REFB}	AGND to V _{DDA}
Analog input voltage range, V _{I(ANLG)}	
Digital input voltage range, V _{I(DGTL)}	DGND to V _{DDD}
Digital output voltage range, VO(DGTL)	DGND to V _{DDD}
Operating free-air temperature range, T _A	. −20°C to 75°C
Storage temperature range, T _{stg}	−55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
	V _{DDA} -AGND	4.75	5	5.25	V
Supply voltage	V _{DDD} -AGND	4.75	5	5.25]
	AGND-DGND	-100	0	100	mV
Reference input voltage (top), $V_{ref(T)}^{\ddagger}$	TLC5510A	V _{REFB} +	-2	4	V
Reference input voltage (bottom), V _{ref(B)} ‡	TLC5510A	0		V _{REFT} -4	V
Analog input voltage range, V _{I(ANLG)}		V _{REF}	В	V _{REFT}	V
High-level input voltage, VIH		4			V
Low-level input voltage, V _{IL}				1	V
Pulse duration, clock high, $t_{W(H)}$ (see Figure 1)		25			ns
Pulse duration, clock low, $t_{W(L)}$ (see Figure 1)		25			ns

[‡] The reference voltage levels for the TLC5510 are derived through an internal resistor divider between V_{DDA} and ground and therefore are not derived from a separate external voltage source (see the electrical characteristics and text). For the 4 V input range of the TLC5510A, the reference voltage is externally applied across the center divider resistor.

TLC5510, TLC5510A 8-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTERS

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

electrical characteristics at V_{DD} = 5 V, V_{REFT} = 2.5 V, V_{REFB} = 0.5 V, $f_{(CLK)}$ = 20 MHz, T_A = 25°C (unless otherwise noted)

digital I/O

	PARAMETER		MIN	TYP	MAX	UNIT		
lн	High-level input current	$V_{DD} = MAX$,	$V_{IH} = V_{DD}$				5	
I _Ι L	Low-level input current	$V_{DD} = MAX$,	V _{IL} = 0				5	μΑ
IOH	High-level output current	OE = GND,	$V_{DD} = MIN,$	$V_{OH} = V_{DD} - 0.5 V$	-1.5			mA
loL	Low-level output current	OE = GND,	$V_{DD} = MIN,$	$V_{OL} = 0.4 V$	2.5			IIIA
lozh	High-level high-impedance-state output leakage current	$\overline{\text{OE}} = V_{DD}$,	V _{DD} = MAX	$V_{OH} = V_{DD}$			16	μA
I _{OZL}	Low-level high-impedance-state output leakage current	$\overline{OE} = V_{DD}$,	V _{DD} = MIN	V _{OL} = 0			16	μА

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

power

	PARAMETER	TES.	MIN	TYP	MAX	UNIT	
IDD	Supply current	f(CLK) = 20 MHz, National ramp wave input, reference		18	27	mA	
	Peteronee voltage ourrent	TLC5510	V _{ref} = REFT – REFB = 2 V	5.2	7.5	10.5	mA
^I ref	Reference voltage current	TLC5510A	V _{ref} = REFT – REFB = 4 V	10.4	15	21	mA

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

static performance

	PARAMETER		TEST CO	NDITIONS†	MIN	TYP	MAX	UNIT
	Self-bias (1), at REFB		Chart DEED to DEEDC	Chart DEET to DEETS	0.57	0.61	0.65	
	Self-bias (2), REFT – REFB		Short REFB to REFBS,	Short REFT to REFTS	1.9	2.02	2.15	V
	Self-bias (3), at REFT		Short REFB to AGND,	Short REFT to REFTS	2.18	2.29	2.4	
R _{ref}	Reference voltage resistor		Between REFT and REF	В	190	270	350	Ω
Ci	Analog input capacitance		V _{I(ANLG)} = 1.5 V + 0.07	V _{rms}		16		pF
		TLC5510	f(CLK) = 20 MHz,	T _A = 25°C		±0.4	±0.75	
	Integral poplings with (INII.)	1105510	f(CLK) = 20 MHz, V _I = 0.5 V to 2.5 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±1	LSB
	Integral nonlinearity (INL)	TLC5510A	f _(CLK) = 20 MHz,	T _A = 25°C		±0.4	±0.75	
		TLC55TUA	$V_I = 0$ to 4 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±1	
		TLC5510	f(CLK) = 20 MHz, V _I = 0.5 V to 2.5 V	T _A = 25°C		±0.3	±0.5	LOD
	Differential nonlinearity (DNL)	1203310	$V_{I} = 0.5 \text{ V to } 2.5 \text{ V}$	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±0.75	
	Differential Horilineanty (DIVL)	TLC5510A	f _(CLK) = 20 MHz,	T _A = 25°C		±0.3	±0.5	
		TLC55TUA	V _I = 0 to 4 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±0.75	
E-0	Zoro coolo orror	TLC5510	V _{ref} = REFT – REFB = 2	V	-18	-43	-68	mV
Ezs	Zero-scale error TLC5510A		V _{ref} = REFT – REFB = 4	-36	-86	-136	mV	
EEO	Full-scale error	TLC5510	V _{ref} = REFT – REFB = 2 V		-20	0	20	mV
EFS	ruii-scale errol	TLC5510A	V _{ref} = REFT – REFB = 4	. V	-40	0	40	mV

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

operating characteristics at V_{DD} = 5 V, V_{REFT} = 2.5 V, V_{REFB} = 0.5 V, $f_{(CLK)}$ = 20 MHz, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS	MIN	TYP	MAX	UNIT	
,	Maximum conversion rate	TLC5510	f. 4 kH = romn	$V_{I(ANLG)} = 0.5 V - 2.5 V$			20	MSPS	
fconv	Maximum conversion rate	TLC5510A	f _l = 1-kHz ramp	$V_{I(ANLG)} = 0 V - 4 V$			20	MSPS	
BW	Analog input bandwidth		At – 1 dB			14		MHz	
t _{d(D)}	Digital output delay time		C _L ≤ 10 pF (see Note	1 and Figure 1)		18	30	ns	
	Differential gain		NTSC 40 Institute of F	Radio Engineers (IRE)		1%			
	Differential phase		modulation wave,	f _{conv} = 14.3 MSPS		0.7		degrees	
t _A J	Aperture jitter time					30		ps	
t _{d(s)}	Sampling delay time					4		ns	
t _{en}	Enable time, OE↓ to valid da	ata	C _L = 10 pF		5		ns		
tdis	Disable time, OE↑ to high in	npedance	C _L = 10 pF		7		ns		
			Innut tono 1 MI I-	T _A = 25°C	45				
			Input tone = 1 MHz	Full range		43			
			Innut tono 2 MH I=	T _A = 25°C	45 46				
	Spurious free dynamic rang	o (SEDB)	Input tone = 3 MHz	Full range			dB		
	Spurious free dynamic rang	e (SPDR)	Input tone = 6 MHz	T _A = 25°C		43		ub ub	
			Imput tone = 6 MHZ	Full range		42			
			Input tono – 10 MHz	T _A = 25°C		39			
			Input tone = 10 MHz	Full range		39			
SNR	Signal-to-noise ratio		T _A = 25°C	T _A = 25°C			46		
SINK	Signal-io-noise ratio		Full range	Full range				dB	

NOTE 1: C_L includes probe and jig capacitance.

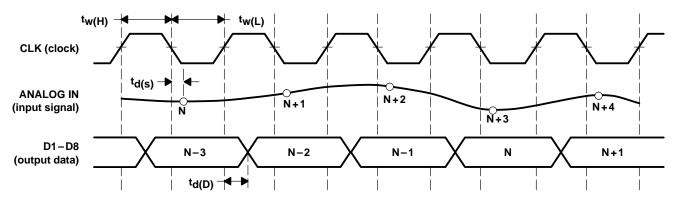


Figure 1. I/O Timing Diagram

PRINCIPLES OF OPERATION

functional description

The TLC5510 and TLC5510A are semiflash ADCs featuring two lower comparator blocks of four bits each.

As shown in Figure 2, input voltage $V_I(1)$ is sampled with the falling edge of CLK1 to the upper comparators block and the lower comparators block(A), S(1). The upper comparators block finalizes the upper data UD(1) with the rising edge of CLK2, and simultaneously, the lower reference voltage generates the voltage RV(1) corresponding to the upper data. The lower comparators block (A) finalizes the lower data LD(1) with the rising edge of CLK3. UD(1) and LD(1) are combined and output as OUT(1) with the rising edge of CLK4. As shown in Figure 2, the output data is delayed 2.5 clocks from the analog input voltage sampling point.

Input voltage $V_1(2)$ is sampled with the falling edge of CLK2. UD(2) is finalized with the rising edge of CLK3, and LD(2) is finalized with the rising edge of CLK4 at the lower comparators block(B). OUT(2) data appears with the rising edge of CLK5.

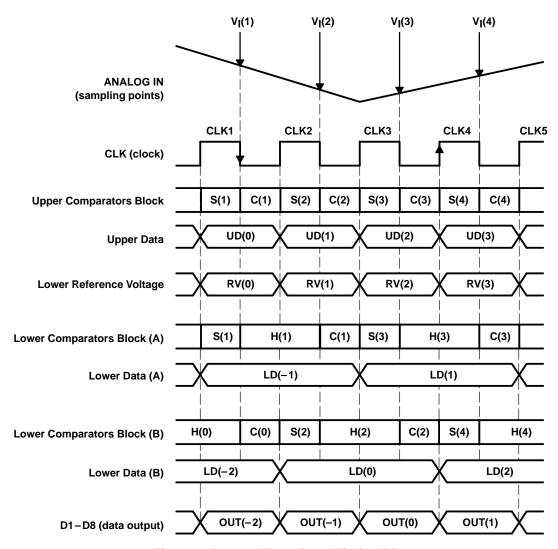


Figure 2. Internal Functional Timing Diagram

PRINCIPLES OF OPERATION

internal referencing

TLC5510

The three internal resistors shown with V_{DDA} can generate a 2-V reference voltage. These resistors are brought out on V_{DDA} , REFTS, REFB, REFBS, and AGND.

To use the internally generated reference voltage, terminal connections should be made as shown in Figure 3. This connection provides the standard video 2-V reference for the nominal digital output.

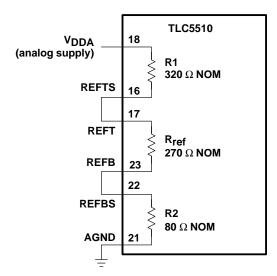


Figure 3. External Connections for a 2-V Analog Input Span Using the Internal-Reference Resistor Divider

TLC5510A

For an analog input span of $4\,V$, $4\,V$ is supplied to REFT, and REFB is grounded and terminal connections should be made as shown in Figure 4. This connection provides the 4-V reference for the nominal zero to full-scale digital output with a $4\,V_{pp}$ analog input at ANALOG IN.

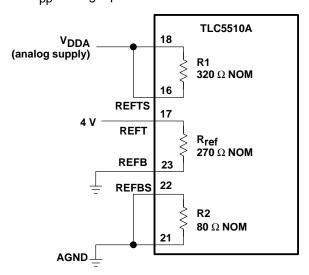


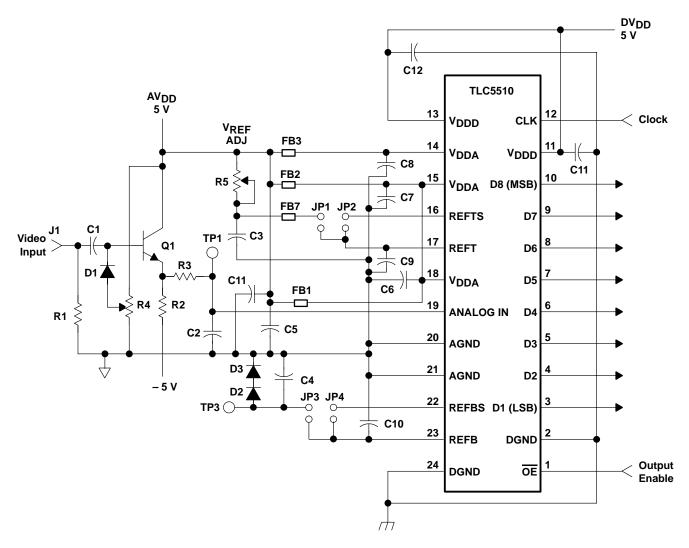
Figure 4. External Connections for 4-V Analog Input Span

PRINCIPLES OF OPERATION

functional operation

The output code change with input voltage is shown in Table 1.

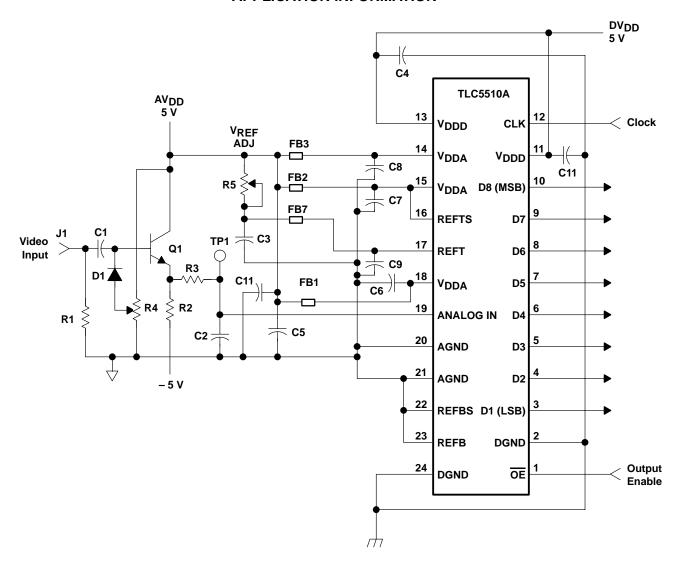
Table 1. Functional Operation


INPUT SIGNAL	STEP		DIGITAL OUTPUT CODE						
VOLTAGE	SIEF	MSB	MSB						
V _{ref(B)}	255	0	0	0	0	0	0	0	0
•			•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•
•	128	0	1	1	1	1	1	1	1
•	127	1	0	0	0	0	0	0	0
•	•		•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•
V _{ref(T)}	0	1	1	1	1	1	1	1	1

APPLICATION INFORMATION

The following notes are design recommendations that should be used with the device.

- External analog and digital circuitry should be physically separated and shielded as much as possible to reduce system noise.
- RF breadboarding or printed-circuit-board (PCB) techniques should be used throughout the evaluation and production process. Breadboards should be copper clad for bench evaluation.
- Since AGND and DGND are connected internally, the ground lead in must be kept as noise free as possible. A good method to use is twisted-pair cables for the supply lines to minimize noise pickup. An analog and digital ground plane should be used on PCB layouts when additional logic devices are used. The AGND and DGND terminals of the device should be tied to the analog ground plane.
- V_{DDA} to AGND and V_{DDD} to DGND should be decoupled with 1-μF and 0.01-μF capacitors, respectively, and placed as close as possible to the affected device terminals. A ceramic-chip capacitor is recommended for the 0.01-μF capacitor. Care should be exercised to ensure a solid noise-free ground connection for the analog and digital ground terminals.
- V_{DDA}, AGND, and ANALOG IN should be shielded from the higher frequency terminals, CLK and D0–D7.
 When possible, AGND traces should be placed on both sides of the ANALOG IN traces on the PCB for shielding.
- In testing or application of the device, the resistance of the driving source connected to the analog input should be 10 Ω or less within the analog frequency range of interest.



NOTE A: Shorting JP1 and JP3 allows adjustment of the reference voltage by R5 using temperature-compensating diodes D2 and D3 which compensate for D1 and Q1 variations. By shorting JP2 and JP4, the internal divider generates a nominal 2-V reference.

LOCATION	DESCRIPTION
C1, C3-C4, C6-C12	0.1-μF capacitor
C2	10-pF capacitor
C5	47-μF capacitor
FB1, FB2, FB3, FB7	Ferrite bead
Q1	2N3414 or equivalent
R1, R3	75- Ω resistor
R2	500- Ω resistor
R4	10-k Ω resistor, clamp voltage adjust
R5	300-Ω resistor, reference-voltage fine adjust

Figure 5. TLC5510 Evaluation and Test Schematic

NOTE A: R5 allows adjustment of the reference voltage to 4 V. R4 adjusts for the desired Q1 quiescent operating point.

LOCATION	DESCRIPTION
C1, C3-C4, C6-C11	0.1-μF capacitor
C2	10-pF capacitor
C5	47-μF capacitor
FB1, FB2, FB3, FB7	Ferrite bead
Q1	2N3414 or equivalent
R1, R3	75-Ω resistor
R2	500- Ω resistor
R4	10-k Ω resistor, clamp voltage adjust
R5	300-Ω resistor, reference-voltage fine adjust

Figure 6. TLC5510A Evaluation and Test Schematic

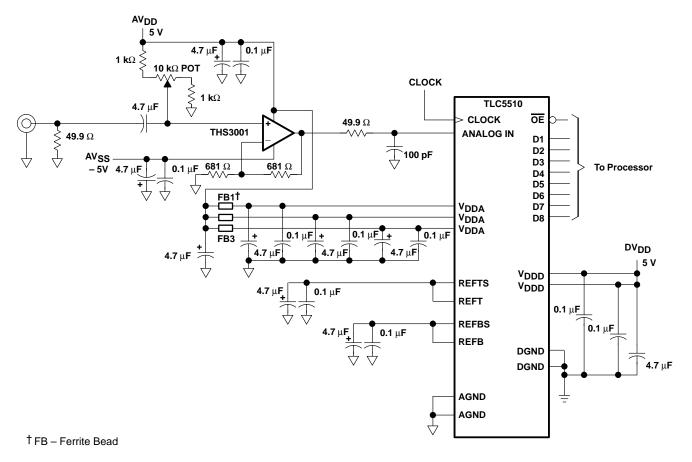


Figure 7. TLC5510 Application Schematic

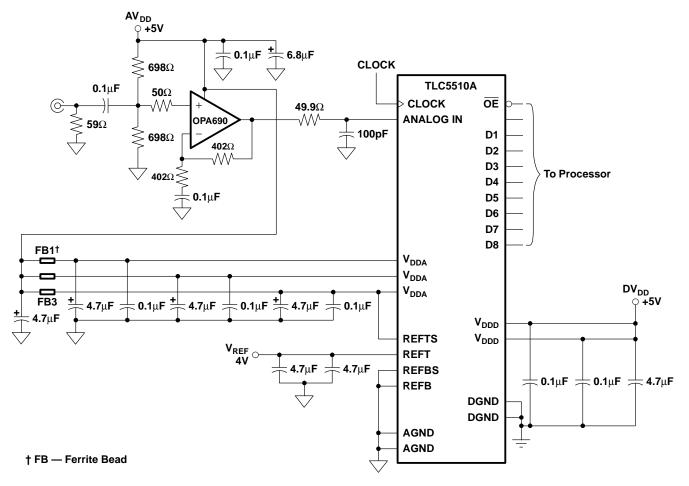


Figure 8. TLC5510A Application Schematic

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC5510AINS	ACTIVE	SO	NS	24	34	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510AI	Samples
TLC5510AINSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510AI	Samples
TLC5510INS	ACTIVE	SO	NS	24	34	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510I	Samples
TLC5510INSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510I	Samples
TLC5510IPW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-20 to 75	Y5510	Samples
TLC5510IPWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-20 to 75	Y5510	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

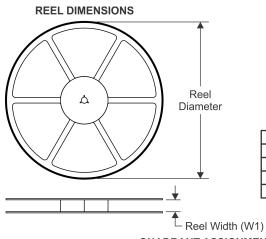
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

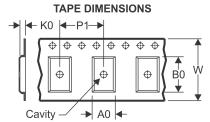
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

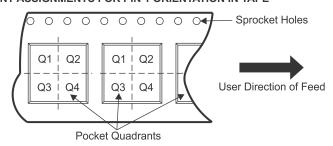
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

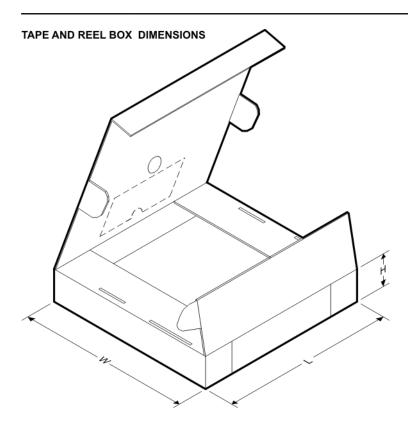
PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



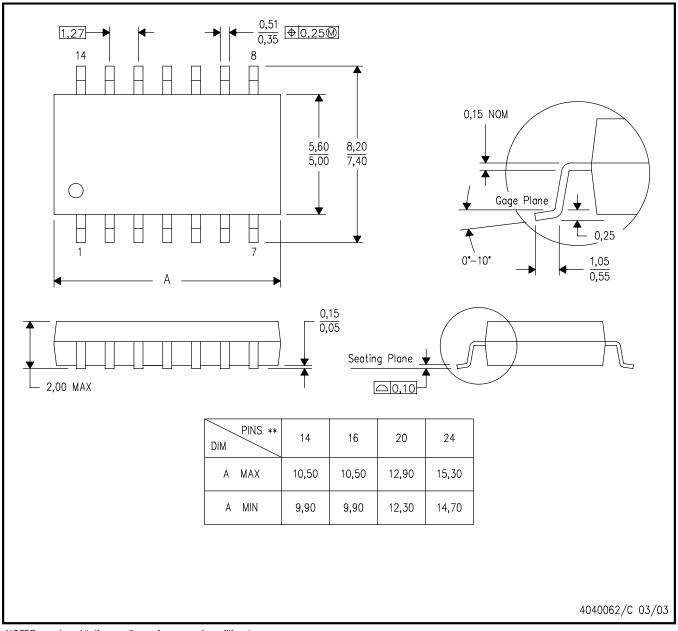
*All dimensions are nominal

All difficults are nothinal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC5510AINSR	SO	NS	24	2000	330.0	24.4	8.5	15.3	2.6	12.0	24.0	Q1
TLC5510INSR	SO	NS	24	2000	330.0	24.4	8.5	15.3	2.6	12.0	24.0	Q1
TLC5510IPWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2015

*All dimensions are nominal

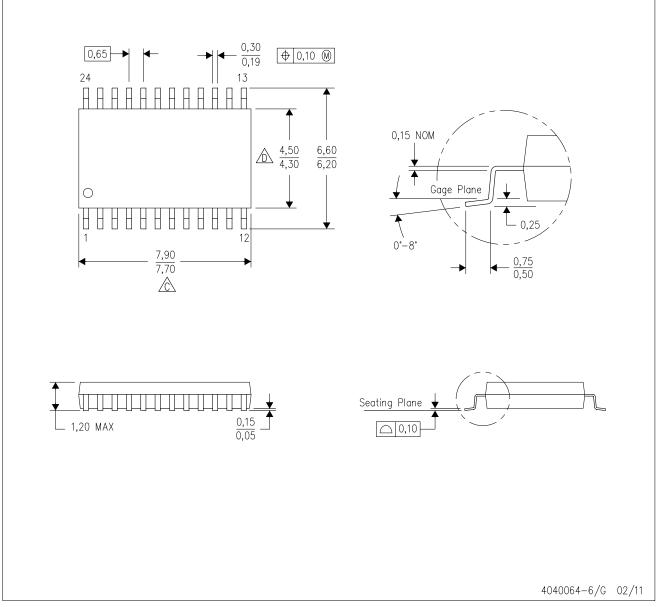

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TLC5510AINSR	SO	NS	24	2000	367.0	367.0	45.0	
TLC5510INSR	SO	NS	24	2000	367.0	367.0	45.0	
TLC5510IPWR	TSSOP	PW	24	2000	367.0	367.0	38.0	

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

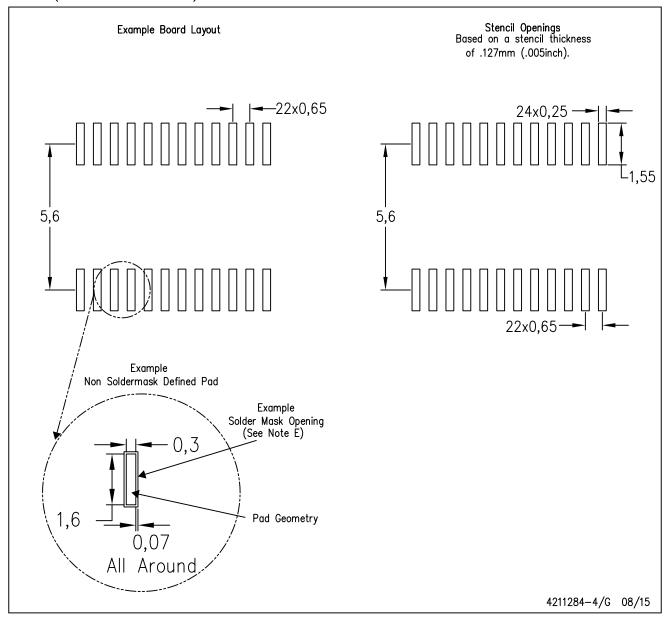
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.