

TLV3491, TLV3492, TLV3494

SBOS262E - DECEMBER 2002 - REVISED DECEMBER 2016

TLV349x 1.8-V, Nanopower, Push-Pull Output Comparator

Features

Very Low Supply Current: 0.8 µA (Typical)

Input Common-Mode Range: 200-mV Beyond Supply Rails

Supply Voltage: 1.8 V to 5.5 V

High Speed: 6 µs

Push-Pull CMOS Output Stage

Small Packages:

5-Pin SOT-23 (Single)

8-Pin SOT-23 (Dual)

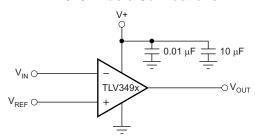
2 Applications

- Portable Medical Equipment
- Wireless Security Systems
- Remote Control Systems
- Handheld Instruments
- **Ultra-Low Power Systems**

3 Description

The TLV349x family of push-pull output comparators features a fast 6-µs response time and < 1.2-µA (maximum) nanopower capability, allowing operation from 1.8 V to 5.5 V. Input common-mode range beyond supply rails make the TLV349x an ideal choice for low-voltage applications.

Micro-sized packages provide options for portable and space-restricted applications. The (TLV3491) is available in 5-pin SOT-23 and 8-pin SOIC packages. The dual (TLV3492) comes in 8-pin SOT-23 and SOIC packages. The guad (TLV3494) is available in both 14-pin TSSOP and SOIC packages.


The TLV349x is excellent for power-sensitive, lowvoltage (two-cell) applications.

Device Information⁽¹⁾

PART NUMBER	PART NUMBER PACKAGE BODY SIZE (NO	
TLV3491	SOT-23 (5)	2.90 mm × 1.60 mm
TLV3491	SOIC (8)	4.90 mm × 3.91 mm
TLV3492	SOT-23 (8)	2.90 mm × 1.63 mm
1LV3492	SOIC (8)	4.90 mm × 3.91 mm
TI \/2404	SOIC (14)	8.65 mm × 3.91 mm
TLV3494	TSSOP (14)	5.00 mm × 4.40 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

TLV349x Basic Connections

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

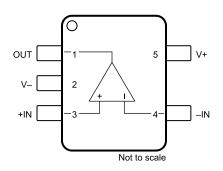
1 Features 1 8.2 Functional Block Diagram	
	10
2 Applications	
3 Description	11
4 Revision History	12
5 Device Comparison Table	12
6 Pin Configuration and Functions	12
7 Specifications	15
i 11 Lavout	15
11.1 Layout Guidelines	15
7.2 Lob Natings	
13. Device and Decumentation Support	
111 Inomai momaton Tevorori minimini	
7.5 Thermal Information: TLV3492 5 12.1 Device Support	16
7.6 Thermal Information: TLV3494	17
7.7 Electrical Characteristics: V _S = 1.8 V to 5.5 V 6	17
7.8 Switching Characteristics 6	17
7.9 Typical Characteristics	17
8 Detailed Description	17
12 Machanical Dealeaging and Orderak	le
8.1 Overview	

4 Revision History

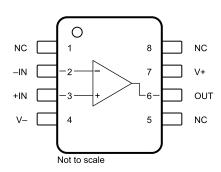
Changes from Revision D (April 2005) to Revision E

Page

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Changed Related Products To: Device Comparison	. 3
•	Deleted Package/Ordering Information table; see Package Option Addendum at the end of the data sheet	3
•	Deleted Lead temperature from Absolute Maximum Ratings	. 5
•	Changed Thermal Resistance, R _{θ,JA} , in <i>Thermal Information: TLV3491</i> From: 200°C/W To: 237.8°C/W (SOT-23) and From: 150°C/W To: 201.9°C/W (SOIC)	5
•	Changed Thermal Resistance, R _{0,JA} , in <i>Thermal Information: TLV3492</i> From: 200°C/W To: 135.4°C/W (SOT-23) and From: 150°C/W To: 201.9°C/W (SOIC)	5
•	Changed Thermal Resistance, R _{0,JA} , in <i>Thermal Information: TLV3494</i> From: 100°C/W To: 83.8°C/W (SOIC) and From: 100°C/W To: 120.8°C/W (TSSOP)	6

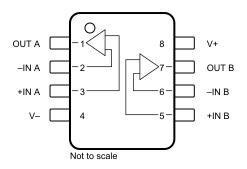


5 Device Comparison Table


PRODUCT	FEATURES	
TLV370x	560-nA, 2.5-V to 16-V, push-pull CMOS output stage comparators	
TLV340x	550-nA, 2.5-V to 16-V, open-drain output stage comparators	

6 Pin Configuration and Functions

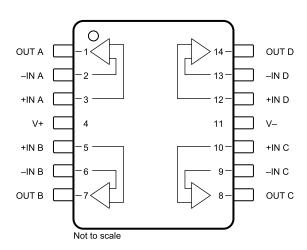
TLV3491 DBV Package 5-Pin SOT-23 Top View


TLV3491 D Package 8-Pin SOIC Top View

Pin Functions: TLV3491

PIN		I/O	DESCRIPTION		
NAME	SOT-23	SOIC	1/0	DESCRIPTION	
-IN	4	2	I	Inverting input	
+IN	3	3	I	Noninverting input	
NC	_	1, 5, 8	_	No internal connection (can be left floating)	
OUT	1	6	0	Output	
V+	5	7	_	Positive (highest) power supply	
V-	2	4	_	Negative (lowest) power supply	

TLV3492 DCN and D Packages 8-Pin SOT-23 and SOIC Top View



Pin Functions: TLV3492

PIN		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
-IN A	2	I	Inverting input, channel A	
–IN B	6	I	Inverting input, channel B	
+IN A	3	I	Noninverting input, channel A	
+IN B	5	I	Noninverting input, channel B	
OUT A	1	0	Output, channel A	
OUT B	7	0	Output, channel B	
V-	4	_	Negative (lowest) power supply	
V+	8	_	Positive (highest) power supply	

TLV3494 D and PW Packages 14-Pin SOIC and TSSOP Top View

Pin Functions: TLV3494

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
–In A	2	I	Inverting input, channel A
–In B	6	ı	Inverting input, channel B
–In C	9	ı	Inverting input, channel C
–In D	13	1	Inverting input, channel D
+In A	3	1	Noninverting input, channel A
+In B	5	1	Noninverting input, channel B
+In C	10	ı	Noninverting input, channel C
+In D	12	1	Noninverting input, channel D
Out A	1	0	Output, channel A
Out B	7	0	Output, channel B
Out C	8	0	Output, channel C
Out D	14	0	Output, channel D
V-	11	_	Negative (lowest) power supply
V+	4	_	Positive (highest) power supply

Submit Documentation Feedback

Copyright © 2002–2016, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
N 16	Supply		5.5	V
Voltage	Signal input pin	(V-) - 0.5	(V+) + 0.5	V
Current	Signal input pin	-10	10	mA
	Output short circuit	Continuous		
Temperature	Operating, T _A	-40	125	°C
	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±3000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
	Supply voltage	1.8	5.5	V
T _A	Specified temperature	-40	125	°C

7.4 Thermal Information: TLV3491

		TLV:	TLV3491		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	D (SOIC)	UNIT	
		5 PINS	8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	237.8	201.9	°C/W	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	108.7	92.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	64.1	123.3	°C/W	
ΨЈТ	Junction-to-top characterization parameter	12.1	23	°C/W	
ΨЈВ	Junction-to-board characterization parameter	63.3	212.6	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: TLV3492

		TLV	TLV3492		
	THERMAL METRIC ⁽¹⁾	DCN (SOT-23)	D (SOIC)	UNIT	
		8 PINS	8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	135.4	201.9	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	68.1	92.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	48.9	123.3	°C/W	
ΨЈТ	Junction-to-top characterization parameter	9.9	23	°C/W	
ΨЈВ	Junction-to-board characterization parameter	48.4	212.6	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TLV3491 TLV3492 TLV3494

7.6 Thermal Information: TLV3494

		TLV		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	83.8	120.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	70.7	34.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	59.5	62.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	11.6	1	°C/W
ΨЈВ	Junction-to-board characterization parameter	37.7	56.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

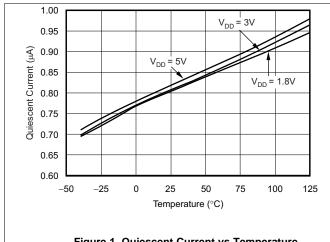
7.7 Electrical Characteristics: $V_S = 1.8 \text{ V to } 5.5 \text{ V}$

at $T_A = 25$ °C and $V_S = 1.8$ V to 5.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFFSET	VOLTAGE	(·		
Vos	Input offset voltage	T _A = 25°C, V _{CM} = 0 V, I _O = 0 V		±3	±15	mV	
dV _{OS} /dT	Input offset voltage versus temperature	$T_A = -40$ °C to 125°C		±12		μV/°C	
PSRR	Input offset voltage versus power supply	V _S = 1.8 V to 5.5 V		350	1000	μV/V	
INPUT B	IAS CURRENT	,	-				
I _B	Input bias current	$V_{CM} = V_{CC}/2$		±1	±10	pA	
los	Input offset current	$V_{CM} = V_{CC}/2$		±1	±10	pA	
INPUT V	OLTAGE						
V _{CM}	Common-mode voltage		(V-) - 0.2 V		(V+) + 0.2 V	V	
OMBB		$V_{CM} = -0.2 \text{ V to (V+)} - 1.5 \text{ V}$	60	74		i.	
CMRR	Common-mode rejection ratio	$V_{CM} = -0.2 \text{ V to (V+)} + 0.2 \text{ V}$	54	62		dB	
INPUT C	APACITANCE						
	Common-mode			2		pF	
	Differential			4		pF	
OUTPUT	(V _S = 5 V)						
V _{OH}	Voltage output high from rail	I _{OUT} = 5 mA		90	200	mV	
V _{OL}	Voltage output low from rail	I _{OUT} = 5 mA		160	200	mV	
I _{SC}	Short-circuit current		See Typic	al Characte	ristics		
POWER	SUPPLY						
Vs	Specified voltage		1.8		5.5	V	
	Operating voltage		1.8		5.5	V	
ΙQ	Quiescent current ⁽¹⁾	$V_O = 5 \text{ V}, V_O = \text{high}$		0.85	1.2	μA	

⁽¹⁾ I_Q per channel

7.8 Switching Characteristics


at f = 10 kHz, V_{STEP} = 1 V, T_A = 25°C, and V_S = 1.8 V to 5.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(PLH) Propagation delay time, low-to-high	Drangation delay time law to high	Input overdrive = 10 mV		12		
	Input overdrive = 100 mV	μs				
	Propagation delay time, high-to-low	Input overdrive = 10 mV		13.5		110
t _(PLH)		Input overdrive = 100 mV		6.5		μs
t _R	Rise time	C _L = 10 pF		100		ns
t _F	Fall time	C _L = 10 pF		100		ns

7.9 Typical Characteristics

at $T_A = 25$ °C, $V_S = 1.8$ V to 5.5 V, and input overdrive = 100 mV (unless otherwise noted)

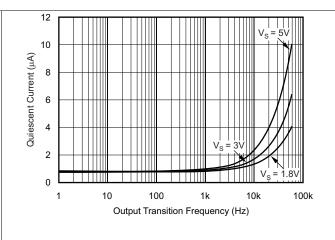
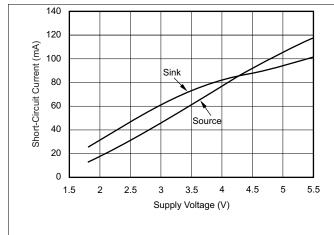



Figure 1. Quiescent Current vs Temperature

Figure 2. Quiescent Current vs Output Switching Frequency

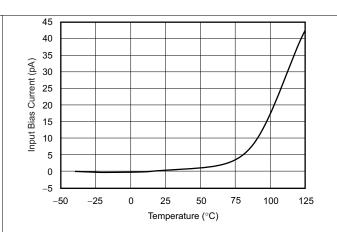
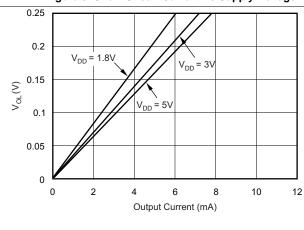
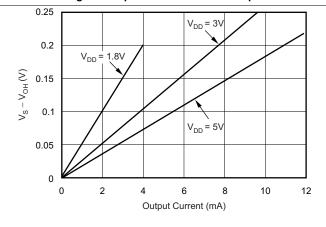



Figure 3. Short-Circuit Current vs Supply Voltage

Figure 4. Input Bias Current vs Temperature



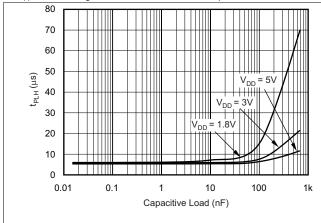

Figure 5. Output Low vs Output Current

Figure 6. Output High vs Output Current

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 1.8$ V to 5.5 V, and input overdrive = 100 mV (unless otherwise noted)

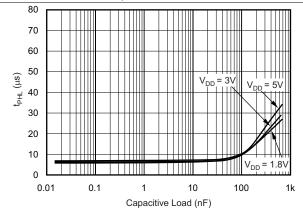
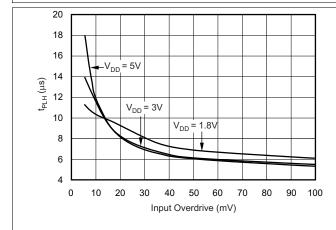



Figure 7. Propagation Delay (t_{PLH}) vs Capacitive Load

Figure 8. Propagation Delay (t_{PHL}) vs Capacitive Load

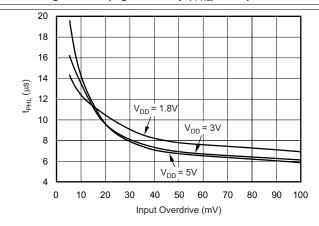
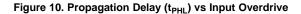
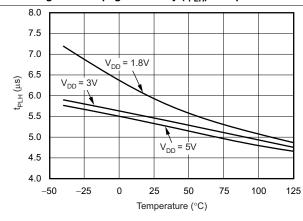




Figure 9. Propagation Delay (t_{PLH}) vs Input Overdrive



Figure 11. Propagation Delay (t_{PLH}) vs Temperature

Figure 12. Propagation Delay (t_{PHL}) vs Temperature

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 1.8$ V to 5.5 V, and input overdrive = 100 mV (unless otherwise noted)

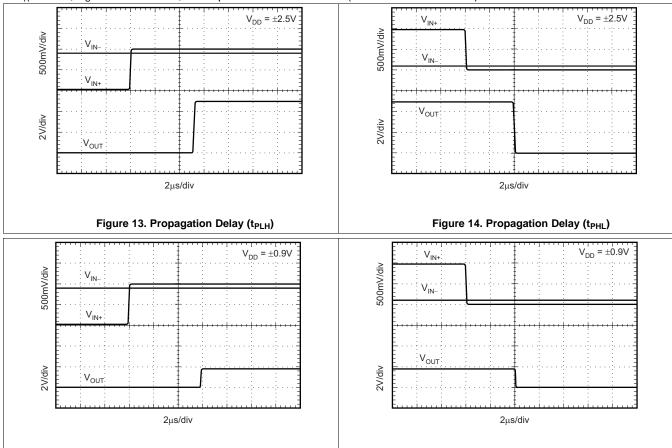
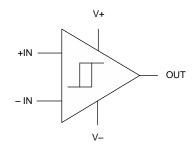


Figure 15. Propagation Delay (t_{PLH})

Figure 16. Propagation Delay (t_{PHL})



8 Detailed Description

8.1 Overview

The TLV349x family of comparators features rail-to-rail input and output on supply voltages as low as 1.8 V. The push-pull output stage is optimal for reduced power budget applications and features no shoot-through current. Low supply voltages, common-mode input range beyond supply rails, and a typical supply current of 0.8 µA make the TLV349x family an excellent candidate for battery-powered applications with single-cell operation as well as a wide range of low-voltage applications. The devices are available in a selection of micro-sized packages for space-constrained and portable applications.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Operating Voltage

The TLV349x comparators are specified for use on a single supply from 1.8 V to 5.5 V (or a dual supply from ± 0.9 V to ± 2.75 V) over a temperature range of -40° C to 125° C.

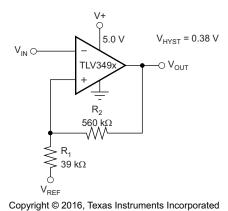
8.3.2 Input Overvoltage Protection

The device inputs are protected by electrostatic discharge (ESD) diodes that conduct if the input voltages exceed the power supplies by more than approximately 500 mV. Momentary voltages greater than 500 mV beyond the power supply can be tolerated if the input current is limited to 10 mA. This limiting is easily accomplished with a small input resistor in series with the input to the comparator.

8.3.3 Setting Reference Voltage

It is important to use a stable reference when setting the transition point for the TLV349x. The REF1004 provides a 1.25-V reference voltage with low drift and only 8 µA of quiescent current.

8.3.4 External Hysteresis


Comparator inputs have no noise immunity within the range of specified offset voltage (±15 mV). For noisy input signals, the comparator output typically displays multiple switching as input signals move through the switching threshold. The typical comparator threshold of the TLV349x is ±15 mV. To prevent multiple switching within the comparator threshold of the TLV349x, external hysteresis must be added by connecting a small amount of feedback to the positive input. Figure 17 shows a typical topology used to introduce hysteresis, described in Equation 1.

$$V_{HYST} = \frac{V^{+} \times R_{1}}{R_{1} + R_{2}} \tag{1}$$

V_{HYST} sets the value of the transition voltage required to switch the comparator output by increasing the threshold region, thereby reducing sensitivity to noise.

Feature Description (continued)

Copyright @ 2010, Texas instruments incorporated

Figure 17. Adding Hysteresis to the TLV349x

8.4 Device Functional Modes

The TLV349x has a single functional mode and is operational when the power-supply voltage is between 1.8 V and 5.5 V.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV349x family of comparators features rail-to-rail input and output on supply voltages as low as 1.8 V. The push-pull output stage is optimal for reduced power budget applications and features no shoot-through current. Low supply voltages, common-mode input range beyond supply rails, and a typical supply current of 0.8 µA make the TLV349x family an excellent candidate for battery-powered applications with single-cell operation.

9.2 Typical Applications

9.2.1 TLV3491 Configured as an AC-Coupled Comparator

One of the benefits of AC coupling a single-supply comparator circuit is that it can block dc offsets induced by ground-loop offsets that could potentially produce either a false trip or a common-mode input violation. Figure 18 shows the TLV3491 configured as an AC-coupled comparator.

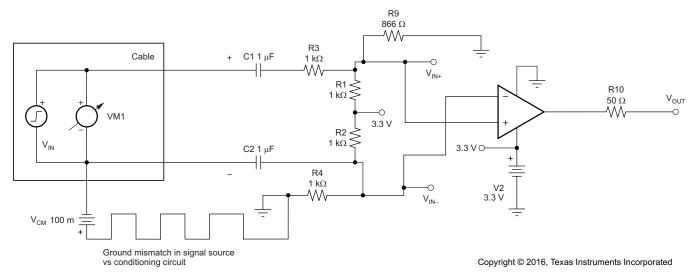


Figure 18. TLV3491 Configured as an AC-Coupled Comparator (Schematic)

9.2.1.1 Design Requirements

Design requirements include:

- 1. Ability to tolerate up to ±100 mV of common-mode signal.
- 2. Trigger only on AC signals (such as zero-cross detection).

Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

Design analysis:

- AC-coupled, high-pass frequency
- Large capacitors require longer start-up time from device power on
- Use 1-μF capacitor to achieve high-pass frequency of approximately 159 Hz
- For high-pass equivalent, use $C_{IN} = 0.5 \mu F$, $R_{IN} = 2 k\Omega$
- 1. Set up input dividers initially for one-half supply (to be in center of acceptable common-mode range).
- 2. Adjust either divider slightly upwards or downwards as desired to establish quiescent output condition.
- 3. Select coupling capacitors based on lowest expected frequency.

9.2.1.3 Application Curve

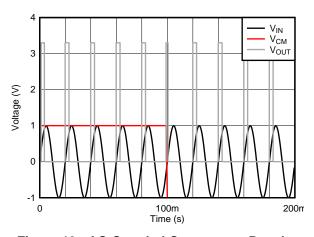


Figure 19. AC-Coupled Comparator Results

9.2.2 Relaxation Oscillator

The TLV349x can be configured as a relaxation oscillator to provide a simple and inexpensive clock output, as Figure 20 shows. The capacitor is charged at a rate of 0.69 RC. It also discharges at a rate of 0.69RC. Therefore, the period is 1.38 RC. R_1 may be a different value than R_2 .

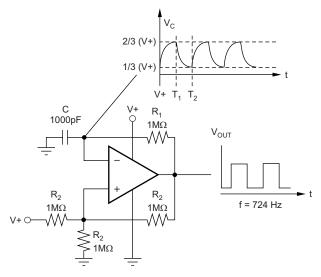
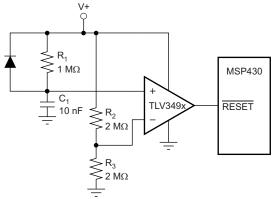


Figure 20. TLV349x Configured as a Relaxation Oscillator


Typical Applications (continued)

9.2.3 Power-On Reset

The reset circuit shown in Figure 21 provides a time-delayed release of reset to the MSP430 microcontroller. Operation of the circuit is based on a stabilization time constant of the supply voltage, rather than on a predetermined voltage value. The negative input is a reference voltage created by a simple resistor divider.

These resistor values must be relatively high to reduce the current consumption of the circuit. The positive input is an RC circuit that provides a power-up delay. When power is applied, the output of the comparator is low, holding the processor in the reset condition. Only after allowing time for the supply voltage to stabilize does the positive input of the comparator become higher than the negative input, resulting in a high output state and releasing the processor for operation. The stabilization time required for the supply voltage is adjustable by the selection of the RC component values.

Use of a lower-valued resistor in this portion of the circuit does not increase current consumption because no current flows through the RC circuit after the supply has stabilized. The required reset delay time depends on the power-up characteristics of the system power supply. R_1 and C_1 are selected to allow enough time for the power supply to stabilize. D_1 provides rapid reset if power is lost. In this example, the $R_1 \times C_1$ time constant is 10 ms.

Copyright © 2016, Texas Instruments Incorporated

Figure 21. The TLV349x Configured as a Reset Circuit for the MSP430

10 Power Supply Recommendations

The TLV349x family of devices is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters that can exhibit significant variance with regard to operating voltage are presented in *Typical Characteristics*.

11 Layout

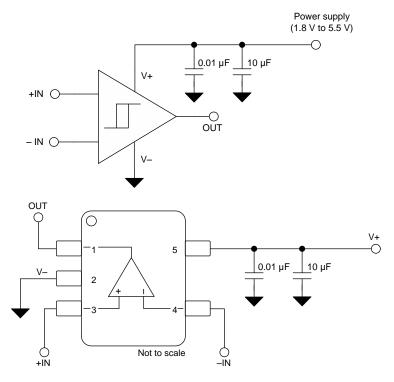

11.1 Layout Guidelines

Figure 22 shows the typical connections for the TLV349x. To minimize supply noise, power supplies must be capacitively decoupled by a 0.01-μF ceramic capacitor in parallel with a 10-μF electrolytic capacitor. Comparators are very sensitive to input noise. Proper grounding (the use of a ground plane) helps to maintain the specified performance of the TLV349x family.

For best results, maintain the following layout guidelines:

- 1. Use a printed-circuit board (PCB) with a good, unbroken low-inductance ground plane.
- 2. Place a decoupling capacitor (0.1-µF ceramic, surface-mount capacitor) as close as possible to V_{CC}.
- 3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback around the comparator. Keep inputs away from the output.
- 4. Solder the device directly to the PCB rather than using a socket.
- 5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some degradation to propagation delay when the impedance is low. The topside ground plane runs between the output and inputs.
- 6. The ground pin ground trace runs under the device up to the bypass capacitor, shielding the inputs from the outputs.

11.2 Layout Example

Copyright © 2016, Texas Instruments Incorporated

Figure 22. Basic Connections of the TLV349x

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 TINA-TI™ (Free Software Download)

TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic guick-start tool.

NOTE

These files require that either the TINA software (from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

12.1.1.2 DIP Adapter EVM

The DIP Adapter EVM tool provides an easy, low-cost way to prototype small surface mount ICs. The evaluation tool these TI packages: D or U (SOIC-8), PW (TSSOP-8), DGK (MSOP-8), DBV (SOT23-6, SOT23-5 and SOT23-3), DCK (SC70-6 and SC70-5), and DRL (SOT563-6). The DIP Adapter EVM may also be used with terminal strips or may be wired directly to existing circuits.

12.1.1.3 Universal Op Amp EVM

The Universal Op Amp EVM is a series of general-purpose, blank circuit boards that simplify prototyping circuits for a variety of IC package types. The evaluation module board design allows many different circuits to be constructed easily and quickly. Five models are offered, with each model intended for a specific package type. PDIP, SOIC, MSOP, TSSOP and SOT23 packages are all supported.

NOTE

These boards are unpopulated, so users must provide their own ICs. TI recommends requesting several op amp device samples when ordering the Universal Op Amp EVM.

12.1.1.4 TI Precision Designs

TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/.

12.1.1.5 WEBENCH® Filter Designer

WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to design, optimize, and simulate complete multistage active filter solutions within minutes.

12.2 Related Links

Table 1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TLV3491	Click here	Click here	Click here	Click here	Click here
TLV3492	Click here	Click here	Click here	Click here	Click here
TLV3494	Click here	Click here	Click here	Click here	Click here

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

TINA-TI, E2E are trademarks of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

TINA, DesignSoft are trademarks of DesignSoft, Inc.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2002–2016, Texas Instruments Incorporated

7-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV3491AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3491	Samples
TLV3491AIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	VBNI	Samples
TLV3491AIDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	VBNI	Samples
TLV3491AIDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	VBNI	Samples
TLV3491AIDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	VBNI	Samples
TLV3491AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3491	Samples
TLV3491AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3491	Samples
TLV3492AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3492	Samples
TLV3492AIDCNR	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBO1	Samples
TLV3492AIDCNRG4	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBO1	Samples
TLV3492AIDCNT	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBO1	Samples
TLV3492AIDCNTG4	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBO1	Samples
TLV3492AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3492	Samples
TLV3492AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3492	Samples
TLV3494AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV3494	Samples
TLV3494AIPWR	ACTIVE	TSSOP	PW	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3494	Samples
TLV3494AIPWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV 3494	Samples

PACKAGE OPTION ADDENDUM

7-Mar-2016

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

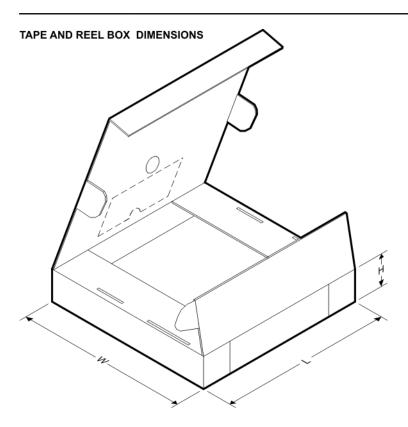
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Mar-2016

TAPE AND REEL INFORMATION

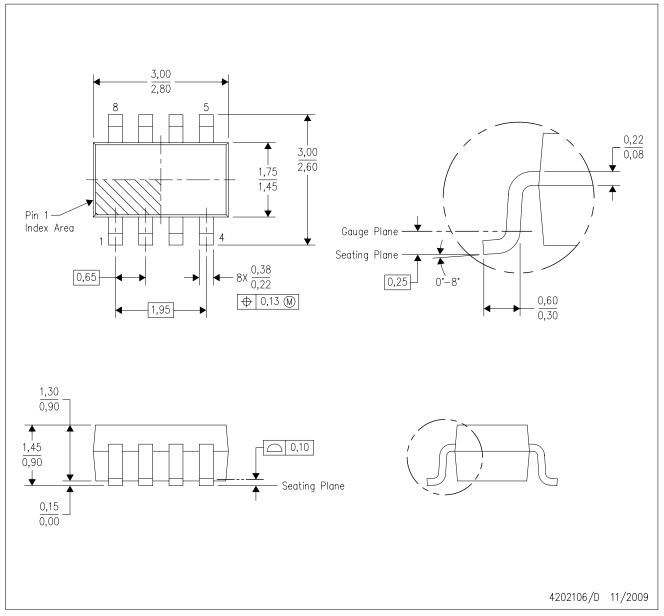
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV3491AIDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV3491AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV3492AIDCNR	SOT-23	DCN	8	3000	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
TLV3492AIDCNT	SOT-23	DCN	8	250	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
TLV3492AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV3494AIPWR	TSSOP	PW	14	2500	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV3494AIPWT	TSSOP	PW	14	250	180.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 7-Mar-2016

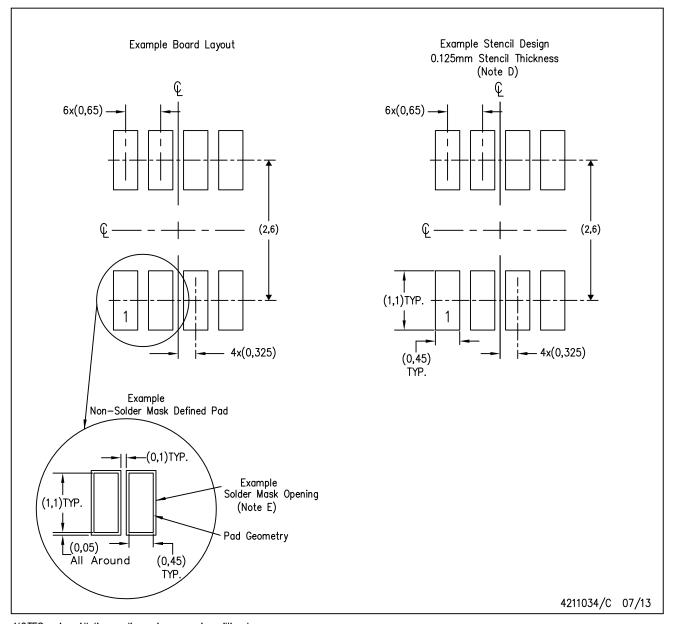


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV3491AIDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV3491AIDR	SOIC	D	8	2500	367.0	367.0	35.0
TLV3492AIDCNR	SOT-23	DCN	8	3000	210.0	185.0	35.0
TLV3492AIDCNT	SOT-23	DCN	8	250	210.0	185.0	35.0
TLV3492AIDR	SOIC	D	8	2500	367.0	367.0	35.0
TLV3494AIPWR	TSSOP	PW	14	2500	367.0	367.0	35.0
TLV3494AIPWT	TSSOP	PW	14	250	210.0	185.0	35.0

DCN (R-PDSO-G8)

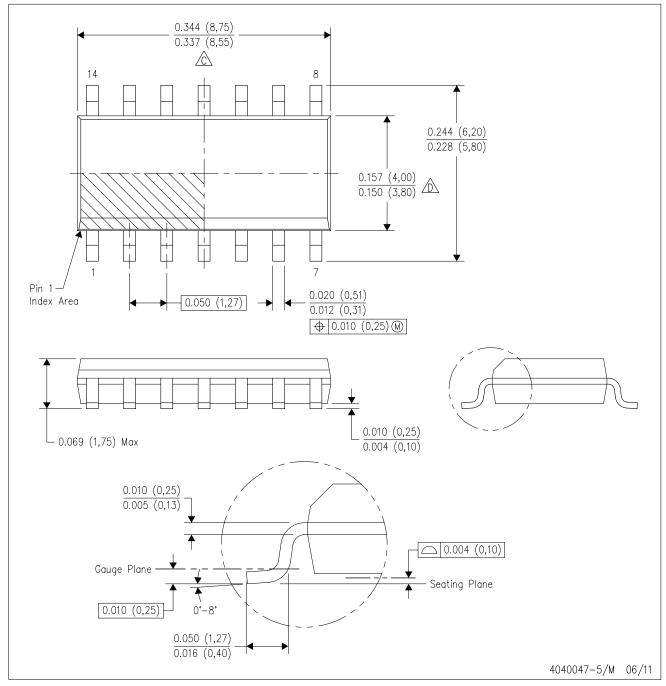
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

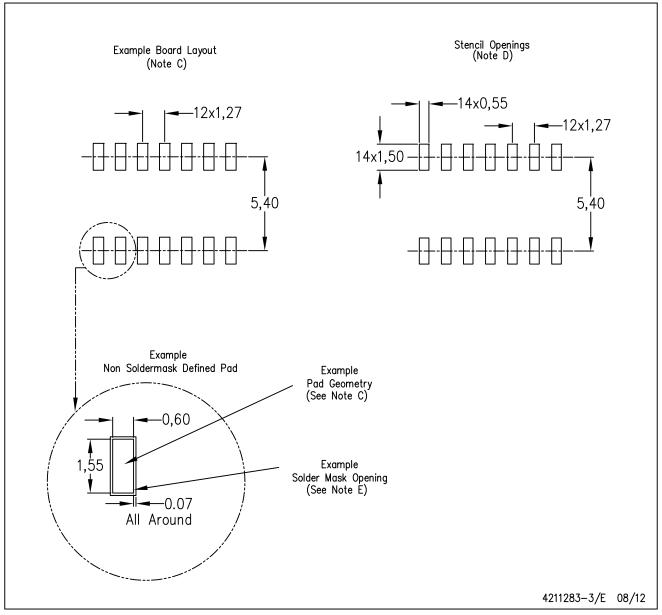
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G14)

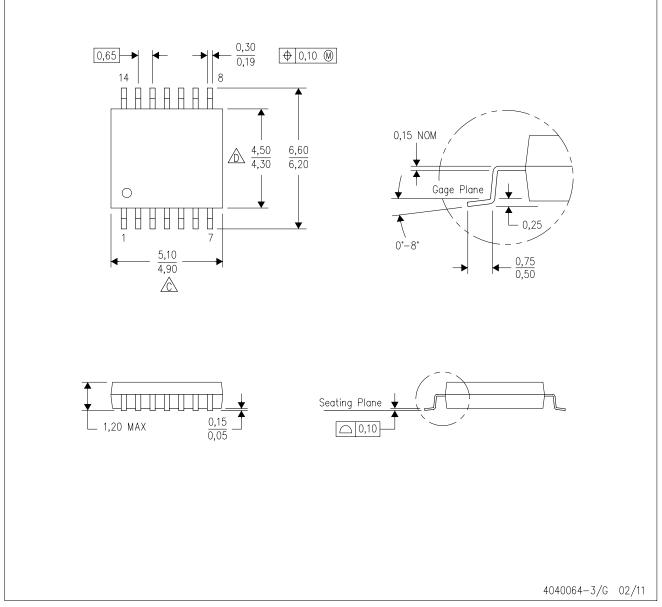
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

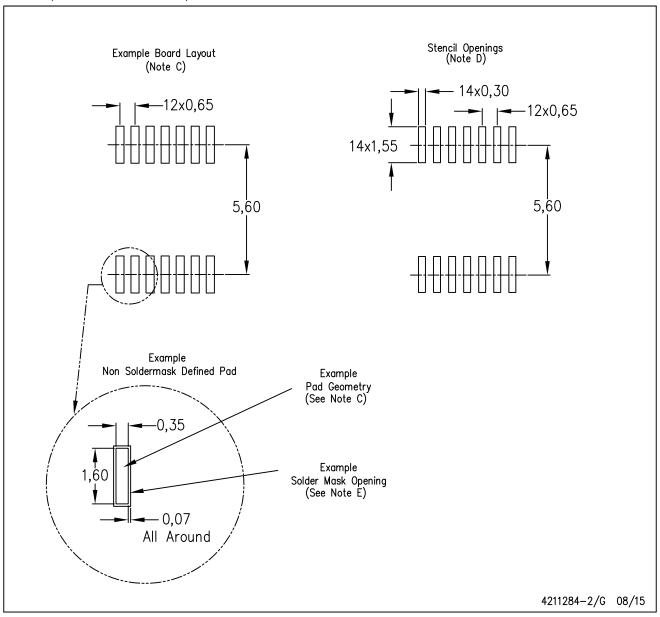
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

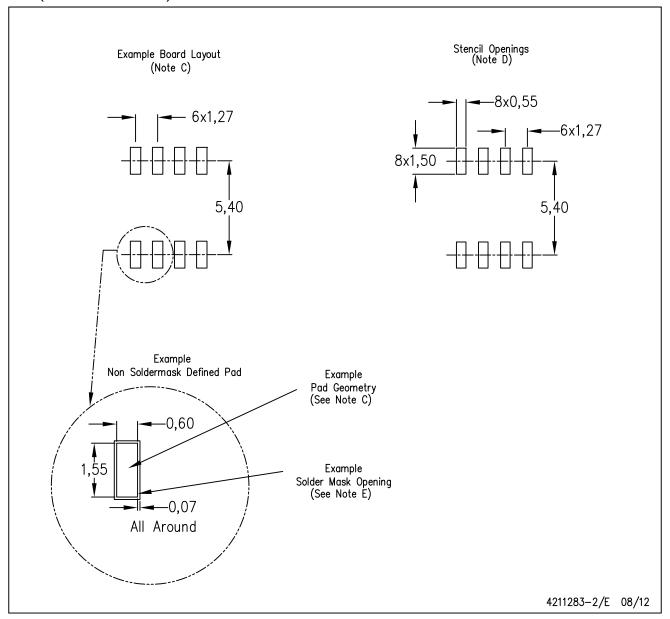
PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

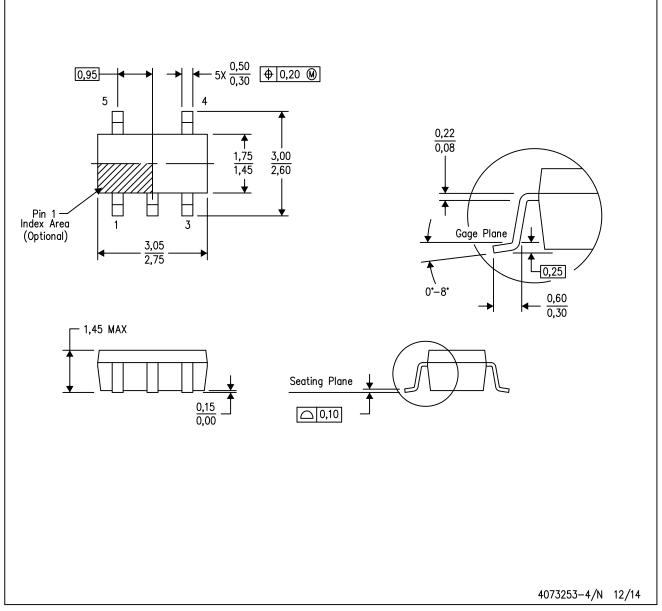
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

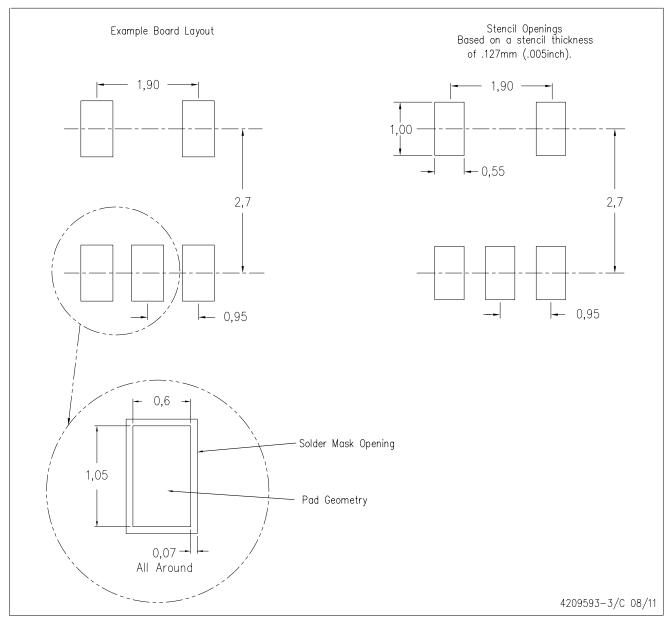
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity