

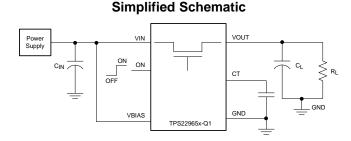
Sample &

Buy

SLVSCI3C - APRIL 2014-REVISED SEPTEMBER 2016

TPS22965x-Q1 5.5-V, 4-A, 16-m Ω On-Resistance Load Switch

Technical


Documents

1 Features

- Qualified for Automotive Applications
 - AEC-Q100 Qualified
 - Device Temperature Grade 2: -40°C to +105°C (TPS22965-Q1, TPS22965N-Q1)
 - Device Temperature Grade 1: -40°C to +125°C (TPS22965W-Q1, TPS22965NW-Q1)
 - Device HBM ESD Classification Level 3A
 - Device CDM ESD Classification Level C6
- Integrated Single Channel Load Switch
- Input Voltage Range: 0.8 V to 5.5 V
- Ultra-Low On Resistance (R_{ON})
 - R_{ON} = 16 m Ω at V_{IN} = 5 V (V_{BIAS} = 5 V)
 - $R_{ON} = 16 \text{ m}\Omega \text{ at } V_{IN} = 3.6 \text{ V} (V_{BIAS} = 5 \text{ V})$
 - R_{ON} = 16 m Ω at V_{IN} = 1.8 V (V_{BIAS} = 5 V)
- 4-A Maximum Continuous Switch Current
- Low Quiescent Current (50 μA)
- Low Control Input Threshold Enables Use of 1.2-, 1.8-, 2.5- and 3.3-V Logic
- Configurable Rise Time
- Quick Output Discharge (QOD) (TPS22965-Q1 and TPS22965W-Q1 Only)
- WSON 8-pin Package with Thermal Pad

2 Applications

- Automotive Electronics
- Infotainment
- ADAS (Advanced Driver Assistance Systems)

3 Description

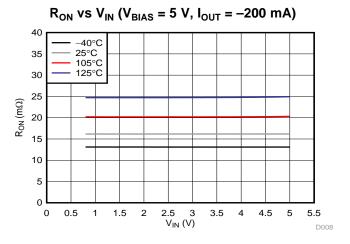
Tools &

Software

The TPS22965x-Q1 is a small, ultralow-R_{ON}, singlechannel load switch with controlled turn on. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8 V to 5.5 V and can support a maximum continuous current of 4 A. The VOUT rise time is configurable so that inrush current may be reduced. The TPS22965-Q1 and TPS22965W-Q1 devices include a 225- Ω on-chip load resistor for quick output discharge when the switch is turned off.

Support &

Community


20

The TPS22965x-Q1 devices are available in a small, space-saving 2-mm \times 2-mm 8-pin WSON package (DSG0008A) with integrated thermal pad allowing for high power dissipation. The TPS22965-Q1 and TPS22965N-Q1 devices are characterized for operation over the free-air temperature range of -40°C to 105°C. Furthermore, the TPS22965W-Q1 and TPS22965NW-Q1 devices feature wettable flanks in the same WSON package (DSG0008B) and it is characterized for operation over the free-air temperature range of -40°C to +125°C.

Device Information ⁽¹⁾

PART NUMBER	D1 DSG0008A -Q1 WSON (8) '-Q1 DSG0008B WGON (6) 2.00 mm >	BODY SIZE (NOM)
TPS22965-Q1	DSG0008A	
TPS22965N-Q1	WSON (8)	2.00 mm ·· 2.00 mm
TPS22965W-Q1	DSG0008B	2.00 mm × 2.00 mm
TPS22965NW-Q1	WSON (8)	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

ົ

Table of Contents

Feat	tures 1
Арр	lications 1
Des	cription 1
Rev	ision History 2
Dev	ice Comparison Table 3
Pin	Configuration and Functions 3
Spe	cifications 4
7.1	Absolute Maximum Ratings 4
7.2	ESD Ratings 4
7.3	Recommended Operating Conditions 4
7.4	Thermal Information 5
7.5	Electrical Characteristics—V _{BIAS} = 5 V5
7.6	Electrical Characteristics—V _{BIAS} = 2.5 V
7.7	Switching Characteristics
7.8	Typical Characteristics 10
Para	ameter Measurement Information 15
Deta	ailed Description 16
9.1	Overview
9.2	Functional Block Diagram 16
	App Des Rev Dev Pin Spe 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Para Deta 9.1

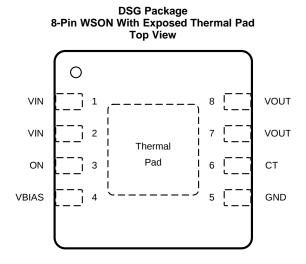
	9.3	Feature Description	17
	9.4	Device Functional Modes	17
10	Арр	lication and Implementation	18
	10.1	Application Information	18
	10.2	Typical Application	19
11	Pow	er Supply Recommendations	21
12	Lay	out	21
	12.1	Layout Guidelines	21
	12.2	Layout Example	21
	12.3	Thermal Consideration	21
13	Dev	ice and Documentation Support	22
	13.1	Documentation Support	22
	13.2	Receiving Notification of Documentation Updates	22
	13.3	Community Resources	22
	13.4	Trademarks	22
	13.5	Electrostatic Discharge Caution	22
	13.6	Glossary	22
14		hanical, Packaging, and Orderable mation	22

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (December 2015) to Revision C	Page
Added package designators in the <i>Description</i> section and <i>Thermal Information</i> table	
Changes from Revision A (June 2015) to Revision B	Page
Updated status of TPS22965W-Q1 part to ACTIVE	1
Added 125°C temperature performance to typical AC timing parameters	
Changes from Original (April 2014) to Revision A	Page
Added TPS22965N-Q1 part number.	1
Updated Thermal Information table	
Updated typical AC timing parameters (tables, graphs and scope captures)	12

Product Folder Links: TPS22965-Q1



www.ti.com

5 Device Comparison Table

DEVICE	R _{ON} AT 3.3 V (TYP)	QUICK OUTPUT DISCHARGE	PACKAGE WITH WETTABLE FLANKS	MAXIMUM OUTPUT CURRENT	TEMPERATURE RANGE
TPS22965-Q1	16 mΩ	Yes	No	4 A	-40°C to +105°C
TPS22965N-Q1	16 mΩ	No	No	4 A	–40°C to +105°C
TPS22965W-Q1	16 mΩ	Yes	Yes	4 A	-40°C to +125°C
TPS22965NW-Q1	16 mΩ	No	Yes	4 A	-40°C to +125°C

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION			
NO.	NAME	1/0	DESCRIPTION			
1	VIN		Switch input. Input bypass capacitor recommended for minimizing VIN dip. Must be connected to			
2	VIIN	I	Pin 1 and Pin 2. See the Application and Implementation section for more information			
3	ON	I	Active high switch control input. Do not leave floating			
4	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 V to 5.5 V. See the <i>Application and Implementation</i> section for more information			
5	GND	_	Device ground			
6	СТ	0	Switch slew rate control. Can be left floating. See the <i>Application and Implementation</i> section for more information			
7	VOUT	0	Switch sutnut			
8	v001	0	Switch output			
_	Thermal pad	_	Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See the <i>Layout</i> section for layout guidelines			

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT ⁽²⁾
V _{IN}	Input voltage	-0.3	6	V
V _{OUT}	Output voltage	-0.3	6	V
V _{BIAS}	Bias voltage	-0.3	6	V
V _{ON}	On voltage	-0.3	6	V
I _{MAX}	Maximum continuous switch current		4	А
I _{PLS}	Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle		6	А
TJ	Maximum junction temperature		150	°C
T _{STG}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground pin.

7.2 ESD Ratings

		VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	V
Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	v
_	Electrostatic discharge	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ ±4000

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{IN}	Input voltage		0.8	V_{BIAS}	V
V _{BIAS}	Bias voltage		2.5	5.5	V
V _{ON}	ON voltage		0	5.5	V
V _{OUT}	Output voltage			V _{IN}	V
VIH	High-level input voltage, ON	V _{BIAS} = 2.5 V to 5.5 V	1.2	5.5	V
V _{IL}	Low-level input voltage, ON	$V_{BIAS} = 2.5 V \text{ to } 5.5 V$	0	0.5	V
C _{IN}	Input capacitor		1 ⁽¹⁾		μF
-	Operating free-air temperature ⁽²⁾	TPS22965N-Q1, TPS22965-Q1	-40	105	°C
IA	Operating nee-air temperature (-)	TPS22965NW-Q1, TPS22965W-Q1	-40	125	۰L

(1) See the *Application and Implementation* section.

(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{A(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application $[P_{D(max)}]$, and the junction-to-ambient thermal resistance of the part/package in the application (R_{J0A}) , as given by the following equation: $T_{A(max)} = T_{J(max)} - (R_{0JA} \times P_{D(max)})$

7.4 Thermal Information

		TPS22965-Q1, TPS22965N-Q1	TPS22965W-Q1, TPS22965NW-Q1	
	THERMAL METRIC ⁽¹⁾	DSG0008A (WSON)	DSG0008B (WSON)	UNIT
		8 PINS	8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	72.3	67.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	96.1	95	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	42.1	37.4	°C/W
ΨJT	Junction-to-top characterization parameter	3.3	2.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	42.5	37.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	13.2	8	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics—V_{BIAS} = 5 V

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature: -40°C $\leq T_A \leq$ +105°C (TPS22965N-Q1, TPS22965-Q1), -40°C $\leq T_A \leq$ +125°C (TPS22965NW-Q1, TPS22965W-Q1). Typical values are for $T_A =$ 25°C.

	PARAMETER	TEST CO	NDITIONS	T _A	MIN 1	ΓYΡ	MAX	UNIT
POWER SU	UPPLIES AND CURRENTS							
1. 1/	V guiocoant ourront	I _{OUT} = 0 mA,		-40°C to +105°C		50	75	
$I_Q V_{BIAS}$	V _{BIAS} quiescent current	$V_{IN} = V_{ON} = V_{BIAS}$	s = 5 V	-40°C to +125°C		50	75	μA
1 1/			$V_{IN} = V_{ON} = V_{BIAS} = 5 V$ $V_{ON} = GND, V_{OUT} = 0 V$ $V_{IN} = 5 V$ $V_{IN} = 3.3 V$	-40°C to +105°C			2	
I _{SD} V _{BIAS}	V _{BIAS} shutdown current	S $-40^{\circ}C \text{ to } +105^{\circ}C$ 50 75 $V_{IN} = V_{ON} = V_{BIAS} = 5 V$ $-40^{\circ}C \text{ to } +125^{\circ}C$ 50 75 $V_{ON} = GND, V_{OUT} = 0 V$ $-40^{\circ}C \text{ to } +125^{\circ}C$ 2 $V_{ON} = GND, V_{OUT} = 0 V$ $-40^{\circ}C \text{ to } +125^{\circ}C$ 2 $V_{ON} = GND, V_{OUT} = 0 V$ $-40^{\circ}C \text{ to } +105^{\circ}C$ 0.2 8 $V_{ON} = GND, V_{OUT} = 0 V$ $V_{IN} = 5 V$ $-40^{\circ}C \text{ to } +105^{\circ}C$ 0.02 3 $V_{ON} = GND, V_{OUT} = 0 V$ $V_{IN} = 3.3 V$ $-40^{\circ}C \text{ to } +105^{\circ}C$ 0.02 3 $V_{OUT} = 0 V$ $V_{IN} = 1.8 V$ $-40^{\circ}C \text{ to } +105^{\circ}C$ 0.01 2 $V_{IN} = 0.8 V$ $-40^{\circ}C \text{ to } +105^{\circ}C$ 0.005 1 $-40^{\circ}C \text{ to } +125^{\circ}C$ 4 $-40^{\circ}C \text{ to } +125^{\circ}C$ 6	μA					
		V _{ON} = GND,		-40°C to +105°C		0.2	8	
			v _{IN} = 5 v	-40°C to +125°C			36	
				-40°C to +105°C	().02	3	
1 1/				-40°C to +125°C			13	
$I_{SD} V_{IN}$	V _{IN} off-state supply current	$V_{OUT} = 0 V$	N 4.0.V	-40°C to +105°C	().01	2	μA
			v _{IN} = 1.8 v	-40°C to +125°C			6	
			V 0.0.V	-40°C to +105°C	0.	005	1	
	V _{IN} = 0.8 V	-40°C to +125°C			4			
				-40°C to +105°C			0.5	A
I _{ON}	ON pin input leakage current	v _{ON} = 5.5 V	$V_{OVT} = GND,$ $V_{OUT} = 0 V$ $V_{IN} = 1.8 V$ $V_{IN} = 0.8 V$	-40°C to +125°C			0.5	μA

Electrical Characteristics—V_{BIAS} = 5 V (continued)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature: -40°C $\leq T_A \leq +105$ °C (TPS22965N-Q1, TPS22965-Q1), -40°C $\leq T_A \leq +125$ °C (TPS22965NW-Q1, TPS22965W-Q1). Typical values are for $T_A = 25$ °C.

	PARAMETER	TEST CON	DITIONS	T _A	MIN TYP	MAX	UNI	
RESISTA	NCE CHARACTERISTICS							
				25°C	16	23		
), <u> </u>	-40°C to +105°C 965N-Q1, 965-Q1		25			
			$V_{IN} = 5 V$	-40°C to +105°C 965NW-Q1, 965W-Q1		26	- mΩ	
				-40°C to +125°C		28	1	
			25°C	16	23			
				-40°C to +105°C 965N-Q1, 965-Q1		25		
			V _{IN} = 3.3 V	-40°C to +105°C 965NW-Q1, 965W-Q1		26	- mΩ	
				-40°C to +125°C		27	1	
				25°C	16	23		
				-40°C to +105°C 965N-Q1, 965-Q1		25		
			V _{IN} = 1.8 V	-40°C to +105°C 965NW-Q1, 965W-Q1		26	- m(
		I _{OUT} = -200 mA,		-40°C to +125°C		27	1	
RON	ON-state resistance	$V_{BIAS} = 5 V$		25°C	16	23		
					-40°C to +105°C 965N-Q1, 965-Q1		25	
			V _{IN} = 1.5 V	-40°C to +105°C 965NW-Q1, 965W-Q1		26	mΩ	
				-40°C to +125°C		27	1	
				25°C	16	23	1	
				-40°C to +105°C 965N-Q1, 965-Q1		25		
			V _{IN} = 1.2 V	-40°C to +105°C 965NW-Q1, 965W-Q1		26	-mΩ	
				-40°C to +125°C		27	1	
				25°C	16	23		
			N 0.0 M	-40°C to +105°C 965N-Q1, 965-Q1		25		
			V _{IN} = 0.8 V	-40°C to +105°C 965NW-Q1, 965W-Q1		26	- m(
				-40°C to +125°C		27	1	
a (1)			V I 4 6	-40°C to +105°C	225	300	_	
₹ _{PD} ⁽¹⁾	Output pull-down resistanc	$V_{IN} = 5 V, V_{ON} = 0$	v, I _{OUT} = 1 mA	-40°C to +125°C	225	300	Ω	

(1) TPS22965-Q1 and TPS22965W-Q1 Only

7.6 Electrical Characteristics—V_{BIAS} = 2.5 V

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature: $-40^{\circ}C \leq T_A \leq +105^{\circ}C$ (TPS22965N-Q1, TPS22965-Q1), $-40^{\circ}C \leq T_A \leq +125^{\circ}C$ (TPS22965NW-Q1, TPS22965W-Q1). Typical values are for $T_A = 25^{\circ}C$.

	PARAMETER	TEST CONDITIONS		T _A	MIN TYP	MAX	UNIT	
POWER SU	UPPLIES AND CURRENTS							
1. 1/	V guiocoant ourront	I _{OUT} = 0 mA,		–40°C to +105°C	20	30		
$I_Q V_{BIAS}$	V _{BIAS} quiescent current	$V_{IN} = V_{ON} = V_{BIAS}$	s = 2.5 V	-40°C to 125°C	20	30	μA	
1 1/	V obutdown ourroat		0.14	–40°C to +105°C		2		
I _{SD} V _{BIAS} V _{BIAS} shutdown current		V _{ON} = GND, V _{OUT} = 0 V		–40°C to 125°C		2	μA	
			V _{IN} = 2.5 V	–40°C to +105°C	0.01	3		
			$v_{\rm IN} = 2.5 v$	-40°C to 125°C		13	l	
			V _{IN} = 1.8 V	–40°C to +105°C	0.01	2		
1 1/	V off state supply surrent	V _{ON} = GND, V _{OUT} = 0 V		–40°C to 125°C		6		
$I_{SD} V_{IN}$	V _{IN} off-state supply current		V 10V	–40°C to +105°C	0.005	2	μA	
			V _{IN} = 1.2 V	–40°C to 125°C		6	l	
			V 0.9.V	–40°C to +105°C	0.003	1	l	
		V _{IN} = 0.8 V		-40°C to 125°C		4	l	
1	ON nin input lookage ourrent			–40°C to +105°C		0.5		
I _{ON}	ON pin input leakage current	$V_{ON} = 5.5 V$		–40°C to +125°C		0.5	μA	

Electrical Characteristics—V_{BIAS} = 2.5 V (continued)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature: $-40^{\circ}C \le T_A \le +105^{\circ}C$ (TPS22965N-Q1, TPS22965-Q1), $-40^{\circ}C \le T_A \le +125^{\circ}C$ (TPS22965NW-Q1, TPS22965W-Q1). Typical values are for $T_A = 25^{\circ}C$.

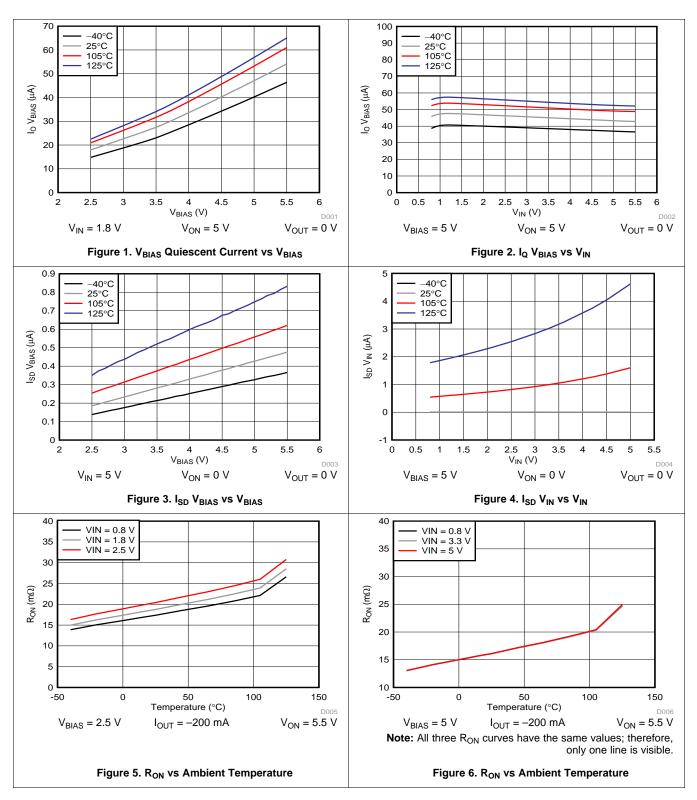
	PARAMETER	TEST CONDITIONS		T _A	MIN	TYP	MAX	UNIT
RESISTA	NCE CHARACTERISTICS							
				25°C		20	26	
			N 05.V	–40°C to +105°C 965N-Q1, 965-Q1			28	
			V _{IN} = 2.5 V	-40°C to 105°C 965NW-Q1, 965W-Q1			32	mΩ
				-40°C to +125°C			34	l
				25°C		19	26	
				–40°C to +105°C 965N-Q1, 965-Q1			28	
		I _{OUT} = -200 mA, V _{BIAS} = 2.5 V	V _{IN} = 1.8 V	-40°C to +105°C 965NW-Q1, 965W-Q1			30	mΩ
				-40°C to +125°C			32	l
			V _{IN} = 1.5 V	25°C		18	25	
				–40°C to +105°C 965N-Q1, 965-Q1			27	mΩ
R _{ON}	ON-state resistance			-40°C to +105°C 965NW-Q1/965W-Q1			29	
				-40°C to +125°C			31	l
				25°C		18	25	
		964	–40°C to +105°C 965N-Q1, 965-Q1			27		
			V _{IN} = 1.2 V	-40°C to +105°C 965NW-Q1, 965W-Q1			28	mΩ
				-40°C to +125°C			30	1
				25°C		17	25	
			V 0.0.V	–40°C to +105°C 965N-Q1, 965-Q1			27	
			V _{IN} = 0.8 V	-40°C to +105°C 965NW-Q1, 965W-Q1			28	mΩ
				–40°C to +125°C			30	I
R _{PD} ⁽¹⁾				–40°C to +105°C		275	325	0
RPD	Output pulldown resistance	V_{IN} = 2.5 V, V_{ON} =	υ ν, ι _{ουτ} = 1 mA	-40°C to +125°C		275	330	Ω

(1) TPS22965-Q1 and TPS22965W-Q1 only

7.7 Switching Characteristics

Over operating free-air temperature range (unless otherwise noted). These switching characteristics are only valid for the power-up sequence where VIN and VBIAS are already in steady state condition before the ON pin is asserted high.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX UNI
V _{IN} = V	/ _{ON} = V _{BIAS} = 5 V, T _A = 25	⁰C (unless otherwise noted)		
t _{ON}	Turnon time	$R_1 = 10 \Omega, C_1 = 0.1 \mu F, C_T = 1000 pF, C_{IN} = 1 \mu F$	1600	μs
t _{OFF}	Turnoff time	$R_{L} = 10 \Omega, C_{L} = 0.1 \mu F, C_{T} = 1000 pF, C_{IN} = 1 \mu F$	9	μs
t _R	V _{OUT} rise time	R_{L} = 10 Ω,C_{L} = 0.1 \muF,C_{T} = 1000 pF, C_{IN} = 1 μF	1985	μs
t _F	V _{OUT} fall time	R_{L} = 10 Ω,C_{L} = 0.1 \muF,C_{T} = 1000 pF, C_{IN} = 1 μF	3	μs
t _D	ON delay time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	660	μs
$V_{IN} = 0$	0.8 V, V _{ON} = V _{BIAS} = 5 V, T	A = 25°C (unless otherwise noted)		
t _{ON}	Turnon time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	730	μs
t _{OFF}	Turnoff time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	100	μs
t _R	V _{OUT} rise time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	380	μs
t _F	V _{OUT} fall time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	8	μs
t _D	ON delay time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	560	μs
$V_{IN} = 2$	2.5 V, V _{ON} = 5 V, V _{BIAS} = 2	.5 V, T _A = 25°C (unless otherwise noted)		
t _{ON}	Turnon time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	2435	μs
t _{OFF}	Turnoff time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	9	μs
t _R	V _{OUT} rise time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	2515	μs
t _F	V _{OUT} fall time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	4	μs
t _D	ON delay time	R_{L} = 10 Ω,C_{L} = 0.1 \muF,C_{T} = 1000 pF, C_{IN} = 1 μF	1230	μs
$V_{IN} = 0$	0.8 V, V _{ON} = 5 V, V _{BIAS} = 2	.5 V, T _A = 25°C (unless otherwise noted)		
t _{ON}	Turnon time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	1565	μs
t _{OFF}	Turnoff time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	70	μs
t _R	V _{OUT} rise time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	930	μs
t _F	V _{OUT} fall time	R_L = 10 Ω,C_L = 0.1 $\mu F,C_T$ = 1000 pF, C_{IN} = 1 μF	8	μs
t _D	ON delay time	R_L = 10 Ω, C_L = 0.1 μF, C_T = 1000 pF, C_{IN} = 1 μF	1110	μs

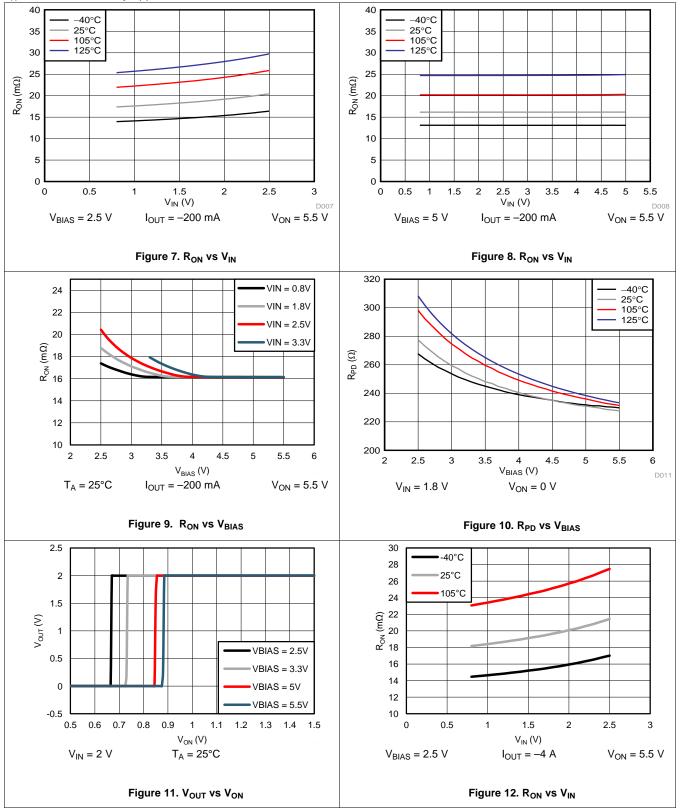

TPS22965-Q1 SLVSCI3C – APRIL 2014–REVISED SEPTEMBER 2016

www.ti.com

7.8 Typical Characteristics

7.8.1 Typical DC Characteristics

 $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.

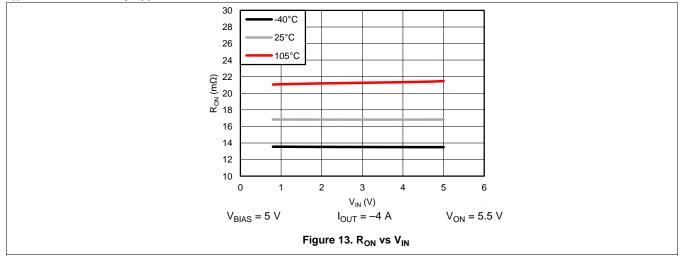


TPS22965-Q1 SLVSCI3C – APRIL 2014–REVISED SEPTEMBER 2016

www.ti.com

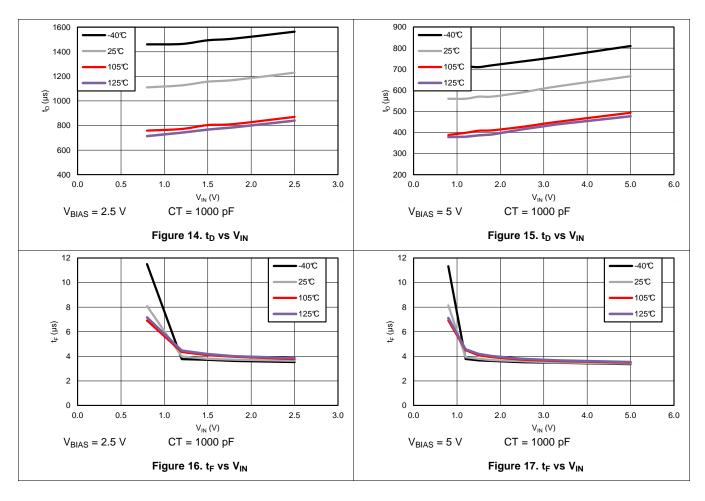
Typical DC Characteristics (continued)

T_A = 125°C data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.



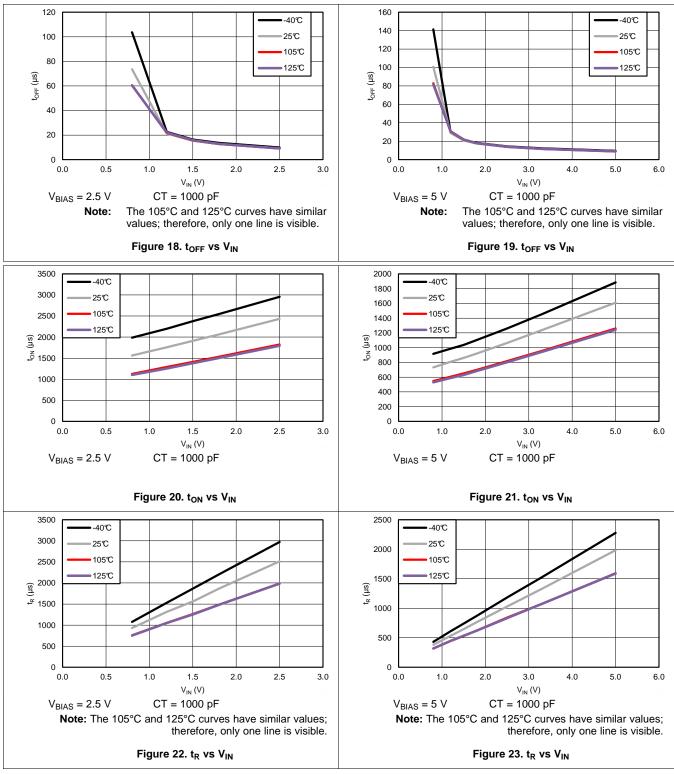
NSTRUMENTS

Texas

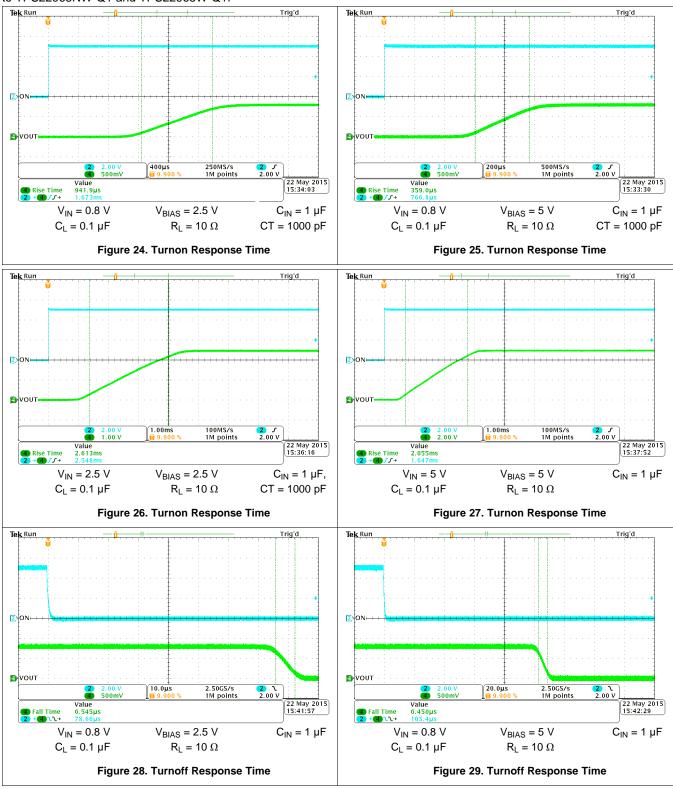

Typical DC Characteristics (continued)

 $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.

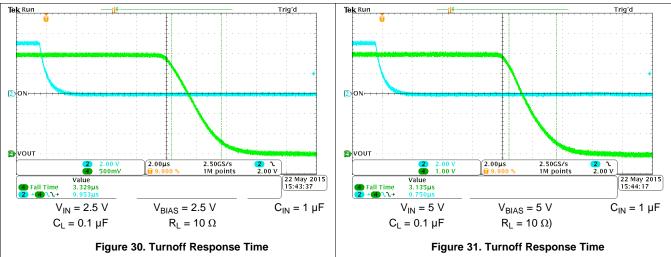
7.8.2 Typical Switching Characteristics

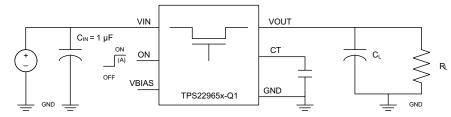

 $T_A = 25^{\circ}C$, $C_T = 1000 \text{ pF}$, $C_{IN} = 1 \text{ }\mu\text{F}$, $C_L = 0.1 \text{ }\mu\text{F}$, $R_L = 10 \Omega$ (unless otherwise specified). $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.

Typical Switching Characteristics (continued)


 $T_A = 25^{\circ}C$, $C_T = 1000 \text{ pF}$, $C_{IN} = 1 \text{ }\mu\text{F}$, $C_L = 0.1 \text{ }\mu\text{F}$, $R_L = 10 \Omega$ (unless otherwise specified). $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.

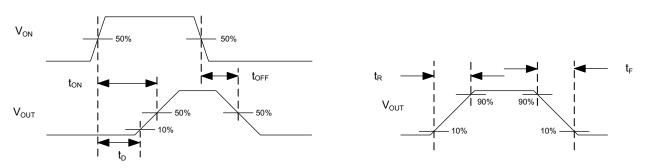
Typical Switching Characteristics (continued)

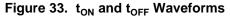

 $T_A = 25^{\circ}C$, $C_T = 1000 \text{ pF}$, $C_{IN} = 1 \text{ }\mu\text{F}$, $C_L = 0.1 \text{ }\mu\text{F}$, $R_L = 10 \Omega$ (unless otherwise specified). $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.



Typical Switching Characteristics (continued)

 $T_A = 25^{\circ}C$, $C_T = 1000 \text{ pF}$, $C_{IN} = 1 \text{ }\mu\text{F}$, $C_L = 0.1 \text{ }\mu\text{F}$, $R_L = 10 \Omega$ (unless otherwise specified). $T_A = 125^{\circ}C$ data is only applicable to TPS22965NW-Q1 and TPS22965W-Q1.

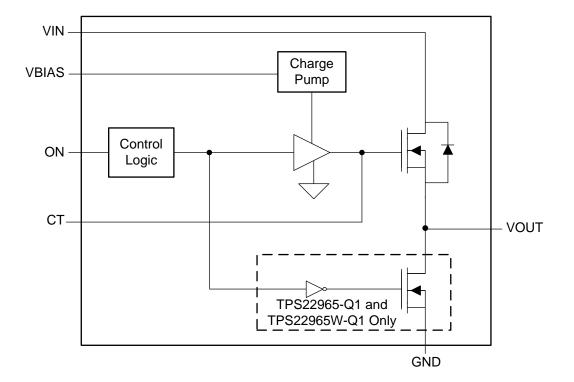



8 Parameter Measurement Information

A. Rise and fall times of the control signal are 100 ns.

TEXAS INSTRUMENTS

www.ti.com


9 Detailed Description

9.1 Overview

The TPS22965x-Q1 is a single channel, 4-A load switch in an 8-pin WSON package. To reduce the voltage drop in high current rails, the device implements an ultra-low resistance N-channel MOSFET. The device has a programmable slew rate for applications that require specific rise-time.

The device has very low leakage current during off state. This prevents downstream circuits from pulling high standby current from the supply. Integrated control logic, driver, power supply, and output discharge FET eliminates the need for any external components, which reduces solution size and BOM count.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Adjustable Rise Time

(1)

A capacitor to GND on the CT pin sets the slew rate. The voltage on the CT pin can be as high as 12 V. Therefore, the minimum voltage rating for the CT cap must be 25 V for optimal performance. An approximate formula for the relationship between CT and slew rate when V_{BIAS} is set to 5 V is shown in Equation 1. This equation accounts for 10% to 90% measurement on V_{OUT} and does **NOT** apply for CT = 0 pF. Use Table 1 to determine rise times for when CT = 0 pF.

 $SR = 0.38 \times CT + 34$

where

- SR = slew rate (in μ s/V)
- CT = the capacitance value on the CT pin (in pF)
- The units for the constant 34 are μ s/V. The units for the constant 0.38 are μ s/(V × pF).

Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values measured on a typical device. The rise times listed in Table 1 are only valid for the power-up sequence where V_{IN} and V_{BIAS} are already in steady state condition before the ON pin is asserted high.

	RISE TIME (µs) 10% - 90%, C _L = 0.1 µF, C _{IN} = 1 µF, R _L = 10 Ω , V _{BIAS} = 5 V ⁽¹⁾											
CT (pF)	VIN = 5 V	VIN = 3.3 V	VIN = 1.8 V	VIN = 1.5 V	VIN = 1.2 V	VIN = 1.05 V	VIN = 0.8 V					
0	180	136	94	84	74	70	60					
220	547	378	232	202	173	157	129					
470	962	654	386	333	282	252	206					
1000	1983	1330	765	647	533	476	382					
2200	4013	2693	1537	1310	1077	959	766					
4700	8207	5490	3137	2693	2200	1970	1590					
10000	17700	11767	6697	5683	4657	4151	3350					

Table 1. Rise Time vs CT Capacitor

(1) Typical Values at 25°C with a 25-V X7R 10% Ceramic Capacitor on CT

9.3.2 Quick Output Discharge (TPS22965-Q1 and TPS22965W-Q1 Only)

The TPS22965-Q1 and TPS22965W-Q1 include a Quick Output Discharge (QOD) feature. When the switch is disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical value of 225 Ω and prevents the output from floating while the switch is disabled.

9.3.3 Low Power Consumption During Off State

The I_{SD} V_{IN} supply current is 0.01 μ A typical at 1.8 V VIN. Typically, the downstream loads must have a significantly higher off-state leakage current. The load switch allows system standby power consumption to be reduced.

9.4 Device Functional Modes

Table 2 lists the VOUT pin state as determined by the ON pin.

Table 2. Functional Table										
ON	TPS22965N-Q1 AND TPS22965NW-Q1	TPS22965-Q1 AND TPS22965W- Q1								
L	Open	GND								
Н	VIN	VIN								

Table 2. Functional Table

IEXAS INSTRUMENTS

www.ti.com

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

This section highlights some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com for further aid.

10.1.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the V_{IN} and V_{BIAS} conditions of the device. Refer to the R_{ON} specification of the device in the *Electrical Characteristics*—V_{BIAS} = 2.5 V table of this datasheet. Once the R_{ON} of the device is determined based upon the V_{IN} and V_{BIAS} conditions, use Equation 2 to calculate the VIN to VOUT voltage drop.

 $\Delta V = I_{LOAD} \times R_{ON}$

where

- ΔV = voltage drop from VIN to VOUT
- I_{LOAD} = load current
- R_{ON} = On-resistance of the device for a specific V_{IN} and V_{BIAS} combination

(2)

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

10.1.2 On and Off Control

The ON pin controls the state of the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic thresholds. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be driven either high or low for proper functionality.

10.1.3 Input Capacitor (Optional)

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1- μ F ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current applications. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

10.1.4 Output Capacitor (Optional)

Due to the integrated body diode in the NMOS switch, a $C_{I N}$ greater than C_{L} is highly recommended. A C_{L} greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . A C_{IN} to C_{L} ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup; however, a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more V_{IN} dip upon turn-on due to inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a longer rise time (see the *Adjustable Rise Time* section).

10.1.5 V_{IN} and V_{BIAS} Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \le V_{BIAS}$. The device is still functional if $V_{IN} > V_{BIAS}$ but it exhibits R_{ON} greater than what is listed in the *Electrical Characteristics*— $V_{BIAS} = 2.5 V$ table. See Figure 34 for an example of a typical device. Notice the increasing R_{ON} as V_{IN} exceeds V_{BIAS} voltage. Be sure to never exceed the maximum voltage rating for V_{IN} and V_{BIAS} .

Application Information (continued)

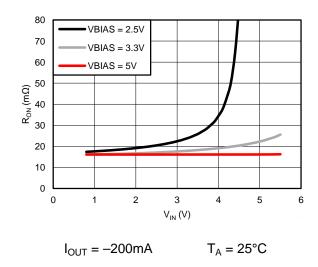
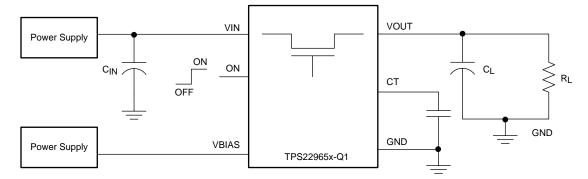



Figure 34. R_{ON} vs. V_{IN} ($V_{IN} > V_{BIAS}$)

10.2 Typical Application

This application demonstrates how the TPS22965x-Q1 can be used to power downstream modules.

10.2.1 Design Requirements

Use the values listed in Table 3 as the design parameters.

Table 3. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
V _{IN}	3.3 V
V _{BIAS}	5 V
CL	22 µF
Maximum Acceptable Inrush Current	400 mA

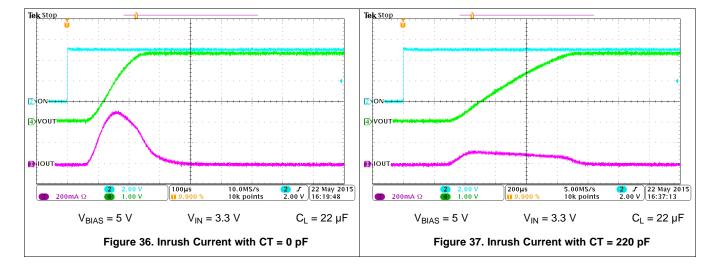
10.2.2 Detailed Design Procedure

10.2.2.1 Inrush Current

When the switch is enabled, the output capacitors must be charged up from 0-V to the set value (3.3 V in this example). This charge arrives in the form of inrush current. Inrush current can be calculated using Equation 3.

Inrush Current = $C \times dV/dt$

where


- C = output capacitance
- dV = output voltage
- dt = rise time

The TPS22965x-Q1 offers adjustable rise time for VOUT. This feature allows the user to control the inrush current during turn-on. The appropriate rise time can be calculated using the design requirements and the inrush current equation. See Equation 4 and Equation 5.

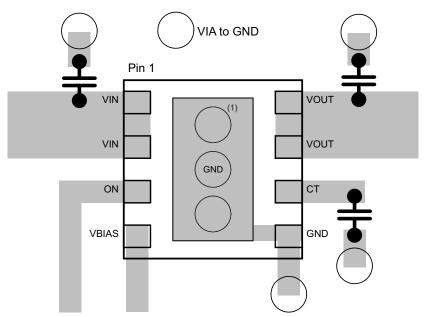
400 mA = 22
$$\mu$$
F × 3.3 V / dt (4)
dt = 181.5 μ s (5)

To ensure an inrush current of less than 400 mA, choose a CT value that yields a rise time of more than 181.5µs. See the oscilloscope captures in the *Application Curves* section for an example of how the CT capacitor can be used to reduce inrush current.

10.2.3 Application Curves

(3)

11 Power Supply Recommendations


The device is designed to operate from a VBIAS range of 2.5 V to 5.5 V and a VIN range of 0.8 V to VBIAS.

12 Layout

12.1 Layout Guidelines

For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance. The CT trace must be as short as possible to avoid parasitic capacitance.

12.2 Layout Example

(1) Thermal relief vias. Thermal relief vias connected to the exposed thermal pad

Figure 38. Layout Recommendation

12.3 Thermal Consideration

The maximum IC junction temperature must be restricted to 150°C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, use Equation 6 as a guideline.

$$P_{D(max)} = \frac{T_{J(max)} - T_{A}}{\theta_{JA}}$$

where

- P_{D(max)} = maximum allowable power dissipation
- $T_{J(max)}$ = maximum allowable junction temperature (150°C for the TPS22965x-Q1)
- T_A = ambient temperature of the device
- Θ_{JA} = junction to air thermal impedance. See the *Thermal Information* table. This parameter is highly dependent upon board layout

Refer to Figure 38, notice the thermal vias located under the exposed thermal pad of the device. This allows for thermal diffusion away from the device.

(6)

TEXAS INSTRUMENTS

www.ti.com

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation see the following:

- Load Switches: What Are They, Why Do You Need Them And How Do You Choose The Right One?
- Load Switch Thermal Considerations
- Managing Inrush Current
- TPS22965WDSGQ1EVM 5.7-V, 4-A, 16-mΩ On-Resistance Load Switch

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

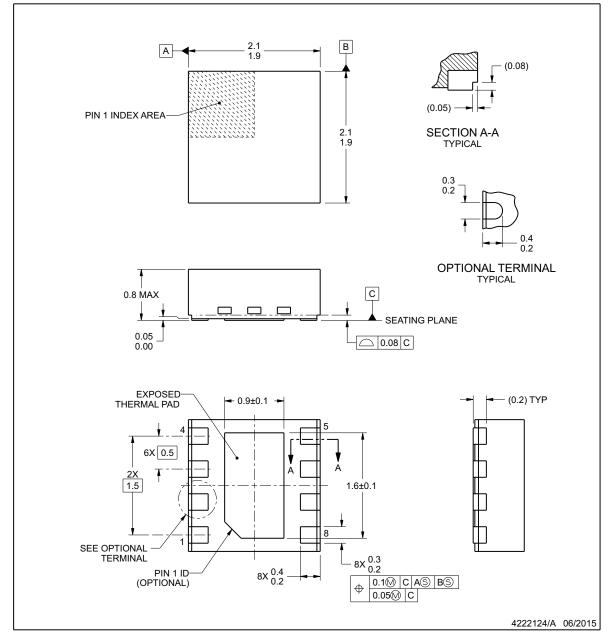
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.


14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

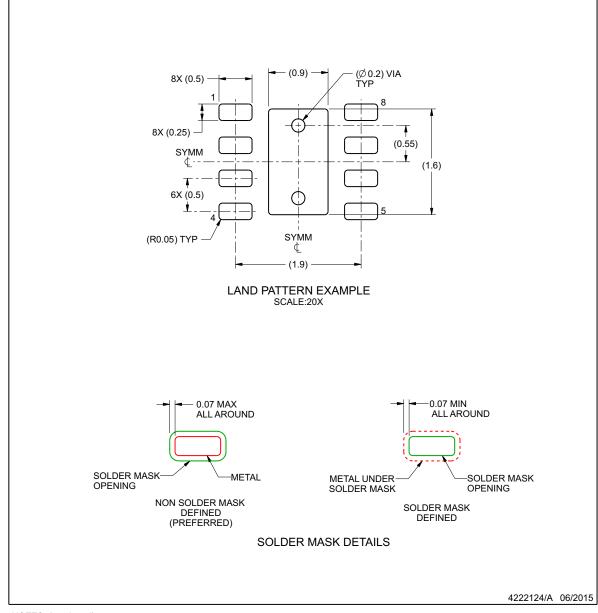
NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

DSG0008B

www.ti.com

DSG0008B



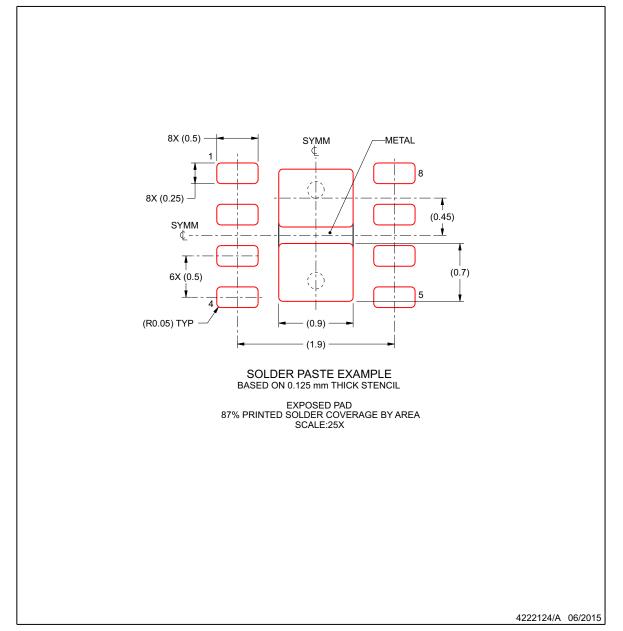
www.ti.com

EXAMPLE BOARD LAYOUT

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)


 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

www.ti.com

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com

DSG0008B

23-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22965NQWDSGRQ1	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	11B	Samples
TPS22965NQWDSGTQ1	ACTIVE	WSON	DSG	8	250	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	11B	Samples
TPS22965NTDSGRQ1	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	ZDXI	Samples
TPS22965NTDSGTQ1	PREVIEW	WSON	DSG	8	250	TBD	Call TI	Call TI	-40 to 105		
TPS22965QWDSGRQ1	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	11A	Samples
TPS22965QWDSGTQ1	ACTIVE	WSON	DSG	8	250	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	11A	Samples
TPS22965TDSGRQ1	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	ZYE	Samples
TPS22965TDSGTQ1	ACTIVE	WSON	DSG	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	ZYE	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

23-Sep-2016

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

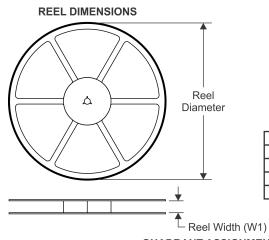
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

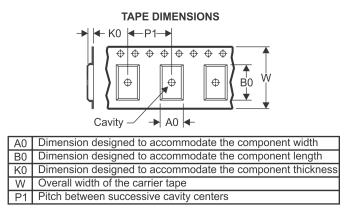
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS22965-Q1 :

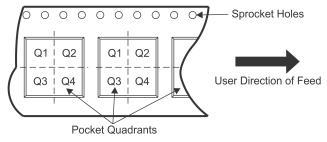
Catalog: TPS22965

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

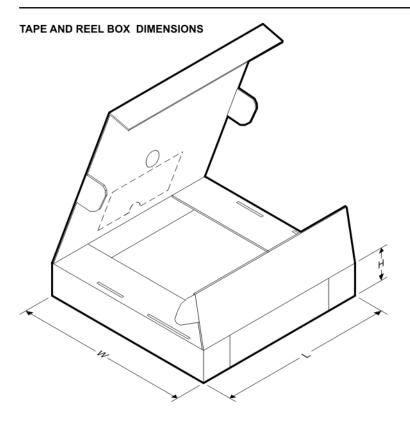

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

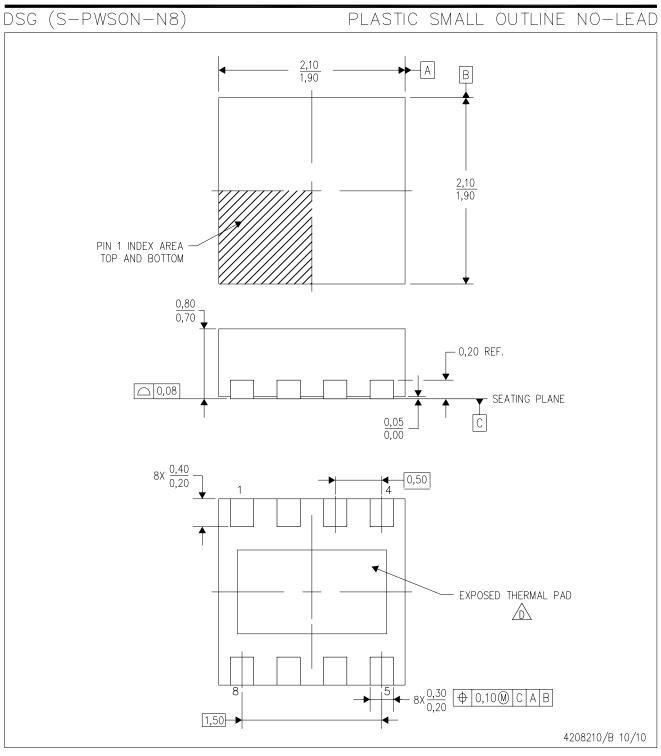
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22965NQWDSGRQ1	WSON	DSG	8	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS22965NQWDSGTQ1	WSON	DSG	8	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS22965NTDSGRQ1	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS22965QWDSGRQ1	WSON	DSG	8	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS22965QWDSGTQ1	WSON	DSG	8	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS22965TDSGRQ1	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS22965TDSGTQ1	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


23-Sep-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22965NQWDSGRQ1	WSON	DSG	8	3000	195.0	200.0	45.0
TPS22965NQWDSGTQ1	WSON	DSG	8	250	195.0	200.0	45.0
TPS22965NTDSGRQ1	WSON	DSG	8	3000	210.0	185.0	35.0
TPS22965QWDSGRQ1	WSON	DSG	8	3000	195.0	200.0	45.0
TPS22965QWDSGTQ1	WSON	DSG	8	250	195.0	200.0	45.0
TPS22965TDSGRQ1	WSON	DSG	8	3000	210.0	185.0	35.0
TPS22965TDSGTQ1	WSON	DSG	8	250	210.0	185.0	35.0

MECHANICAL DATA

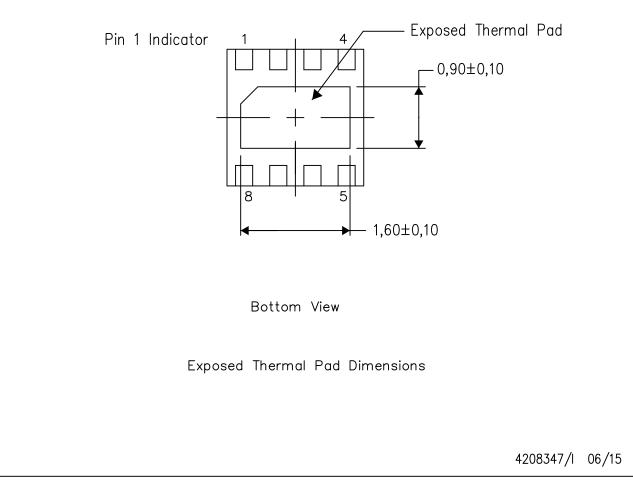
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Falls within JEDEC MO-229.

DSG (S-PWSON-N8)

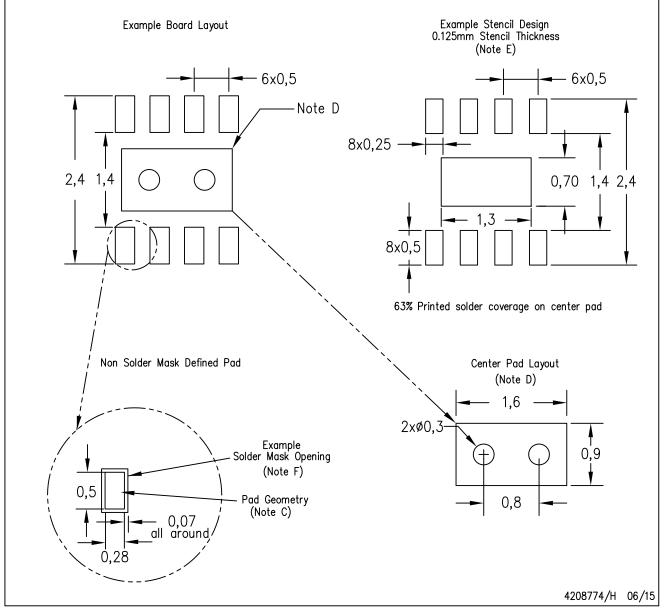

PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

DSG (S-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated