

www.ti.com SLLS950-SEPTEMBER 2008

3-V To 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

FEATURES

- Qualified for Automotive Applications
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- · Operates up to 250 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply

PW PACKAGE (TOP VIEW) 20 TORCEOFF 19 V_{CC} C1+||2 V+**∏**3 18 ∏ GND C1- ∏4 17 DOUT1 16 RIN1 C2+ ¶ 5 C2- [6 15 ROUT1 V- **∏** 7 14 ∏ FORCEON 13 DIN1 DOUT2 ¶8 12 DIN2 RIN2 ¶ 9 11 NVALID ROUT2 10

DESCRIPTION/ORDERING INFORMATION

The TRS3223 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew rate.

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low and \overline{EN} is high, both drivers and receivers are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes auto-powerdown to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than –2.7 V, or has been between –0.3 V and 0.3 V for less than 30 μ s. INVALID is low (invalid data) if the receiver input voltage is between –0.3 V and 0.3 V for more than 30 μ s. See Figure 4 for receiver input levels.

ORDERING INFORMATION(1)

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	TSSOP – PW	Reel of 2000	TRS3223QPWRQ1	T3223

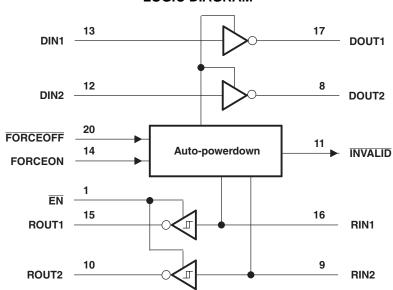
⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DRIVER FUNCTION TABLE (EACH DRIVER)(1)

	II	NPUTS		OUTPUT			
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS		
Х	X	L	X	Z	Powered off		
L	Н	Н	X	Н	Normal appration with outs powerdown dischlad		
Н	Н	Н	Х	L	Normal operation with auto-powerdown disabled		
L	L	Н	Yes	Н	Normal aparation with auto powardown applied		
Н	L	Н	Yes	L	Normal operation with auto-powerdown enabled		
L	L	Н	No	Z	Dowered off by outo newordown feature		
Н	L	Н	No	Z	Powered off by auto-powerdown feature		


(1) H = high level, L = low level, X = irrelevant, Z = high impedance

RECEIVER FUNCTION TABLE (EACH RECEIVER)(1)

	INPUTS	OUTPUT	
RIN	EN	VALID RIN RS-232 LEVEL	ROUT
L	L	X	Н
Н	L	Х	L
Х	Н	X	Z
Open	L	No	Н

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

LOGIC DIAGRAM

SLLS950-SEPTEMBER 2008 www.ti.com

ABSOLUTE MAXIMUM RATINGS(1)(2)

over operating free-air temperature range (unless otherwise noted)

V _{CC}	Supply voltage range		-0.3 V to 6 V
V+	Positive output supply voltage range	Positive output supply voltage range	
V-	Negative output supply voltage range	Negative output supply voltage range	
V+ - V-	Supply voltage difference	Supply voltage difference	
	lanut valtaga ranga	Driver, FORCEOFF, FORCEON, EN	-0.3 V to 6 V
VI	Input voltage range	Receiver	−25 V to 25 V
	Output valtage repre	Driver	-13.2 V to 13.2 V
Vo	Output voltage range	Receiver, INVALID	-0.3 V to V _{CC} + 0.3 V
θ_{JA}	Package thermal impedance ⁽³⁾		83°C/W
TJ	Operating virtual-junction temperature		150°C
T _{stg}	Storage temperature range		−65°C to 150°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1)

see Figure 6

				MIN	NOM	MAX	UNIT
V	Supply voltogo	Complement		3	3.3	3.6	V
V _{CC}	Supply voltage		V _{CC} = 5 V	4.5	5	5.5	V
V	V High lovel input valtage	Driver and control,	V _{CC} = 3.3 V	2			V
V_{IH}	High-level input voltage	DIN, EN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			V
V_{IL}	Low-level input voltage	Driver and control, DIN, EN, FORCEOFF	, FORCEON			8.0	V
\/	Innut voltoge	Driver and control, DIN, EN, FORCEOFF	, FORCEON	0		5.5	٧
VI	Input voltage	Receiver		-25		25	V
T _A	Operating free-air temperature			-40		125	°C

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

ELECTRICAL CHARACTERISTICS(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAM	ETER	TES	ST CONDITIONS	MIN TYP(2)	MAX	UNIT
I _I Input leakage cui		rrent	EN, FORCEOFF, FO	EN, FORCEOFF, FORCEON		±1	μΑ
		Auto-powerdown disabled		No load, FORCEOFF and FORCEON at V _{CC}	0.3	2	mA
Icc	Supply current	Powered off	$V_{CC} = 3.3 \text{ V or 5 V},$	No load, FORCEOFF at GND	1	20	
100	Supply current Auto-powerdown enabled Supply current $V_{CC} = 3.3 \text{ Vol 5 V}, T_{A} = 25^{\circ}\text{C}$	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded	1	20	μΑ		

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

All voltages are with respect to network GND.

The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION ELECTRICAL CHARACTERISTICS(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TE	ST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GN	DOUT at $R_L = 3 \text{ k}\Omega$ to GND		5.4		V
V_{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GN	DOUT at $R_L = 3 \text{ k}\Omega$ to GND		-5.4		V
I_{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I _{IL}	Low-level input current	$V_I = GND$	V _I = GND		±0.01	±1	μΑ
	Short-circuit output current ⁽³⁾	$V_{CC} = 3.6 \text{ V}, V_{O} = 0 \text{ V}$			±35	±60	mΑ
los	Short-circuit output current	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V}$			±35	±60	IIIA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, V	' _O = ±2 V	300	10M		Ω
	Output leakage current FORCEOFF = GND	$V_{O} = \pm 12 \text{ V}, V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	^	
I _{off}		FORGEOFF = GND	$V_{O} = \pm 10 \text{ V}, V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$			±25	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

DRIVER SECTION SWITCHING CHARACTERISTICS(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDI	ITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$C_L = 1000 \text{ pF}$, One DOUT switching, $R_L = 3 \text{ k}\Omega$ (see Figure 1)		250			kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C_L = 150 pF to 2500 pF, R_L = 3 k Ω to 7 k Ω (see Figure 2)			100		ns
CD/tr)	Slew rate, transition region	$V_{CC} = 3.3 \text{ V}, R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$	C _L = 150 pF to 1000 pF	6		30	V/us
SR(tr)	(see Figure 1)	$v_{CC} = 3.3 \text{ v}, R_L = 3 \text{ k}\Omega \text{ to 7 k}\Omega$	C _L = 150 pF to 2500 pF	4		30	V/μS

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.

Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

www.ti.com SLLS950-SEPTEMBER 2008

RECEIVER SECTION ELECTRICAL CHARACTERISTICS(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	$V_{CC} - 0.1$		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	٧
V	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	9 2.4	V
V _{IT+}	Fositive-going input tilleshold voltage	V _{CC} = 5 V		1.9		V
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT}	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.4		V
V_{hys}	Input hysteresis (V _{IT+} – V _{IT} –)			0.5		V
I _{off}	Output leakage current	EN = V _{CC}		±0.05	±10	μΑ
ri	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	8.3	kΩ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

RECEIVER SECTION SWITCHING CHARACTERISTICS(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low-level to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high-level to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

SLLS950-SEPTEMBER 2008 www.ti.com

AUTO-POWERDOWN SECTION ELECTRICAL CHARACTERISTICS

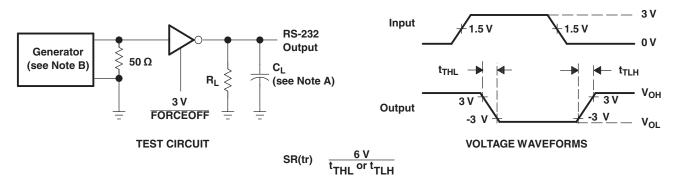
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1$ mA, FORCEON = GND, FORCEOFF = V_{CC}	V _{CC} - 0.6		V
V_{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, $\overline{FORCEOFF}$ = V_{CC}		0.4	V

AUTO-POWERDOWN SECTION SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs


⁽¹⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

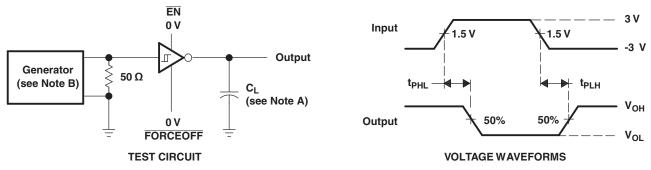
Submit Documentation Feedback

www.ti.com SLLS950-SEPTEMBER 2008

PARAMETER MEASUREMENT INFORMATION

A.C_L includes probe and jig capacitance.

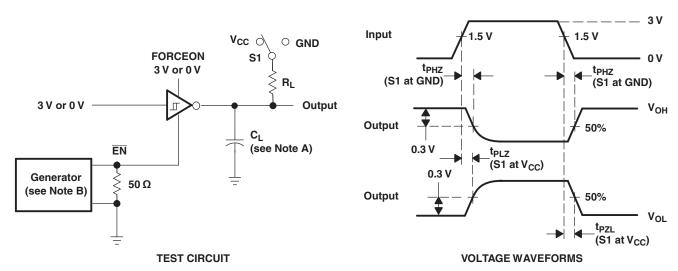
B.The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_i \le 10$ ns. $t_i \le 10$ ns.


Figure 1. Driver Slew Rate

A.C_L includes probe and jig capacitance.

B.The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_i \le 10$ ns.

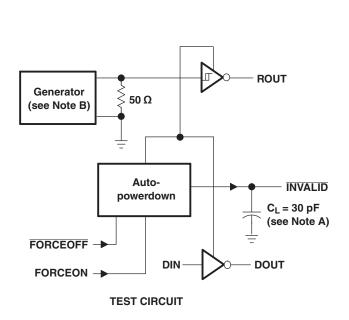
Figure 2. Driver Pulse Skew

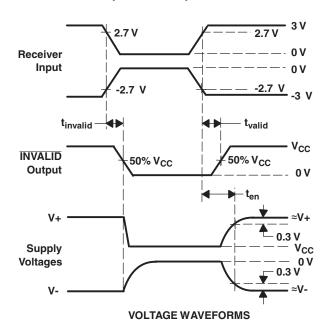

A.C_L includes probe and jig capacitance.

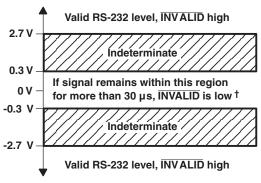
B.The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION (continued)


A.C_L includes probe and jig capacitance.


B.The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.


Figure 4. Receiver Enable and Disable Times

www.ti.com SLLS950-SEPTEMBER 2008

PARAMETER MEASUREMENT INFORMATION (continued)

 $^{^{\}dagger}$ Auto-powerdown disables drivers and reduces supply current to 1 $\mu A.$

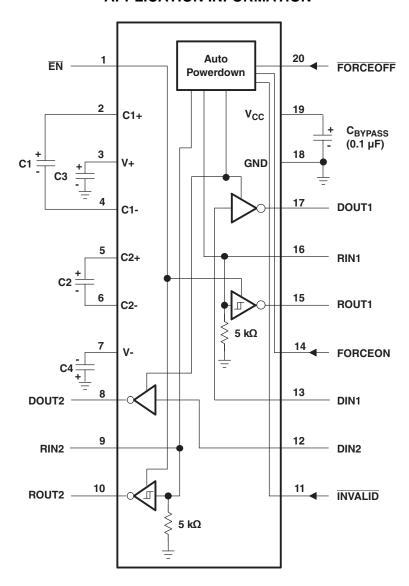

B.The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns.

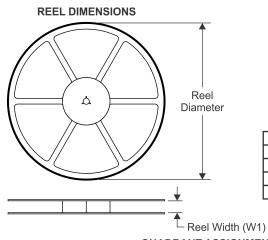
Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

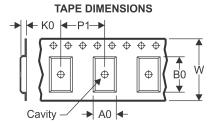
A.C_L includes probe and jig capacitance.

APPLICATION INFORMATION

- A.C3 can be connected to $V_{\mbox{\footnotesize CC}}$ or GND.
- B.Resistor values shown are nominal.
- C.Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

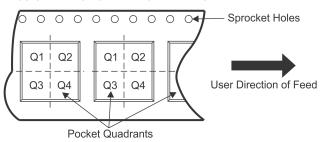
V_{CC} vs CAPACITOR VALUES


V _{CC}	C1	C2, C3, C4
3.3 V ± 0. 5 V ± 0.5 3 V to 5.5	V 0.047	μF 0.33 μF


Figure 6. Typical Operating Circuit and Capacitor Values

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Sep-2013


TAPE AND REEL INFORMATION

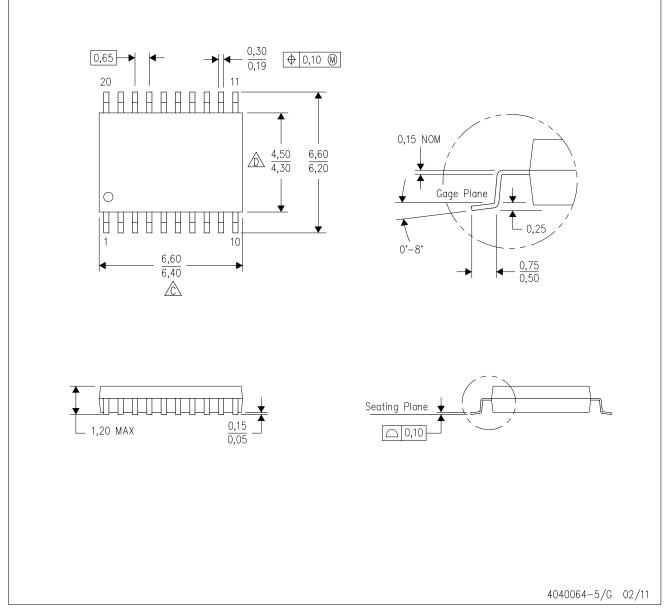
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3223QPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 12-Sep-2013

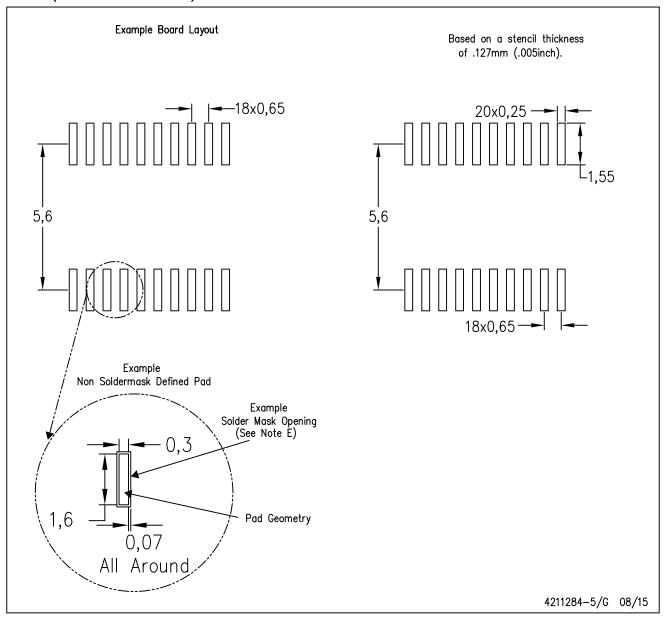


*All dimensions are nominal

Device	Package Type	Package Drawing	ng Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TRS3223QPWRQ1	TSSOP	PW	20	2000	367.0	367.0	38.0	

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity