

TUSB2551A

SCES790-JUNE 2009

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVER

FEATURES

- Complies With Universal Serial Bus Specification Rev. 2.0 (USB 2.0)
- Transmits and Receives Serial Data at Both Full-Speed (12-Mbit/s) and Low-Speed (1.5-Mbit/s) Data Rates
- Integrated Bypassable 5-V to 3.3-V Voltage Regulator for Powering Via USB V_{BUS}
- Low-Power Operation is Ideal for Portable Equipment
- Meets the IEC-61000-4-2 Contact Discharge (±9 kV) and Air-Gap Discharge (±9 kV) ESD Ratings
- Separate I/O Supply With Operation Down to 1.65 V
- Very-Low Power Consumption to Meet USB Suspend Current Requirements
- No Power-Supply Sequencing Requirements

APPLICATIONS

- Cellular Phones
- Personal Digital Assistants (PDAs)
- Handheld Computers

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The TUSB2551A is a single-chip transceiver that complies with the physical-layer specifications of universal serial bus (USB) 2.0. The device supports both full-speed (12-Mbit/s) and low-speed (1.5-Mbit/s) operation. The TUSB2551A delivers superior edge-rate control, producing crisper eye diagrams, which ease the task of passing USB compliance testing.

A dual supply-voltage operation allows the TUSB2551A to reference the system interface I/O signals to a supply voltage down to 1.6 V, while independently powered by the USB $V_{CC(5.0)}$. This allows the system interface to operate at its core voltage without the addition of buffering logic, and also reduce system operating current.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TUSB2551A

SCES790-JUNE 2009

ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	QFN – RGT	Reel of 2000	TUSB2551ARGTR	ZUH	
	TSSOP – PW	Reel of 3000	TUSB2551APWR		
		Tube of 90	TUSB2551APW	FREVIEW	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

2

www.ti.com

TUSB2551A

SCES790-JUNE 2009

TERMINAL FUNCTIONS

TERMINAL				
NAME	N	0.	I/O	DESCRIPTION
NAME	RGT	PW	1	
V _{CC(I/O)}	15	1	I	System interface supply voltage. Used to provide reference supply voltage for system I/O interface signaling.
SPEED	1	2	I	Speed. Edge-rate control: A logic HIGH operates at edge rates for full-speed operation. A logic LOW operates at edge rates for low-speed operation.
RCV	2	3	0	Receive data. Output for USB differential data.
VP	3	4	I/O	If $\overline{OE} = 1$, VP = Receiver output (+) If $\overline{OE} = 0$, VP = Driver input (+)
VM	4	5	I/O	If $\overline{OE} = 1$, VM = Receiver output (-) If $\overline{OE} = 0$, VM = Driver input (-)
SOFTCON	5	6	Ι	Soft connect. Controls state of V _{PU(3.3)} . See V _{PU(3.3)} pin description for details.
GND	6	7		Ground reference
SUSPEND	7	8	Ι	Suspend. Active high. Turns off internal circuits to reduce supply current.
NC	8, 16			No internal connection
OE	9	9	I	Output enable. Active low. Enables the transceiver to transmit data onto the bus. When inactive, the transceiver is in the receive mode.
D–, D+	10, 11	10, 11	I/O	Differential data lines conforming to the USB standard
V _{reg(3.3)}	12	12	0	3.3-V reference supply. Requires a minimum 0.1- μ F decoupling capacitor for stability. A 1- μ F capacitor is recommended.
V _{PU(3.3)}	13	13	0	Pullup supply voltage. Used to connect 1.5-k Ω pullup speed detect resistor. If SOFTCON = 1, V _{PU(3.3)} is high impedance. If SOFTCON = 0, V _{PU(3.3)} = 3.3 V.
V _{CC(5.0)}	14	14	I	USB bus supply voltage. Used to power USB transceiver and internal circuitry.

FUNCTIONAL DESCRIPTION

FUNCTION SELECTION

SUSPEND	OE	D+, D-	RCV	VP, VM	FUNCTION
0	0	Driving	Active	Active	Normal transmit mode
0	1	Receiving	Active	Active	Normal receive mode
1	0	Hi-Z	0	Not active	Low power state
1	1	Hi-Z	0	Active	Receiving during suspend (low power state) ⁽¹⁾

(1) During suspend, VP and VM are active to detect out-of-band signaling conditions.

TRUTH TABLE DURING NORMAL MODE

1									
	OE = 0								
INF	PUT		OUTPUT		ргени т				
VP	VM	D+	D-	RCV	RESULI				
0	0	0	0	X ⁽¹⁾	SE0				
0	1	0	1	0	Logic 0				
1	0	1	0	1	Logic 1				
1	1	1 1 X ⁽¹⁾		X ⁽¹⁾	Undefined				
		ō	E = 1						
INF	PUT		OUTPUT		DESULT				
D+	D-	VP	VM	RCV	RESULT				
0	0	0	0	X ⁽¹⁾	SE0				
0	1	0	1	0	Logic 0				
1	0	1	0	1	Logic 1				
1	1	1	1	X ⁽¹⁾	Undefined				

(1) X = Undefined

SCES790-JUNE 2009

Power-Supply Configurations

The TUSB2551A can be used with different power-supply configurations, which can be dynamically changed. An overview is given in Table 1.

- Normal mode Both V_{CC(I/O)} and V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. For 5-V operation, V_{CC(5.0)} is connected to a 5-V source (4 V to 5.5 V). The internal voltage regulator then produces 3.3 V for the USB connections. For 3.3-V operation, both V_{CC(5.0)} and V_{reg(3.3)} are connected to a 3.3-V source (3 V to 3.6 V). V_{CC(I/O)} is independently connected to a voltage source (1.65 V to 3.6 V), depending on the supply voltage of the external circuit.
- Disable mode V_{CC(I/O)} is not connected; V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. In this mode, the internal circuits of the TUSB2551A ensure that the D+ and D– pins are in 3-state, and the power consumption drops to the low-power (suspended) state level. Some hysteresis is built into the detection of V_{CC(I/O)} lost.
- Sharing mode $V_{CC(I/O)}$ is connected; $V_{CC(5.0)}$ and $V_{reg(3.3)}$ are not connected. In this mode, the D+ and Dpins are made 3-state, and the TUSB2551A allows external signals of up to 3.6 V to share the D+ and Dlines. The internal circuits of the TUSB2551A ensure that virtually no current (maximum 10 mA) is drawn via the D+ and D- lines. The power consumption through $V_{CC(I/O)}$ drops to the low-power (suspended) state level. Both the VP and VM pins are driven HIGH to indicate this mode. Pin RCV is made LOW. Some hysteresis is built into the detection of $V_{reg(3.3)}$ lost.

CONFIGURATION MODE	VBUS/VTRM	VIF	Notes
Normal	Connected	Connected	Normal supply configuration and operation
Disconnect (D+/D– sharing)	Open	Connected	$\label{eq:VPVM} \begin{array}{l} \text{WPVVM} \text{ are HIGH outputs, RCV is LOW.} \\ \text{With } \overrightarrow{\text{OE}} = 0 \text{ and SUSPEND} = 1, \text{ data lines may be driven} \\ \text{with external devices up to 3.6 V.} \\ \text{With } D\text{+}, D\text{-} \text{ floating, } I_{CC(I/O)} \text{ draws less than 1 } \mu\text{A.} \end{array}$
Disconnect	Ground	Connected	VP/VM are HIGH outputs, RCV is LOW. With D+, D– floating, $I_{CC(I/O)F}$ draws less than 1 μ A.
Disable Mode	Connected	Open	Logic controlled inputs pins are Hi-Z.
Prohibited	Connected	Ground	Prohibited condition

Table 1. Power-Supply Configuration Overview

Table 2.	Pin States	in Disabl	e or Sharing	Mode
----------	------------	-----------	--------------	------

PINS	DISABLE-MODE STATE	SHARING-MODE STATE
V _{CC(5.0)} /V _{reg(3.3)}	5-V input/3.3-V output, 3.3-V input/3.3-V input	Not present
V _{CC(I/O)}	Not present	1.65-V to 3.6-V input
V _{PU(3.3)}	High impedance (off)	High impedance (off)
D+, D–	High impedance	High impedance
VP, VM	Invalid ⁽¹⁾	Н
RCV	Invalid ⁽¹⁾	L
Inputs (SPEED, SUSPEND, OE, SOFTCON)	High impedance	High impedance

(1) High impedance or driven LOW

4

EXAS

NSTRUMENTS

www.ti.com

Power-Supply Input Options

The TUSB2551A has two power-supply input options.

- Internal regulator V_{CC(5.0)} is connected to 4 V to 5.5 V. The internal regulator is used to supply the internal circuitry with 3.3 V (nominal). V_{reg(3.3)} becomes a 3.3-V output reference.
- Regulator bypass $V_{CC(5,0)}$ and $V_{reg(3,3)}$ are connected to the same supply. The internal regulator is bypassed, and the internal circuitry is supplied directly from the $V_{reg(3,3)}$ power supply. The voltage range is 3 V to 3.6 V to comply with the USB specification.

The supply-voltage range for each input option is specified in Table 3.

Table 3. Power-Supply Input Options

INPUT OPTION	V _{CC(5.0)}	V _{reg(3.3)}	V _{CC(I/O)}		
Internal regualtor	Supply input for internal regulator (4 V to 5.5 V)	Voltage-reference output (3.3 V, 300 μA)	Supply input for digital I/O pins (1.4 V to 3.6 V)		
Regulator bypass	Connected to V _{reg(3.3)} with maximum voltage drop of 0.3 V (2.7 V to 3.6 V)	Supply input (3 V to 3.6 V)	Supply input for digital I/O pins (1.4 V to 3.6 V)		

Electrostatic Discharge (ESD)

PIN NAME	ESD	TYP	UNIT
	IEC61000-4-2, Air-Gap Discharge	±9	
D+, D–, V _{CC(5.0)}	IEC61000-4-2, Contact Discharge	±9	kV
	Human-Body Model	±15	
All other pins	Human-Body Model	±2	kV

SCES790-JUNE 2009

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC(5.0)}	Supply voltage range	-0.5	6	V
V _{CC(I/O)}	I/O supply voltage range	-0.5	4.6	V
V _{reg(3.3)}	Regulated voltage range	-0.5	4.6	V
VI	DC input voltage range	-0.5	$V_{CC(I/O)} + 0.5$	mA
I _{O(D+, D-)}	Output current (D+, D–)		±50	mA
lo	Output current (all others)		±15	mA
l _l	Input Current		±50	mA
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V _{CC(5.0)}	Supply voltage, internal regulator option	5-V operation	4	5	5.25	V
V _{reg(3.3)}	Supply voltage, regulator bypass option	3.3-V operation	3	3.3	3.6	V
V _{CC(I/O)}	I/O supply voltage		1.65		3.6	V
V _{IL}	Low-level input voltage ⁽¹⁾		V _{CC(I/O)} –0.3		0.15 V _{CC(I/O)}	V
V _{IH}	High-level input voltage ⁽¹⁾		0.85 V _{CC(I/O)}		$V_{CC(I/O)} + 0.3$	V
D+, D–	Input voltage on analog I/O pins		0		3.6	V
T _c	Junction temperature		-40		85	°C

(1) Specification applies to the following pins: SUSPEND, SPEED, RCV, SOFTCON, VP, VM, and OE.

TUSB2551A

SCES790-JUNE 2009

www.ti.com

DC ELECTRICAL CHARACTERISTICS – SYSTEM AND USB INTERFACE⁽¹⁾

 $V_{CC(I/O)}$ = 3.6 V, $V_{CC(5.0)}$ = 5 V (unless otherwise noted), T_A = 25°C. Bold indicates specifications over temperature, -40°C to 85°C.

PA	PARAMETER		TEST CONDITIONS					TYP	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	I _{OH} = 20 μ	I _{OH} = 20 μA				0.9 V _{CC(I/O)}			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 20 μA						0.1	V	
IIL	Input leakage current ⁽²⁾						-5	1.5	5	μA
		SPEED	SUSPEND	OE	VOLTAGE	LOAD				
		1	0	1				1	5	
		1	0	0				1	5	
		0	0	1] .,			1	5	μΑ
I _{CC(I/O)}	V _{CC(I/O)} supply current	0	0	0	$V_{CC(5.0)} = 5.25 V_{\odot}$			1	5	
	()	0	1	0	$V_{CC(I/O)} =$			1	5	
		1	0	0	3.6 V	f = 6 MHz, C _L = 50 pF		1	2	mA
		0	0	0		f = 750 kHz, C _L = 600 pF		260	280	μΑ
		1	0	1	-			800	1100	
		1	0	0				3000	5000	μA
		0	0	1				230	350	
		ETER TEST CONDITIONS -level output ge ⁽²⁾ $I_{OH} = 20 \ \mu A$ level output ge ⁽²⁾ $I_{OL} = 20 \ \mu A$ ·leakage current ⁽²⁾ SPEED SUSPEND \overline{OE} VOLTAGE LOAD ·leakage current ⁽²⁾ ·leakage current ⁽²⁾ ·vcc(s_0) = 5.25 V, 0 ·vcc(s_0) = 5.25 V, Vcc(WO) = 1 ·vcc(S_0) = 5.25 V, Vcc(WO) = 3.6 V ·vcc(WO) = 6 ·vcc(WO) = 6 ·vcc(WO) = 5.25 V, Vcc(WO) = 3.6 V ·vcc(S_0) = 5.25 V, Vcc(WO) = 3.6 V ·vcc(S_0) = 5.25 V, Vcc(WO) = 3.6 V ·vcc(WO) = 5.25 V, Vcc(WO) = 5.25 V, Vcc(WO) = 3.6 V ·vcc(WO) = 5.25 V ·vcc(WO) = 5.25 V, Vcc(WO) = 3.6 V, Vcc(S_0) = 0 V ·vcc(WO) = 5.25 V <t< td=""><td></td><td></td><td>400</td><td>700</td><td></td></t<>			400	700				
I _{CC(5.0)}	V _{CC(5.0)} supply current	0	1	0	$V_{CC(I/O)} =$			130	200	
		$\begin{array}{ c c c c c c } \hline \mbox{TEST CONDITIONS} & \mbox{Min} & \mbox{T} \\ \hline \mbox{I}_{OH} = 20 \ \mu \mbox{A} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6	10	0					
		0	0	0	-	f = 750 kHz, C _L = 600 pF	MIN TYP MAX $0.9 V_{CC(I/O)}$ 0.1 -5 1.5 LOAD 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 2 750 kHz, 260 230 350 10 3000 3000 5000 130 200 130 200 130 200 130 200 130 5 5 5 5 5 5 5 5 5	mA		
I _{PU(3.3)LEAK}	V _{PU(3.3)} leakage current	SOFTCOM	V = 1, V _{PU(3.3)}	= 0 V			-5		5	μA
I _{CC(I/O)LEAK}	V _{CC(I/O)} leakage current	$V_{CC(I/O)} =$	3.6 V, V _{CC(5.0}) = 0 V			-5		5	μA
V _{PU(3.3)}	Pullup output voltage	$I_{reg(3.3)} = 2$	200 μA, V _{CC(5}	. ₀₎ = 4 V	to 5.25 V		3	3.3	3.6	V
R _{SW}	V _{PU(3.3)} switch resistance	$I_{reg(3.3)} = 1$	$I_{reg(3.3)} = 10 \text{ mA}, V_{CC(5.0)} = 4 \text{ V to } 5.25 \text{ V}$					10		Ω
ESD Protection	า									
IEC-61000-4-2	Air-Gap Discharge	10 pulses						±9		
(D+, D–, V _{CC(5.0)} only)	Contact Discharge	10 pulses						±9		kV

Specification for packaged product only
 Specification applies to the following pins: RCV, VP, VM, OE.

INSTRUMENTS www.ti.com

Texas

SCES790-JUNE 2009

DC ELECTRICAL CHARACTERISTICS – TRANSCEIVER⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Leakage	Current					
I _{LO}	Hi-Z state data line leakage (suspend mode)	0 V < V _{IN} < 3.3 V, SUSPEND = 1	-10		10	μΑ
Input Le	vels					
V _{DI}	Differential input sensitivity	(D+) - (D-)	0.2			V
V _{CM}	Differential common mode range	Includes V _{DI} range	0.8		2.5	V
V_{SE}	Single-ended receiver threshold		0.8		2	V
	Receiver hysteresis			200		mV
Output L	_evels					
V _{OL}	Static output low	$R_L = 1.5 \text{ k}\Omega \text{ to } 3.6 \text{ V}$			0.3	V
V _{OH}	Static output high	$R_L = 15 \text{ k}\Omega \text{ to GND}$	2.8		3.6	V
Capacita	ance				·	
C _{IN}	Transceiver capacitance	Pin to GND		10		pF
Z _{DRV}	Driver output resistance	Steady-state drive	1	6	11	Ω

(1) Specification for packaged product only

TUSB2551A

SCES790-JUNE 2009

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT						
Driver 0	Driver Characteristics (Low Speed)										
T _R	Transition rise time	C_L = 200 pF (see Figure 2), C_L = 600 pF	75	300	ns						
T _F	Transition fall time	C_L = 200 pF (see Figure 2), C_L = 600 pF	75	300	ns						
LRFM	Rise/fall time matching	T _R , T _F	80	125	%						
V _{CRS}	Output signal crossover voltage		1.3	2	V						
Driver (Characteristics (Full Speed)										
T _R	Transition rise time	C _L = 50 pF (see Figure 2)	4	20	ns						
T _F	Transition fall time	C _L = 50 pF (see Figure 2)	4	20	ns						
FRFM	Rise/fall time matching	TR, TF	90	111.1	%						
V _{CRS}	Output signal crossover voltage		1.3	2	V						
Transce	eiver Timing (Full Speed)										
t _{PVZ}	OE to receiver 3-state delay	See Figure 1		15	ns						
t _{PZD}	Receiver 3-state to transmit delay	See Figure 1	15		ns						
t _{PDZ}	OE to driver 3-state delay	See Figure 1		15	ns						
t _{PZV}	Driver 3-state to receive delay	See Figure 1	15		ns						
t _{PLH} t _{PHL}	$V_{\rm P},V_{\rm M}$ to D+, D– propagation delay	See Figure 4		17	ns						
t _{PLH} t _{PHL}	D+, D– to RCV propagation delay	See Figure 3		17	ns						
t _{PLH} t _{PHL}	D+, D– to $V_{\text{P}},V_{\text{M}}$ propagation delay	See Figure 3		10	ns						

(1) Specification for packaged product only

SCES790-JUNE 2009

Figure 1. Enable and Disable Times

Figure 2. Rise and Fall Times

Figure 3. Receiver Propagation Delay

Figure 4. Driver Propagation Delay

SCES790-JUNE 2009

TEST CIRCUITS

Figure 5. Load for V_P , V_M , RCV

Figure 6. Load for D+, D-

10-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TUSB2551ARGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZUH	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

10-Sep-2014

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TUSB2551ARGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Dec-2011

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TUSB2551ARGTR	QFN	RGT	16	3000	346.0	346.0	35.0

GENERIC PACKAGE VIEW

VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGT0016B

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RGT0016B

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RGT0016B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated