

FEATURES

- Single-Chip and Single-Supply Interface for Two IBM PC/AT Serial Ports
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Always-Active Noninverting Receiver Output (ROUT2) Per Port
- Operates Up To 250 kbit/s
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . 4 × 0.22 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Allows for Flexible Power Down of Either Serial Port
- Serial-Mouse Driveability
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)

APPLICATIONS

- Battery-Powered Systems
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION/ORDERING INFORMATION

The TRSF23243 consists of two ports, each containing three line drivers and five line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). This device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for two typical serial ports used in an IBM PC/AT, or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, this device includes an always-active noninverting output (ROUT2) per port, which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew-rate.

ORDERING INFORMATION

T _A	PACE	KAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DL	Tube of 25	TRSF23243CDL	TRSF23243C
0°C to 70°C	330P - DL	Reel of 1000	TRSF23243CDLR	
	TSSOP - DGG	Reel of 2000	TRSF23243CDGGR	TRSF23243C
	SSOP – DI	Tube of 25	TRSF23243IDL	TD0F000401
–40°C to 85°C	550P – DL	Reel of 1000	TRSF23243IDLR	TRSF23243I
	TSSOP - DGG	Reel of 2000	TRSF23243IDGGR	TRSF23243I

⁽¹⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Flexible control options for power management are available when either or both serial ports are inactive. The auto-powerdown feature functions when FORCEON is low and $\overline{\text{FORCEOFF}}$ is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs of its respective port are disabled. If $\overline{\text{FORCEOFF}}$ is set low, both drivers and receivers (except $\overline{\text{ROUT2}}$) are shut off, and the supply current is reduced to 1 μA . Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and $\overline{\text{FORCEOFF}}$ are high and should be done when driving a serial mouse. With auto-powerdown enabled, the RS-232 port is activated automatically when a valid signal is applied to any respective receiver input. The $\overline{\text{INV}}$ output is used to notify the user if an RS-232 signal is present at any receiver input. $\overline{\text{INV}}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 μ s. Refer to Figure 5 for receiver input levels.

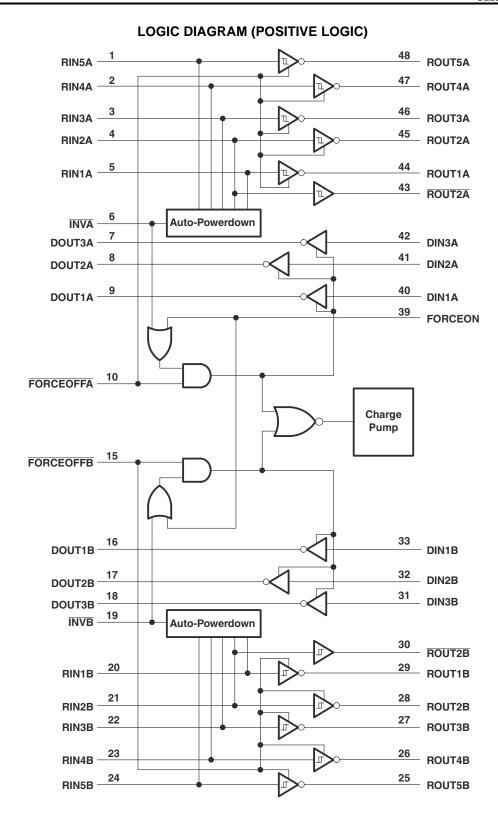
FUNCTION TABLES

Each Driver (1) (Each Port)

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Χ	L	X	Z	Powered off
L	Н	Н	X	Н	Normal operation with
Н	Н	Н	X	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
Н	L	Н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
Н	L	Н	No	Z	auto-powerdown feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

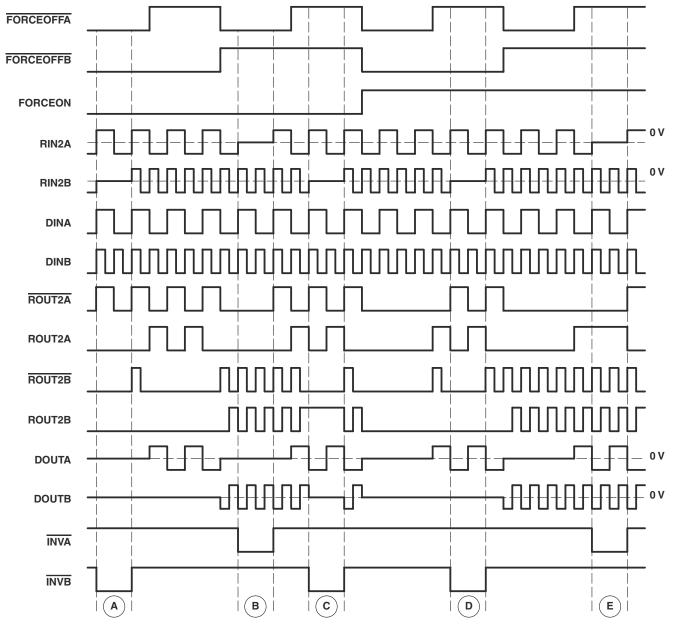
Each Receiver (1) (Each Port)


		INPUTS		OUTF	PUTS	
RIN2	RIN1, RIN3–RIN5	FORCEOFF	VALID RIN RS-232 LEVEL	ROUT2	ROUT	RECEIVER STATUS
L	X	L	X	L	Z	Powered off while
Н	X	L	X	Н	Z	ROUT2 is active
L	L	Н	Yes	L	Н	
L	Н	Н	Yes	L	L	Normal operation with
Н	L	Н	Yes	Н	Н	auto-powerdown
Н	Н	Н	Yes	Н	L	disabled/enabled
Open	Open	Н	No	L	Н	

(1) H = high level, L = low level, X = irrelevant,

Z = high impedance (off),

Open = input disconnected or connected driver off



Timing

Figure 1 shows how the two independent serial ports can be enabled or disabled. As shown by the logic states, depending on the FORCEOFF, FORCEON, and receiver input levels, either port can be powered down. Intermediate receiver input levels indicate a 0-V input. Also, it is assumed a pulldown resistor to ground is used for the receiver outputs. The INV pin goes low when its respective receiver input does not supply a valid RS-232 level. For simplicity, voltage levels, timing differences, and input/output edge rates are not shown.

- A. Ports A and B manually powered off.
- B. Port A manually powered off, port B in normal operation with auto-powerdown enabled.
- C. Port B powered off by auto-powerdown, port A in normal operation with auto-powerdown enabled.
- D. Port A in normal operation with auto-powerdown disabled, port B manually powered off.
- E. Ports A and B in normal operation with auto-powerdown disabled

Figure 1. Timing Diagram

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾	ositive-output supply voltage range ⁽²⁾		7	V
V-	Negative-output supply voltage range ⁽²⁾	egative-output supply voltage range (2)		-7	V
V+ - V-	Supply voltage difference ⁽²⁾	ply voltage difference ⁽²⁾		13	V
\/	Input voltage range	Driver (FORCEOFF, FORCEON)	-0.3	6	V
V _I I		Receiver	-25	25	V
	Output voltage range	Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver (ĪNV)	-0.3	V _{CC} + 0.3	V
0	Package thermal impedance (3)(4)	DGG package		70	°C/W
θ_{JA}	Package thermal impedance (**/*)	DL package		63	-0/00
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND.

Recommended Operating Conditions⁽¹⁾

See Figure 7

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 \text{ V}$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	V
\/	Driver and control	DIN. FORCEOFF, FORCEON	$V_{CC} = 3.3 \text{ V}$	2			V
V _{IH}	high-level input voltage		$V_{CC} = 5 V$	2.4			V
V _{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON				0.8	V
\/	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage					25	V
_	Operating free cir temperature			0		70	°C
T _A	Operating free-air temperature		TRSF23243I	-40		85	30

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.3 V$; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 $V \pm 0.5 V$.

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PAF	RAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON at V _{CC}		0.6	2	mA
Icc	Supply current	Powered off	No load, FORCEOFF at GND		1	20	
	$(T_A = 25^{\circ}C)$	Auto-powerdown enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	20	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Maximum power dissipation is a function of T_J(max), θ_{JA} , and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND	5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND	-5	-5.4		V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 = V_{CC} , 3- $k\Omega$ to GND at DOUT3, DOUT1 = DOUT2 = -2.5 mA	±5			V
I _{IH}	High-level input current	$V_I = V_{CC}$		±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND		±0.01	±1	μA
	Short-circuit output	$V_{CC} = 3.6 \text{ V}$ $V_O = 0 \text{ V}$		±35	±60	mA
Ios	current ⁽³⁾	$V_{CC} = 5.5 \text{ V}$ $V_O = 0 \text{ V}$		±33	±60	ША
ro	Output resistance	V_{CC} , V+, and V- = 0 V, V_{O} = ± 2 V	300	10M		Ω
	Output looks as surrent	FORCEOFF = GND, $V_0 = \pm 12 \text{ V}, V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	
l _{OZ}	Output leakage current	$V_{O} = \pm 10 \text{ V}, \qquad V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			±25	μA

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	1	TEST CONDITIONS	MIN	TYP ⁽²⁾ MAX	UNIT
	Maximum data rate	$R_L = 3 \text{ k}\Omega,$ One DOUT switching	C _L = 1000 pF, See Figure 2	250		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF,	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, \text{ See Figure 2}$		100	ns
	Slew rate,	V _{CC} = 3.3 V,	C _L = 150 pF to 1000 pF	6	30	
SR(tr)	transition region (see Figure 2)	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$	C _L = 150 pF to 2500 pF	4	30	V/µs

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.3$ V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 $V \pm 0.5$ V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH}|$ of each channel of the same device.

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

RECEIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	$V_{CC} - 0.1$		٧
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
\/	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	V
V _{IT+}	Positive-going input tilleshold voltage	V _{CC} = 5 V		1.9	2.4	V
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT}	Negative-going input tilleshold voltage	V _{CC} = 5 V	0.8	1.4		V
V_{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
I _{OZ}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V	-	±0.05	±10	μA
r _l	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	$k\Omega$

⁽¹⁾ Test conditions are C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3)

	PARAMETER	TE	TEST CONDITIONS		
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF,	See Figure 4	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF,	See Figure 4	150	ns
t _{en}	Output enable time	C _L = 150 pF, See Figure 5	$R_L = 3 \text{ k}\Omega,$	200	ns
t _{dis}	Output disable time	C _L = 150 pF, See Figure 5	$R_L = 3 \text{ k}\Omega,$	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 4		50	ns

⁽¹⁾ Test conditions are C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH}|$ of each channel of the same device.

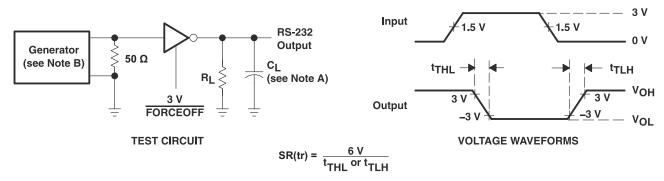
AUTO-POWERDOWN SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

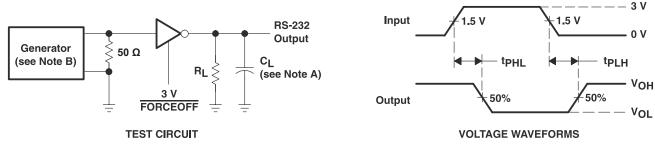
	PARAMETER	TEST (CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INV high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}		2.7	V
V _{T(valid)}	Receiver input threshold for INV high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INV low-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	NV high-level output voltage	I _{OH} = -1 mA, FORCEOFF = V _{CC}	FORCEON = GND,	V _{CC} - 0.6		V
V _{OL}	ĪN∇ low-level output voltage	I _{OL} = 1.6 mA, FORCEOFF = V _{CC}	FORCEON = GND,		0.4	V

Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

⁽¹⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.



PARAMETER MEASUREMENT INFORMATION

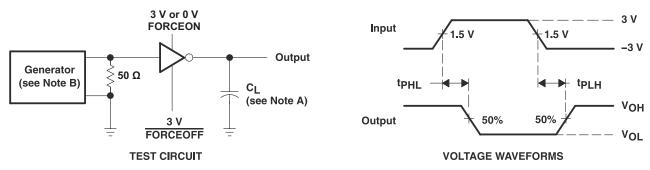
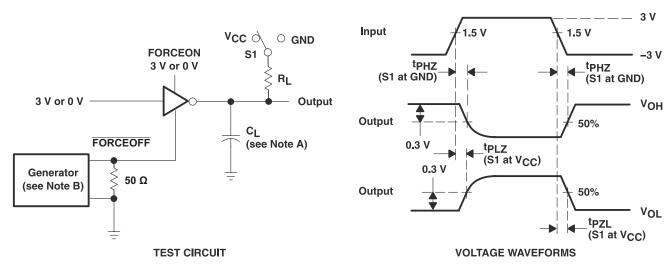

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns.

Figure 2. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

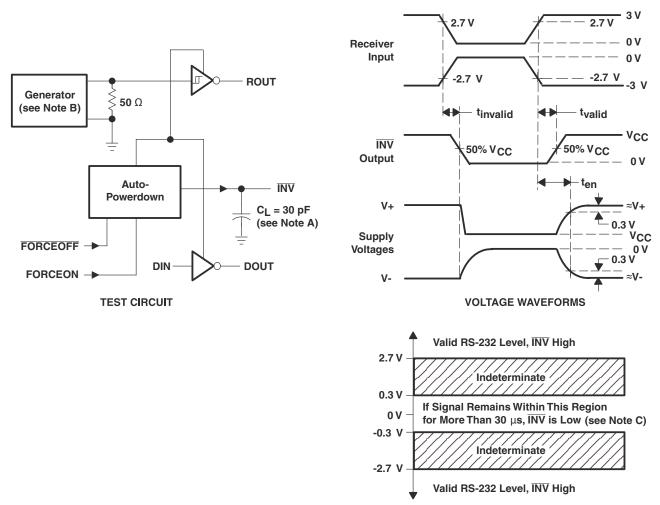
Figure 3. Driver Pulse Skew



- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 4. Receiver Propagation Delay Times

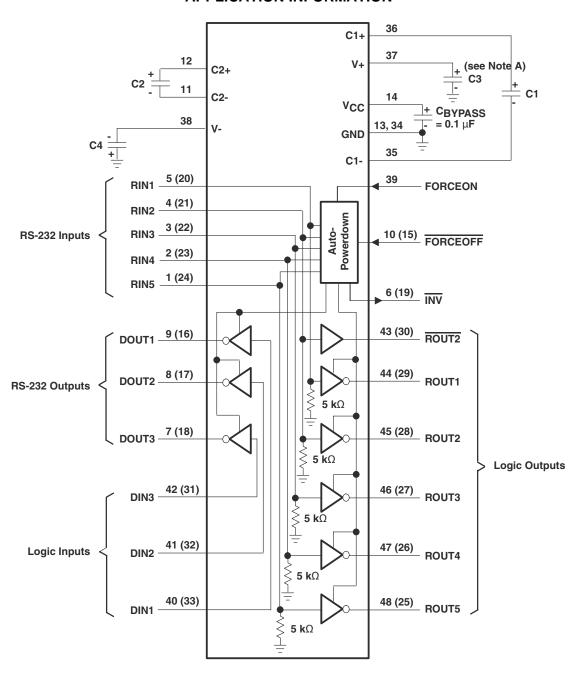
PARAMETER MEASUREMENT INFORMATION (continued)



- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 5. Receiver Enable and Disable Times

PARAMETER MEASUREMENT INFORMATION (continued)



- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbits/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 6. INV Propagation Delay Times and Supply Enabling Times

APPLICATION INFORMATION

V_{CC} vs CAPACITOR VALUES

VCC	C1	C2, C3, and C4
$\begin{array}{c} 3.3 \ V \ \pm \ 0.3 \ V \\ 5 \ V \ \pm \ 0.5 \ V \\ 3 \ V \ to \ 5.5 \ V \end{array}$	0.22 μF 0.047 μF 0.22 μF	0.22 μF 0.33 μF 1 μF

- A. C3 can be connected to V_{CC} or GND.
- B. Resistor values shown are nominal.
- C. Numbers in parentheses are for B section.

Figure 7. Typical Operating Circuit and Capacitor Values

PACKAGE OPTION ADDENDUM

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRSF23243CDGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TRSF23243C	Samples
TRSF23243CDLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TRSF23243C	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

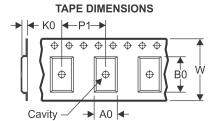
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Jun-2014


In no event shall TI's liabilit	v arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017

TAPE AND REEL INFORMATION

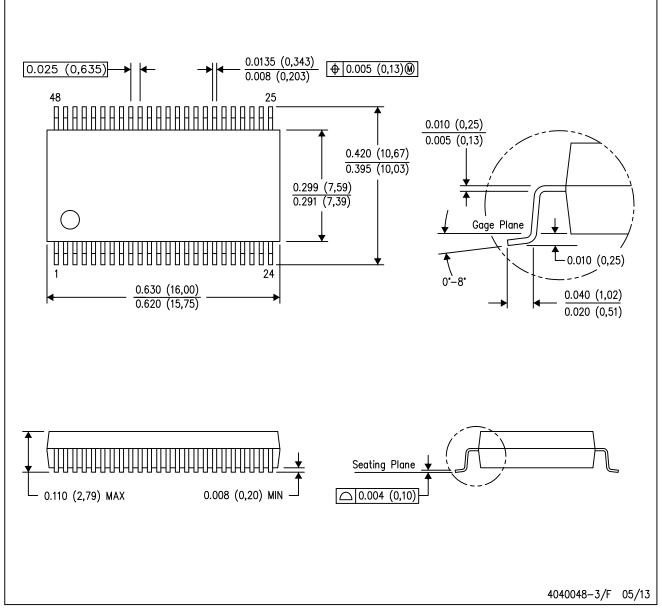
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF23243CDGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
TRSF23243CDLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com 11-Mar-2017



*All dimensions are nominal

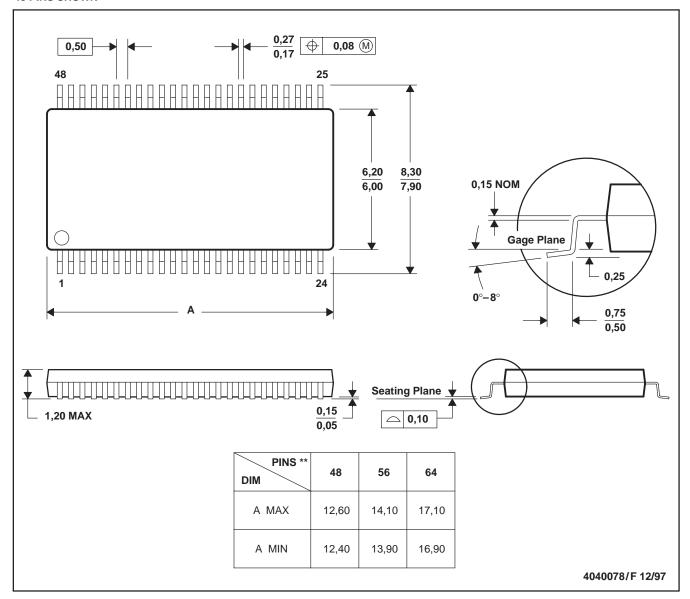
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRSF23243CDGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
TRSF23243CDLR	SSOP	DL	48	1000	367.0	367.0	55.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118


PowerPAD is a trademark of Texas Instruments.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated