UAF42
INSTRUMENTS

UNIVERSAL ACTIVE FILTER

Check for Samples: UAF42

FEATURES

- VERSATILE:
- Low-Pass, High-Pass
- Band-Pass, Band-Reject
- SIMPLE DESIGN PROCEDURE
- ACCURATE FREQUENCY AND Q:
- Includes On-Chip 1000pF $\pm 0.5 \%$ Capacitors

APPLICATIONS

- TEST EQUIPMENT
- COMMUNICATIONS EQUIPMENT
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION SYSTEMS
- MONOLITHIC REPLACEMENT FOR UAF41

DESCRIPTION

The UAF42 is a universal active filter that can be configured for a wide range of low-pass, high-pass, and band-pass filters. It uses a classic state-variable analog architecture with an inverting amplifier and two integrators. The integrators include on-chip 1000 pF capacitors trimmed to 0.5%. This architecture solves one of the most difficult problems of active filter design-obtaining tight tolerance, low-loss capacitors.
A DOS-compatible filter design program allows easy implementation of many filter types, such as Butterworth, Bessel, and Chebyshev. A fourth, uncommitted FET-input op amp (identical to the other three) can be used to form additional stages, or for special filters such as band-reject and Inverse Chebyshev.
The classical topology of the UAF42 forms a time-continuous filter, free from the anomalies and switching noise associated with switched-capacitor filter types.
The UAF42 is available in 14-pin plastic DIP and SOIC-16 surface-mount packages, specified for the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

NOTE: (1) $\pm 0.5 \%$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Over operating free-air temperature range unless otherwise noted.

	UAF42	UNIT
Power Supply Voltage	± 18	V
Input Voltage	$\pm \mathrm{V}_{\mathrm{S}} \pm 0.7$	V
Output Short-Circuit	Continuous	
Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	+125	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended period may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.

ORDERING INFORMATION ${ }^{(1)}$

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING
UAF42AP	PDIP-14	N	UAF42AP
UAF42APG4		DW	UAF42AU
UAF42AU	SOIC-16		
UAF42AUE4			

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the Tl web site at www.ti.com.

PIN CONFIGURATIONS

NOTE: (1) NC = no connection. For best performance connect all NC pins to ground to minimize inter-lead capacitance.

ELECTRICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	UAF42AP, AU			UNIT		
		MIN	TYP	MAX			
FILTER PERFORMANCE Frequency Range, f_{n} Frequency Accuracy vs Temperature Maximum Q Maximum (Q • Frequency) Product Q vs Temperature Q Repeatability Offset Voltage, Low-Pass Output Resistor Accuracy	$\begin{gathered} \mathrm{f}=1 \mathrm{kHz} \\ \left(\mathrm{f}_{\mathrm{O}} \cdot \mathrm{Q}\right)<10^{4} \\ \left(\mathrm{f}_{\mathrm{O}} \cdot \mathrm{Q}\right)<10^{5} \\ \left(\mathrm{f}_{\mathrm{O}} \cdot \mathrm{Q}\right)<10^{5} \end{gathered}$		0 to 100 0.01 400 500 0.01 0.025 2 0.5	1 ± 5 1	$\begin{gathered} \mathrm{kHz} \\ \% \\ \% /{ }^{\circ} \mathrm{C} \\ - \\ \mathrm{kHz} \\ \% /{ }^{\circ} \mathrm{C} \\ \% /{ }^{\circ} \mathrm{C} \\ \% \\ \mathrm{mV} \\ \% \end{gathered}$		
OFFSET VOLTAGE ${ }^{(1)}$ Input Offset Voltage vs Temperature vs Power Supply	$\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	80	$\begin{gathered} \pm 0.5 \\ \pm 3 \\ 96 \end{gathered}$	± 5	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT ${ }^{(1)}$ Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 10 \\ 5 \end{gathered}$	50	pA pA		
NOISE Input Voltage Noise Noise Density: $\mathrm{f}=10 \mathrm{~Hz}$ Noise Density: $f=10 \mathrm{kHz}$ Voltage Noise: BW $=0.1 \mathrm{~Hz}$ to 10 Hz Input Bias Current Noise Noise Density: $\mathrm{f}=10 \mathrm{kHz}$			$\begin{gathered} 25 \\ 10 \\ 2 \\ 2 \end{gathered}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V}_{\mathrm{PP}}$ $\mathrm{f} \mathrm{A} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE ${ }^{(1)}$ Common-Mode Input Range Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	80	$\begin{gathered} \pm 11.5 \\ 96 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE ${ }^{(1)}$ Differential Common-Mode			$\begin{aligned} & 10^{13}\| \| 2 \\ & 10^{13}\| \| \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN ${ }^{(1)}$ Open-Loop Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	90	126		dB		
FREQUENCY RESPONSE Slew Rate Gain-Bandwidth Product Total Harmonic Distortion	$\begin{gathered} G=+1 \\ G=+1, f=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 10 \\ 4 \\ 0.1 \end{gathered}$		V/ $\mu \mathrm{s}$ MHz \%		
OUTPUT ${ }^{(1)}$ Voltage Output Short Circuit Current	$R_{L}=2 k \Omega$	± 11	$\begin{gathered} \pm 11.5 \\ \pm 25 \end{gathered}$		$\begin{gathered} \text { V } \\ \mathrm{mA} \end{gathered}$		

[^0]
ELECTRICAL CHARACTERISTICS (continued)

At $T_{A}=+25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	UAF42AP, AU			UNIT
		MIN	TYP	MAX	
POWER SUPPLY					
Specified Operating Voltage			± 15		V
Operating Voltage Range		± 6		± 18	V
Current			± 6	± 7	mA
TEMPERATURE RANGE					
Specified		-25		+85	${ }^{\circ} \mathrm{C}$
Operating		-25		+85	${ }^{\circ} \mathrm{C}$
Storage		-40		+125	${ }^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$			100		${ }^{\circ} \mathrm{C} / \mathrm{W}$

APPLICATION INFORMATION

The UAF42 is a monolithic implementation of the proven state-variable analog filter topology. This device is pin-compatible with the popular UAF41 analog filter, and it provides several improvements.
The slew rate of the UAF42 has been increased to $10 \mathrm{~V} / \mu \mathrm{s}$, versus $1.6 \mathrm{~V} / \mathrm{\mu s}$ for the UAF41. Frequency - Q product of the UAF42 has been improved, and the useful natural frequency extended by a factor of four to 100 kHz . FET input op amps on the UAF42 provide very low input bias current. The monolithic construction of the UAF42 provides lower cost and improved reliability.

DESIGN PROGRAM

Application report SBFA002 (available for download at www.ti.com) and a computer-aided design program also available from Texas Instruments, make it easy to design and implement many kinds of active filters. The DOS-compatible program guides you through the design process and automatically calculates component values.
Low-pass, high-pass, band-pass and band-reject (notch) filters can be designed. The program supports the three most commonly-used all-pole filter types: Butterworth, Chebyshev and Bessel. The less-familiar inverse Chebyshev is also supported, providing a smooth passband response with ripple in the stop band.

With each data entry, the program automatically calculates and displays filter performance. This feature allows a spreadsheet-like what-if design approach. For example, a user can quickly determine, by trial and error, how many poles are required for a desired attenuation in the stopband. Gain/phase plots may be viewed for any response type.

The basic building element of the most commonly-used filter types is the second-order section. This section provides a complex-conjugate pair of poles. The natural frequency, ω_{n}, and Q of the pole pair determine the characteristic response of the section. The low-pass transfer function is shown in Equation 1:
$\frac{V_{0}(s)}{V_{1}(s)}=\frac{A_{L P} \omega_{n}{ }^{2}}{s^{2}+s \omega_{n} / Q+\omega_{n}{ }^{2}}$
The high-pass transfer function is given by Equation 2:
$\frac{V_{H P}(s)}{V_{1}(s)}=\frac{A_{H P} s^{2}}{s^{2}+s \omega_{n} / Q+\omega_{n}{ }^{2}}$
The band-pass transfer function is calculated using Equation 3:
$\frac{V_{B P}(s)}{V_{1}(s)}=\frac{A_{B P}\left(\omega_{n} / Q\right) s}{s^{2}+s \omega_{n} / Q+\omega_{n}{ }^{2}}$
A band-reject response is obtained by summing the low-pass and high-pass outputs, yielding the transfer function shown in Equation 4:
$\frac{V_{B R}(s)}{V_{I}(s)}=\frac{A_{B R}\left(s^{2}+\omega_{n}{ }^{2}\right)}{s^{2}+s \omega_{n} / Q+\omega_{n}{ }^{2}}$
The most common filter types are formed with one or more cascaded second-order sections. Each section is designed for ω_{n} and Q according to the filter type (Butterworth, Bessel, Chebyshev, etc.) and cutoff frequency. While tabulated data can be found in virtually any filter design text, the design program eliminates this tedious procedure.
Second-order sections may be noninverting (Figure 1) or inverting (Figure 2). Design equations for these two basic configurations are shown for reference. The design program solves these equations, providing complete results, including component values.

Design Equations

1. $\omega_{n}^{2}=\frac{R_{2}}{R_{1} R_{F 1} R_{F 2} C_{1} C_{2}}$
2. $A_{L P}=\frac{1+\frac{R_{1}}{R_{2}}}{R_{G}\left(\frac{1}{R_{G}}+\frac{1}{R_{Q}}+\frac{1}{R_{4}}\right)}$
3. $\mathrm{Q}=\frac{1+\frac{\mathrm{R}_{4}\left(\mathrm{R}_{\mathrm{G}}+\mathrm{R}_{\mathrm{Q}}\right)}{\mathrm{R}_{\mathrm{G}} \mathrm{R}_{\mathrm{Q}}}}{1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}\left(\frac{\mathrm{R}_{2} \mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{1}}{\mathrm{R}_{1} \mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{2}}\right)^{1 / 2}$
4. $A_{H P}=\frac{R_{2}}{R_{1}} A_{L P}=\frac{1+\frac{R_{2}}{R_{1}}}{R_{G}\left(\frac{1}{R_{G}}+\frac{1}{R_{Q}}+\frac{1}{R_{4}}\right)}$
5. $\quad Q A_{L P}=Q A_{H P}\left(\frac{R_{1}}{R_{2}}\right)=A_{B P}\left(\frac{R_{1} R_{F 1} C_{1}}{R_{2} R_{F 2} C_{2}}\right)^{1 / 2}$
6. $A_{B P}=\frac{R_{4}}{R_{G}}$

Figure 1. Noninverting Pole-Pair

Design Equations

1. $\omega_{\mathrm{n}}{ }^{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{\mathrm{F} 1} \mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{1} \mathrm{C}_{2}}$
2. $\left.\mathrm{Q}=\left[1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{Q}}}\right] \frac{1}{\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{\mathrm{G}}}\right.}\right)\left(\frac{\mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{2}}\right)^{1 / 2}$
3. $\quad Q A_{L P}=Q A_{H P}\left(\frac{R_{1}}{R_{2}}\right)=A_{B P}\left(\frac{R_{1} R_{F 1} C_{1}}{R_{2} R_{F 2} C_{2}}\right)^{1 / 2}$
4. $A_{L P}=\frac{R_{1}}{R_{G}}$
5. $A_{H P}=\frac{R_{2}}{R_{1}} A_{L P}=\frac{R_{2}}{R_{G}}$
6. $A_{B P}=\left(1+\frac{R_{4}}{R_{Q}}\right) \frac{1}{R_{G}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{G}}\right)}$

Figure 2. Inverting Pole-Pair

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision A (November, 2007) to Revision B
Page

- Corrected package marking information shown in Ordering Information table

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
UAF42AP	ACTIVE	PDIP	N	14	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	N / A for Pkg Type		UAF42AP	Samples
UAF42APG4	ACTIVE	PDIP	N	14	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	N / A for Pkg Type		UAF42AP	Samples
UAF42AU	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	UAF42AU	Samples
UAF42AUE4	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	UAF42AU	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

DW (R-PDSO-G16)

4040000-2/G 01/11
NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

[^0]: (1) Specifications apply to uncommitted op amp, A_{4}. The three op amps forming the filter are identical to A_{4} but are tested as a complete filter.

